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1. Introduction

There are many parts of the developing world where establishing hydrological and water
resources estimation models is difficult due to the lack of observed stream flow data for cal-
ibration and validation purposes, as well as deficiencies in the available climate input data
to force the models. The former can be partially overcome through parameter regionalisation
approaches that also include uncertainty assessments (Yadav et al., 2007; Kapangaziwiri et al.,
2012). Even when observed stream flow data are available, they often include upstream anthro-
pogenic impacts which are not always adequately quantified (Hughes and Mantel, 2010), or are
not included as part of the modelling scheme. The availability of climate forcing data is prob-
lematic as a consequence of a lack of observation stations, a situation that is getting steadily
worse (WWAP, 2009), combined with difficulties in accessing climate databases from some
national authorities. Some data custodians are reluctant or lack the capacity to respond to data
requests, and in some cases only summary information is available rather than complete time
series of raw data. In other situations, quite substantial charges are levied before the data are
released, even if the request is for research purposes. Practical hydrological modellers are there-
fore faced with decisions related to the choice of model, what data they are going to use to
force the model and how they are going to validate or justify the results. All of these issues
are strongly interrelated and typically not easy to resolve in many data scarce areas of southern
Africa.

From a practical perspective (rather than for research purposes), the selection of a model
would typically be based on user experience and the extent to which a model has already
been applied successfully in the region of interest. The Pitman monthly rainfall-runoff model
is therefore often the model of choice in the southern Africa region (Hughes, 2013) and it is
often coupled with water resources system yield models (Basson et al., 1994; Mallory et al.,
2008) to cater for many different anthropogenic impacts and to simulate different development
scenarios. However, there are also situations where a monthly time-step might be consid-
ered too coarse, and either daily modelling or some form of daily disaggregation would be
required.

There are many parts of southern Africa where both observed rainfall and stream flow data
are limited in terms of spatial coverage and lengths of record. There is little that can be done
about the stream flow data, and it is inevitable that many of our hydrological simulations will be
impossible to validate and are therefore highly uncertain (Kapangaziwiri et al., 2012). Arguably,
one of the only options is to use regionalised catchment response information to constrain the
uncertainty as far as possible (Yadav et al., 2007; Tumbo and Hughes, 2015). For rainfall data,
the alternative to a lack of local ground-based data is to make use of freely available global
datasets that have been compiled through spatial interpolation from existing data, or that use
remotely sensed data, such as satellite rainfall data (Voisin et al., 2008; Pombo et al., 2014;
Prakash et al., 2014). All of the available data products have different temporal and spatial res-
olutions and therefore, not all of them are necessarily appropriate for a specific study. They are
also potentially biased in relation to local ground-based rainfall data, and the bias is expected
to vary depending on the amount of local rainfall data incorporated into the interpolated or
merged products. The effects of topography and related orographic rainfall producing mecha-
nisms are expected to introduce further bias in satellite products (Hughes, 2006; Xie and Arkin,
1995).

This paper reports on the results of a study that involved the simulation of both monthly (using
the Pitman model) and daily (disaggregating the Pitman monthly simulations) stream flows using
different rainfall data products for a group of catchments covering different climate and topograph-
ical characteristics in southern Africa and with different degrees of data quality and scarcity. The
objective of the study was partly to further test a daily disaggregation approach (Slaughter et al.,
2015) and partly to compare the results of applying both models with different rainfall data prod-
ucts. More specifically, the study was  designed to try and identify any key limitations of the models
coupled with typically available rainfall data for different practical water resources assessment
purposes.
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Table 1
Catchments used in the study.

Catchment
name

Area
(km2)

No. of rain
gauges

Water balance
(mm  y−1)

Lat
Long.

Brief description of climate and location

C2H066 1101 3 517:15
2.9%

−27.20
26.01

Semi-arid, flat to undulating tributaries of the
Vaal River, South Africa.

C7H003 914 3 553:19
3.5%

−27.48
27.44

C8H005 696 3 650:152
23.4%

−28.55
28.84

Semi-arid area draining the north slopes of the
Drakensberg Mountains, Free State, South
Africa.

K3H003 145 3 777:180
23.1%

−33.94
22.32

Sub-humid Southern Cape of South African
coastal areas with steep topography affected
by orographic precipitation.K4H003 72 3 777:130

16.7%
−33.88
22.69

K7H001 57 3 1000:466
46.6%

−33.92
23.66

T4H001 715 3 868:231
26.6%

−30.66
29.71

Sub-humid to humid with undulating to steep
topography of the Eastern Cape, South Africa.

W3H014 48 3 927:77
8.3%

−28.34
32.33

Humid coastal area of NE KwaZulu-Natal,
South Africa with flat topography.

BOT Tati 570 6 460:53
11.4%

−21.00
27.50

Arid areas in the headwaters of the Shashe
River, Botswana. Gently, undulating
topography.BOT Ntse 800 6 460:37

8.1%
−21.00
27.30

SWZ  WMbl 223 3 810:104
12.9%

−26.37
31.42

Headwaters of the Mbululzi River, Swaziland.
Sub-humid and close to a N-S aligned steep
escarpment.SWZ  BMbl 722 4 1231:324

26.3%
−26.22
31.30

TZ 1KA8A 783 0 1408:585
41.5%

−9.03
34.12

Sub-humid, steep headwaters of the Great
Ruaha River, Tanzania.

ZAM 4005 433 2 1236:112
9.0%

−12.10
26.80

Sub-humid, undulating headwaters of the
Kafue River in Zambia.

ZAM 7005 444 3 1199:286
23.8%

−9.25
31.00

Sub-humid, undulating area of NE Zambia near
Lake Tanganyika.

ZIM B15 274 5 641:97
15.1%

−20.60
28.81

Semi-arid, relatively steep topography areas of
SW Zimbabwe.

ZIM B29 362 5 642:78
12.1%

−20.60
28.80

ZIM D6 1170 5 890:255
28.7%

−16.90
31.75

Semi-arid to sub-humid, relatively steep
topography areas of NE Zimbabwe.

ZIM D46 202 3 838:168
20.0%

−17.20
32.09

Notes: The three values given in the ‘water balance’ column are (in order) mean annual rainfall: mean annual runoff (both in
mm y−1) and runoff ratio as a percentage. No local rain gauges were available for TZ 1KA8A and the rainfall data used were
based  on regional interpolation (Stisen and Tumbo, 2015).

2. Study areas, models and data

2.1. Catchment selection

The catchments included in the analyses (Table 1) were selected partly to be representative of
typical conditions within the sub-continent, partly on the basis of the availability of both daily rainfall
and daily flow data and partly because of the existence of some prior modelling experience. In selecting
the catchments it was recognised that not all of them would have very high quality data available.
However, this is a limitation that is faced by all practical applications of hydrological models within
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the sub-continent and therefore, arguably, should be included as an important issue in any evaluation
of the usefulness of hydrological models. All of the catchments are small to moderate sized (>20 km2

and less than 2000 km2) and have either relatively minor anthropogenic impacts on the flow regimes,
or well-defined impacts (such as afforestation) that can be included as part of the model setup. The
modelling experience for the South African catchments is largely derived from many applications of
the Pitman model (Hughes, 2013) in the country, including the national water resources assessment
of Midgley et al. (1994) and follow-up studies. The experience for the other countries is derived from
the results of the UNESCO southern African FRIEND (Flow Regimes from International Experimental
and Network Data) project (Hughes, 1997).

2.2. Models

Two models are used within this study. The first is the monthly time-step, Pitman rainfall-runoff
model (Pitman, 1973) that has been applied in the region many times (Hughes, 2013) for both research
and practical purposes. The Pitman model is a conceptual type model that includes explicit components
to represent all of the key, catchment-scale, hydrological processes relevant to the southern Africa
region (interception, surface runoff, interflow, groundwater recharge and discharge to stream flow,
evapotranspiration, etc.). The model is semi-distributed and requires inputs of monthly precipitation
and seasonal distributions of mean monthly potential evaporation for each sub-basin. There are a total
of 14 parameters that are typically calibrated. The second model is a disaggregation model that uses
daily rainfall data to disaggregate simulated monthly flows to daily flows (Slaughter et al., 2015). This
model was developed as part of an on-going project that is designed to link water quality modelling to
existing monthly time-step water quantity models of both natural hydrology (rainfall-runoff models)
and water use (water resources system yield models). The rationale for the development of this model
was that, while water quantity and water use dynamics can be satisfactorily simulated at a monthly
time scale (Mallory et al., 2008; Hughes, 2013), water quality cannot. Consequently, most established
water quality models are run at a daily time-step or less, for example SWAT (Arnold et al., 1998),
QUAL2K (Pelletier et al., 2006) and CE-QAUL-W2 (Cole and Buchak, 1995). While a daily hydrological
model could be used to force a water quality model, there are distinct practical advantages to linking
the quality model to existing quantity estimates generated by a combination of the Pitman model
and systems yield models (Basson et al., 1994; Mallory et al., 2008). There are many existing monthly
model set-ups within several countries of southern Africa that have been accepted, and are used, by the
broad community of water resources managers. The daily disaggregation approach is designed to add
value to these. A daily disaggregation approach is also potentially valuable for linking monthly rainfall-
runoff model outputs to a number of other water resources management tools that operate on a daily
time-step, including hydraulic modelling of floodplain inundation (Schumann et al., 2013), short-
term (within month) irrigation abstraction management (George et al., 2000), environmental flows
(Overton et al., 2014) and flood frequency analysis. Arguably, monthly rainfall-runoff models are easier
to establish than daily models in regions such as southern Africa, particularly given the difficulties of
obtaining long time series of daily rainfall data and the long history of experience with the Pitman
model (Hughes, 2013). The availability of an additional procedure that can reliably disaggregate the
simulated monthly flows to daily estimates therefore has the potential to contribute to a number of
water resources management issues. However, this will only be possible if appropriate estimates of
daily rainfall are available that can be used to force the disaggregation approach.

The full details of the Pitman model are not provided here and can be accessed from several of the
publications referred to in Hughes (2013). The daily rainfall disaggregation model is less well docu-
mented in the literature (Slaughter et al., 2015) and is therefore summarised in Fig. 1. Step 1 simply
refers to the generation of a flow duration curve (FDC) from simulated monthly flow data, while Step 2
refers to the quantification of the parameters of an equation used to scale the monthly flow quantiles
to create an equivalent and representative daily FDC. Steps 3 and 4 refer to the use of daily rainfall
data to generate a continuous time series of an antecedent precipitation index (API) and the associ-
ated exceedance frequency distribution (Smakhtin and Masse, 2000). The implied assumption of this
approach is that it should be flexible enough (through different values of the K and PThresh param-
eters) to account for the runoff response dynamics of catchments with different sizes and physical
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Fig. 1. Summary of the 6 steps involved in the daily disaggregation model.

characteristics. A quantile–quantile transformation approach is used to translate the API time series
into initial daily flows (Step 5), which are then volume corrected to ensure the same monthly volumes
as the monthly flow data (Step 6). Slaughter et al. (2015) includes further details and a diagrammatic
representation of the approach.

2.3. Data

The local station South African data were obtained from the national agencies that collect the data;
the South African Weather Service (SAWS) for rainfall data and the Department of Water and Sanita-
tion for stream flow data. Lynch (2004) infilled the missing data periods in some of the raw SAWS data
and these data sets are used here. The data (rainfall and stream flow) for the other catchments were
obtained from the other national hydrometeorological agencies during the Southern Africa FRIEND
project (Hughes, 1997) and no recent attempts were made to update and extend these data sets. Both
the daily and monthly local station data were compiled using several rain gauges (Table 1, column
3) and an inverse distance squared weighting (IDSW) method to combine the observed data into a
catchment average time series covering the longest possible period. While alternative spatial interpo-
lation methods are available (Thiessen polygons, kriging, etc.), local experience suggests that there are
few differences in the results when there are a limited number of available gauges. The IDSW method
is also very straightforward to apply in GIS software. Individual gauges within the same catchment
have different length records and different amounts of missing data. The extent to which different
periods within the final time series of local catchment average rainfalls can be considered representa-
tive therefore largely depends on the location of the rainfall stations with available data during those
periods. Double mass curve analyses between the local station data and the long-term global monthly
data (see below) were used for a simple assessment of the temporal consistency of the catchment
average rainfall estimates. These revealed that the first 20 years (1900–1919) of the local estimates
for T4H001 and W3H014 could not be considered representative and were not used in the analysis.
Further inspection of the rainfall data did not reveal any trends that might be associated with climate
change and therefore the data are considered to be essentially stationary.
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Table 2
Comparisons between local and global rainfall data for monthly and daily time scales.

Catchment Local station data Monthly
rainfall:local vs CRU

Daily rainfall:local vs ARC2

Period of record Mean monthly
rainfall (mm)

R2 Bias (%) R2 Bias (%) Method

C2H066 1900–2009 43.0 0.758 4.4 0.939:0.150 0.4:−17.4 FRQ:T/S
C7H003 1900–2009 46.1 0.728 8.2 0.977:0.099 −9.7:−8.0 FRQ:T/S
C8H005 1905–2009 54.2 0.806 43.9 0.988:0.239 14.8:−4.3 FRQ:T/S
K3H003 1900–2009 64.7 0.524 −37.8 0.915:0.347 −31.8:−9.7 FRQ:T/S
K4H003 1900–2009 64.7 0.608 −0.8 0.948:0.241 −31.7:15.8 FRQ:T/S
K7H001 1900–2005 83.4 0.778 −20.8 0.789:0.301 −67.8:−43.3 FRQ:T/S
T4H001 1920–2009 76.8 0.743 −2.1 0.980:0.142 −8.7:−8.6 FRQ:T/S
W3H014 1900–2009 80.3 0.552 15.3 0.978:0.680 0.6:−5.6 FRQ
BOT  Tati 1922–1992 38.3 0.914 −11.1 0.985 6.9 FRQ
BOT  Ntse 1922–1992 38.3 0.938 5.1 0.985 5.1 FRQ
SWZ  WMbl  1905–1989 67.5 0.843 43.1 0.945 −23.8 FRQ
SWZ BMbl 1905–1992 102.6 0.884 −6.2 0.793 −50.0 FRQ
TZ  1KA8A 1960–2009 117.3 0.810 −30.8 N/A
ZAM  4005 1951–1988 103.0 0.854 4.9 N/A
ZAM  7005 1919–1991 99.9 0.939 −0.6 N/A
ZIM  B15 1952–1983 53.4 0.907 −24.5 0.936 −24.4 FRQ
ZIM B29 1952–1983 53.5 0.900 −24.7 0.856 −21.4 FRQ
ZIM  D6 1949–1983 74.2 0.888 −0.2 0.979 −15.0 FRQ
ZIM  D46 1968–1983 69.8 0.914 23.5 0.962 −13.0 FRQ

Notes: The periods of record extend from October of the first year to September of the last year.
The ‘method’ column refers to the approach used for daily data comparison, where T/S uses a daily time series comparison and
FRQ  uses a comparison of the percentage points of the daily rainfall exceedance frequency curve in the absence of overlaps
between the local and satellite data.

The long-term global monthly rainfall data (CRU TS v.3.22: Harris et al., 2014) that have been used
in the study were downloaded (during June 2014) from the website of the Climate Research Unit (CRU)
at East Anglia University, UK (http://www.cru.uea.ac.uk/cru/data/hrg/cru ts 3.22/). These are monthly
rainfall depths covering the period of January 1901 to December 2012 for 0.5◦ × 0.5◦ grids covering the
entire globe and are based on the interpolation of local rainfall station data. In this study the data for
October 1901 to September 2012 were used. The CRU data have been used successfully in other regional
precipitation studies worldwide (e.g. Lovino et al., 2014; Los, 2015). The satellite data used in the study
are the NOAA (National Oceanic and Atmospheric Administration) CPC (Climate Prediction Center)
ARC2 data downloaded during July 2014 (ftp://ftp.cpc.ncep.noaa.gov/fews/fewsdata/africa/arc2/bin)
and represent daily rainfall totals for a 0.1◦ × 0.1◦ grid covering 50◦N–50◦S and 40◦W–40◦E (Novella
and Thiaw, 2013). While the data extend from 1983 to the present day, only data for October 2000 to
September 2012 were used in this study as there are many missing values in the earlier parts of the
time series. The data are based on a combination of key local station data and microwave observations
of cloud top temperature from geostationary satellites. The record periods of all data sets (rainfall and
stream flow) are summarised in Fig. 2.

3. Methods

3.1. Rainfall data comparisons

The first part of the analysis involved simple statistical comparisons of the local and global rainfall
datasets. For the monthly data, this involved calculations of the coefficient of determination (R2) values
and the percentage bias (%Bias in Eq. (1)) of the mean monthly CRU rainfall (MMPCRU) relative to the
mean monthly local rainfall (MMPlocal) for the total period of overlap (Table 2, column 2).

%Bias  = (MMPCRU − MMPlocal) ∗ 100/MMPlocal (1)

http://www.cru.uea.ac.uk/cru/data/hrg/cru_ts_3.22/
ftp://ftp.cpc.ncep.noaa.gov/fews/fewsdata/africa/arc2/bin
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Fig. 2. Record lengths of the rainfall data (a) and the observed stream flow data (b) used in the study (the CRU and ARC2 rainfall
periods have been included in (b) to facilitate comparisons).

As the satellite rainfall data have a shorter, and later, period of record, a similar comparison using
daily data was only possible for the South Africa catchments (Table 2, column 8 = T/S) where local
rainfall data after October 2000 were available. For some of the other catchments, earlier periods
of local daily rainfall data were available and the comparison statistics were based on a set of fixed
quantiles of the frequency of exceedance distributions (Table 2, column 8 = FRQ). The fixed quantiles
were identified at percentage points 0.05, 0.1, 0.5, 1, 1.5, . . .,  9.5, 10, 11, etc. up to the exceedance
frequency at which the rainfall for both data series is above 1 mm.  This approach was used as the local
and satellite data have different record lengths. In some cases (Table 2, column 7 = 0) no daily rainfall
data were available. It should be noted that the ARC2 data are based on a day that starts at 00h00
(GMT) while the local data are typically based on a day starting at 08h00 local time. A high level of
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correlation between individual daily values is not therefore expected, while the quantile assessment
should reveal any bias in the frequency of different depths of rainfall.

3.2. Hydrological modelling at the monthly time scale (Pitman model)

The uncertainty version of the Pitman model (Hughes et al., 2010; Hughes, 2013) was  established
for each of the catchments using existing evaporation demand data (from various previous studies)
and both the local and bias corrected CRU monthly rainfall data. Only a simple bias correction (all
monthly CRU rainfalls scaled to remove the bias in the mean rainfall given in Table 2, column 7) was
applied in this study and no attempts were made to apply different correction factors to different
quantiles of the exceedance frequency distribution. This simple approach was  adopted because we
wish to assess the usefulness of the CRU data in situations where alternative data are not available. In
such situations regional estimates of long-term mean rainfall are likely to be available to perform the
simple bias correction, but no additional data would be expected to be available to perform a quantile
bias correction.

The uncertainty version of the model is based on setting likely parameter ranges and generating
10,000 simulation ensembles using independent Monte Carlo sampling from uniform distributions
defined by minimum and maximum parameter values. All of the parameters considered to be uncertain
are independently sampled, while some of the parameters that have minor impacts on the total water
balance dynamics are not treated as uncertain. The initial parameter ranges were established through
a limited number of manual calibrations of the model using the local station rainfall data and based
on many years of experience of applying the model in the southern African region (Hughes, 2013).
The uncertainty model outputs were analysed to determine the parameter sets that generate the best
overall results based on comparisons with observed stream flow data using a set of statistics including
Nash–Sutcliffe efficiency values (Nash and Sutcliffe, 1970) and mean monthly bias values (Eq. (1))
using untransformed (NSE and %Bias) and log transformed (NSE{ln} and %Bias{ln}) data. The results
can also be used to explore the potential benefits of using different input uncertainty ranges for some
of the parameters (i.e. a relatively simple sensitivity analysis). It is therefore possible to compare the
model performance and the change in the values of behavioural parameter sets (those that give the
best values of the performance statistics) when the model is forced with the bias corrected CRU data
compared to when local rainfall data are used.

3.3. Disaggregation to daily flows

The first steps in the application of the disaggregation model were to calibrate the FDC scaling
parameters (Fig. 1, Step 2) and the rainfall API parameters (Fig. 1, Step 3). These calibrations were
performed with observed daily flow volumes to avoid problems related to using poorly simulated
monthly flow volumes (Slaughter et al., 2015). In situations where no observed daily flow data are
available, this approach is clearly not possible and regionalised parameter values would have to be
used.

The monthly flow ensemble simulation results with the ‘best’ performance (using local and CRU
data) were then used within the disaggregation model together with local (where possible) and satel-
lite daily rainfall data. Three analyses were performed. The first used the monthly flows simulated
with the local rainfall data and disaggregated with local daily rainfall data (Local–Local). The second
used the monthly flows simulated with CRU rainfall data and disaggregated with local daily rainfall
data (CRU–Local), while the third used the same CRU simulated flows but disaggregated with the ARC2
daily satellite data (CRU–ARC2). The third analysis was only possible for those sites where the observed
flow data overlap with the ARC2 data period. Any systematic bias in the satellite rainfall data should
not affect the results of the disaggregation as only the rainfall API frequency characteristics are used
(Slaughter et al., 2015) and therefore, it was  not considered necessary to bias correct the satellite data.
The assessments of the simulated daily flows are based on direct comparisons with the time series
of observed daily flow data, as well on comparisons between simulated and observed FDC quantiles
(using the same data periods). A separate version of the disaggregation model was  developed to allow
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multiple monthly simulated ensembles to be used and to examine the extent to which the range of
simulated daily flows bracket the observed daily flows.

4. Results analysis

4.1. Monthly rainfall data comparisons

Not surprisingly, some of the catchments with the worst statistics of comparison between local
station and CRU data (Table 2, columns 4 and 5) are those where the large scale of the CRU grids is
likely to generate poor estimates of catchment rainfall. This includes the three Southern Cape catch-
ments (K3H003, K4H003 and K7H001) which drain a coastal mountain range where there are large
topographically related spatial rainfall variations that are within a CRU grid. The same applies to the
Swaziland (SWZ WMbl  and SWZ  BMbl) and the Tanzanian (TZ 1KA8A) sites that are located on the
edge of escarpments with steep rainfall gradients within a single CRU grid. The high positive bias for
C8H005 may  be related to the location of the catchment close to the Drakensberg Mountains where
there are few rain gauges. The relatively poor R2 value for W3H014 is more difficult to explain. It is
important to note that relatively poor comparison statistics does not necessarily mean that the CRU
data are less representative than the local data, and may  be a reflection of poorly located local rainfall
stations or stations with lower accuracy data.

4.2. Daily rainfall data comparisons

As might have been anticipated, the R2 values for the daily time series comparisons between the
local and ARC2 data are almost always very low (Table 2). This is partly related to different definitions
of a ‘day’ between the two data collection systems. The R2 values based on exceedance frequency
distributions (FRQ) are, however, generally very good. This is a very positive conclusion given the
way in which the satellite data are used within the disaggregation process (Fig. 1). Many of the FRQ
bias values are in line with expectations, in that they are generally high and negative in mountainous
areas (K3H003, K4H003, K7H001, SWZ  WMbl  and SWZ  BMbl) where satellite data are not expected
to accurately quantify the orographic rainfall gradients (Hughes, 2006; Thiemig et al., 2012). It is,
however, interesting to note that there is one situation (K4H003) where the sign of the bias is different
for the FRQ and T/S analysis.

4.3. Monthly stream flow comparisons

The ‘best’ ensemble for each of the model runs was selected using the following standard
approach and the results are provided in Table 3 for the runs forced with both local and CRU rainfall
data:

• Step 1: Select those ensembles for which the absolute values of the %Bias and %Bias{ln} were less
than 5.0.

• Step 2: Within the low bias ensembles select the one that has the highest combination of NSE and
NSE{ln} objective functions.

• Step 3: Compare the observed and simulated flow duration curve shapes and repeat Step 2 with less
stringent requirements for the other statistics if these do not compare very well.

There were situations where some of the selection criteria had to be relaxed in order to
meet the other criteria and Table 3 includes results with %Bias or %Bias{ln} values in excess
of 5.0.

For the model runs forced with local rainfall data, the results in Table 3 suggest that there are several
catchments where the simulations can be considered good (NSE values better than 0.75), some with
adequate simulations (0.5 < NSE < 0.75), some poor (0.0 < NSE < 0.5) and three bad (NSE < 0.0). In all
the bad cases, the results are associated with a lack of coincidence in the timing of high (or low)
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Table 3
Monthly Pitman model results after uncertainty runs and selection of the ‘best’ ensemble.

Catchment name Rainfall data NSE NSE{ln} %Bias %Bias{ln} Comments

C2H066 Local 0.468 0.076 −4.5 0.1 Peak rainfalls not represented in
CRU data.CRU 0.456 0.152 −25.1 −35.1

C7H003 Local −0.099 0.139 1.5 −73.0 CRU rainfall timing appears better
than local, but peaks are missed.CRU 0.244 0.204 −18.7 −66.4

C8H005 Local 0.462 0.599 −4.0 4.8 Little difference in two simulations.
CRU 0.476 0.604 4.9 4.9

K3H003 Local 0.395 0.449 −3.5 0.8 Little difference in two simulations.
CRU 0.368 0.336 −4.9 4.8

K4H003 Local 0.617 0.455 −5.0 −4.2 High peak flows are missed by CRU
simulations.CRU  0.292 0.299 −4.3 −4.9

K7H001 Local 0.702 0.596 −2.3 4.4 High peak flows are missed by CRU
simulations.CRU  0.453 0.405 −1.3 4.9

T4H001 Local 0.745 0.824 −0.2 2.0 CRU timing is generally worse than
for local rain data.CRU 0.363 0.611 −4.6 2.1

W3H014 Local −0.393 0.237 −1.3 −4.1 Model performs badly, but CRU
gives better timing.CRU 0.443 0.387 −27.2 −10.7

BOT Tati Local 0.823 0.133 5.0 3.7 Not large differences between the
Botswana simulations. Ln based
statistics are not good indicators of
performance.

CRU 0.671 0.002 3.9 −4.6
BOT Ntse Local 0.776 0.108 4.6 −23.3

CRU 0.714 −0.208 −1.8 −35.3
SWZ  WMbl Local 0.796 0.716 0.2 0.3 CRU generally poorer performance.

CRU 0.605 0.669 −4.1 3.8
SWZ  BMbl Local 0.797 0.854 −1.7 0.4 CRU over-simulates volume

through most ensembles.CRU 0.526 0.788 17.1 5.4
TZ 1KA8A Local 0.745 0.613 −3.8 1.3 Similar simulations.

CRU 0.646 0.635 1.1 4.8
ZAM 4005 Local −0.297 0.033 −3.4 20.1 Model performs badly, but CRU

gives better timing.CRU 0.499 0.314 −10.6 142.4
ZAM 7005 Local 0.709 0.722 2.1 2.9 No real differences between model

performances.CRU 0.748 0.771 1.7 2.1
ZIM B15 Local 0.703 0.579 −3.7 −12.3 These are short observed flow

records, but both rainfall data sets
give similar results (CRU slightly
better overall).

CRU  0.724 0.620 −4.7 −3.7
ZIM B29 Local 0.677 0.498 −3.4 −1.5

CRU 0.750 0.509 −4.9 1.2
ZIM D6 Local 0.817 0.792 −3.7 4.4 CRU simulations poorer for higher

flows.CRU 0.662 0.806 −3.9 3.8
ZIM D46 Local 0.898 0.863 −1.2 1.0 Generally similar results for the

two  simulations.CRU 0.809 0.804 0.6 −4.1

rainfall amounts and high (or low) observed stream flow responses. No amount of parameter re-
calibration can resolve this problem. When the model is forced with the bias corrected CRU rainfall
data, it is surprising that all of the bad simulations are changed to the poor category and this is partly
due to the fact that the higher CRU rainfall months are sometimes more coincident with the higher
observed stream flow months. There are several catchments where ensembles with high negative
%Bias values were accepted in order to obtain better NSE values. There were also catchments where
poor simulations were associated with under-estimation of peak monthly flows when the CRU data
were used (C2H066, K4H003, K7H001), which may  be the result of spatial averaging of high rainfall
months within the coarse scale CRU rainfall data. This problem cannot typically be resolved by changes
in model parameters because changes that improve the high flow simulations have an adverse effect
on other parts of the time series.

Although the details of the parameter sets that generated the selected ensembles are not provided
here, it was noted that there were few differences between the model runs forced with CRU data
compared to those forced with local data. Part of this result is almost certainly related to the fact
that the CRU data were bias corrected to match the mean monthly rainfall of the local data. Had the
uncorrected CRU data been used, it is inevitable that very different parameter sets would have been
required where the CRU rainfall bias was  large (Table 2, column 5).
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Table 4
Calibrated disaggregation parameters. The API parameters are based on using observed flow volumes disaggregated with either
local  daily rainfall or ARC2 daily rainfall.

Catchment name FDC scaling parameters API parameters

A B C Local daily rainfall ARC2 daily rainfall

K PThresh (mm)  K PThresh (mm)

C2H066 0.4 −0.45 −0.10 0.995 10.0 0.995 3.0
C7H003 0.2 −0.70 0.30 0.995 1.0 0.990 1.0
C8H005 1.5 −0.60 0.50 0.980 13.0 0.990 3.0
K3H003 0.8 −0.50 0.40 0.960 8.0 0.960 1.0
K4H003 0.6 −0.70 0.70 0.980 15.0 0.960 18.0
K7H001 1.1 −0.50 0.40 0.990 1.0 0.980 1.0
T4H001 0.6 −0.50 0.80 0.995 5.0 0.995 1.0
W3H014 0.7 −0.60 0.50 0.980 15.0 0.970 5.0
BOT Tati 2.0 −0.60 −0.35 0.970 1.0 N/A N/A
BOT Ntse 2.0 −0.60 −0.30 0.970 1.0 N/A N/A
SWZ  WMbl 0.7 −0.90 0.80 0.990 3.0 N/A N/A
SWZ  BMbl 0.6 −0.50 0.80 0.990 10.0 N/A N/A
TZ  1KA8A 0.8 −0.50 0.80 N/A N/A 0.995 20.0
ZAM 4005 0.6 −0.30 0.30 N/A N/A N/A N/A
ZAM 7005 0.2 −0.50 0.95 N/A N/A N/A N/A
ZIM B15 1.1 −0.50 0.30 0.990 3.0 N/A N/A
ZIM B29 1.1 −0.40 0.30 0.995 8.0 N/A N/A
ZIM D6 0.7 −0.50 0.70 0.995 7.0 N/A N/A
ZIM D46 0.5 −0.50 0.70 0.990 8.0 N/A N/A

Note: N/A means that either observed daily rainfall data or flow data are not available to perform the calibration.

4.4. Calibrating the disaggregation model

There are two sets of parameters that need to be quantified for the daily disaggregation model,
the A, B and C parameters of the monthly to daily FDC scaling equation (Step 2 in Fig. 1), and
the K and PThresh parameters of the procedure to convert daily rainfall into a continuous time
series of API values (Step 3 in Fig. 1). Where some observed stream flow data are available (as
in this study) scaling parameters can be determined by comparing the daily and mean monthly
(both in m3 s−1) FDCs and fitting the parameters either manually or using an automatic search
process together with appropriate fitting statistics. In the absence of observed flow data, region-
ally appropriate values will have to be determined from other stations where observed data are
available.

Quantifying the K and PThresh parameters is a much more difficult process, even when observed
daily stream flow data are available, as the results are dependent upon both the monthly stream flow
volumes used as well as the representativeness of the daily rainfall data. If observed flow data are
available it is better to use patched observed monthly flow volumes (i.e. the ‘near perfect’ volumes
referred to in Slaughter et al., 2015) to avoid problems associated with poorly simulated monthly
flows. Even then, this study revealed that commonly used comparison statistics (NSE) are frequently
of little value if the temporal variations in daily rainfall and observed stream flow do not match. This
is particularly true in semi-arid catchments which have substantial spatial rainfall variability which
is not adequately represented by the limited observed rainfall data. It was  therefore decided that
calibrating K and PThresh should also be based on comparisons between the observed and simulated
FDCs, supported by visual comparisons of the two time series to ensure that the general patterns of
response are adequately simulated. The calibrated disaggregation parameters are presented in Table 4
and the results are summarised in Figs. 3 and 4. These include the API calibrations using both local
(Fig. 3) and ARC2 (Fig. 4) daily rainfall.

It is very difficult to determine what represents realistically acceptable comparison statistics for
daily flow simulations in southern African catchments given the accuracy and other limitations
of both the available flow and rainfall data. The only available guidelines covering a number of
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Fig. 3. NSE and NSE{ln} objective functions for the simulated daily flows time series (a and b) and flow duration curves (c and d)
compared with observed data. ‘Calibration’ refers to the use of observed flow volumes, ‘Local–Local’ refers to using local rainfall
data in both the rainfall-runoff and disaggregation models, while ‘CRU–Local’ refers to using CRU data in the rainfall-runoff
model and local data in the disaggregation model.

countries in the region are available from Hughes (1997) where the daily VTI model (Hughes and
Sami, 1994) was applied. These results suggest that a very wide range of NSE values are obtained,
with the best being within the range of 0.4 and 0.7 in relatively humid catchments, but gener-
ally less than 0.5 in more arid areas. Typical NSE{ln} values were somewhat higher for humid
areas (0.5–0.9), but much lower for arid areas (rarely greater than 0.2). The results shown in
Fig. 3a and b (the Calibration-Local bars) suggest that many of the results for the disaggregation
approach using observed volumes and local rainfall data fall into this range, but rarely reach the
higher NSE values reported for some catchments in Hughes (1997). Fig. 4a illustrates that when
ARC2 daily rainfall data are used, the calibrations are much poorer. An encouraging result is that
the shapes of the observed FDCs are well reproduced by the disaggregation method (Figs. 3c,d
and 4b).

The results for K7H001 demonstrate a potential problem with calibrating only using time series
comparison statistics without examining the general shape of the simulated hydrographs relative to
the observed. Table 4 indicates that the calibrated K and PThresh parameters are quite different to the
other Southern Cape sites, and a closer examination of the time series indicates a relatively consistent
1 day shift in the observed, relative to the simulated runoff events. The reason for this is difficult
to determine, but if the observed flow data are shifted backwards by 1 day, the best K and PThresh
values change to 0.96 and 5.0 mm,  respectively, while the NSE statistic improves to 0.562 from 0.333.
The improvement is evident in better simulations of peak flows and recessions. Improvements were
also obtained for the calibration based on ARC2 data. Miss-alignments of daily rainfalls and runoff
responses are also evident in the time series of the other sites. However, they are not as consistent as
is evident with K7H001 and do not appear to have had the same negative impact on the calibrated API
parameters.
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Fig. 4. NSE and NSE{ln} objective functions for daily time series (a) and FDCs (b) when the disaggregation model is based on
ARC2  satellite data for the period October 2000 to September 2012. The terms used in the keys are similar to Fig. 3.

4.5. Simulated daily stream flow comparisons

Apart from the calibrations, Figs. 3 and 4 also present the results for three sets of simulations: (1)
monthly volumes simulated with local rainfall data and disaggregated with the daily version of the
same data (Local–Local); (2) monthly volumes simulated with CRU rainfall data and disaggregated
with the local daily rainfall data (CRU–Local); (3) monthly volumes simulated with CRU rainfall data
and disaggregated with the ARC2 daily rainfall data (CRU–ARC2). Inevitably, poor to bad monthly
simulations (Table 3) cannot result in good daily simulations, regardless of the daily rainfall data used
in the disaggregation (e.g. C2H006, C7H003, C8H005, K3H003, and W3H014). However, even many of
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Fig. 5. Illustration of the sensitivity of the API parameters using two  years of the simulated daily flows (Local–Local) for T4H001
(the  values in the key refer to K: PThresh). The inset shows the main part of the observed and simulated FDCs.

these sites produce quite acceptable simulated daily FDCs (Figs. 3c,d and 4b) and the NSE{ln} statistics
(Figs. 3b and 4a) indicate that the low flow regimes are generally better simulated than the higher
flows. A detailed examination of the graphical results (monthly and daily), suggests that inadequate
rainfall data are likely to represent one of the main problems. There are periods in all of the simulations
where relatively high rainfalls do not correspond with increases in observed stream flow response,
and vice versa. Even within a generally well simulated period (Fig. 5), there are some miss-matches
between rainfall variations and flow responses that have a large impact on the NSE statistics. It is
possible that some of these are related to spatially variable rainfalls that are not represented by the
catchment averaged rainfall data, a problem that might be resolved by using smaller sub-basins in a
semi-distributed model (i.e. modifying the model structure). However, this would also rely on having
enough rain gauges to capture the spatial variability. This issue has not been explored in detail in
this study, but there are certainly periods in some catchments where the available rainfall data are
clearly not sufficiently representative and no hydrological model is able to generate a simulated runoff
response in the absence of a simultaneous input rainfall signal. There will, of course, be other parts
of the simulations where inadequacies in the model(s) structures and parameters, relative to real-
world processes could lead to imperfect simulations of stream flow, even in response to accurate and
representative climate inputs. Fig. 5 also illustrates that when both the monthly flow simulations and
the daily rainfall data are representative, the disaggregation model is not very sensitive to moderate
changes in the K and PThresh parameters.

Overall, there are not substantial differences between using the local and CRU rainfall data to force
the monthly model. However, when the CRU monthly simulations are disaggregated with the ARC2
data, the results are substantially worse for all statistics (Fig. 4a and b). A large part of this problem
is related to the generally poorer monthly simulations in the post-2000 period, and this could be
a reflection of the declining rainfall data networks in recent decades that will inevitably affect the
regional CRU data. However, the disaggregation calibration results using ARC2 data and observed
volumes (Fig. 4) are also generally worse than when local rainfall data are used (Fig. 3). A further
comparison was made using the monthly simulations based on local rainfall data disaggregated with
ARC2 daily rainfalls. Overall, the results were very similar to those presented in Fig. 4, suggesting that
the local monthly rainfall data for this period are no better than the CRU data.
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Fig. 6. 8 years of the observed time series for T4H001 together with the uncertainty bounds of disaggregated flows using 1917
monthly simulated flow ensembles and local rainfall data.

Fig. 7. 1 year of the observed time series for Bot Tati together with the uncertainty bounds of disaggregated flows using 1540
monthly simulated flow ensembles and local rainfall data.
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Fig. 6 presents an example (T4H001) of the use of ensembles of monthly simulated flow that are
all disaggregated with the same local daily rainfall data. A total of 1917 ensembles were selected to
be behavioural for this catchment on the basis of the NSE and bias statistics. Fig. 6 illustrates that
the range of disaggregated ensembles follow the general seasonal and inter-annual variations of the
observed data. The observed data only fall within the simulated range for 46% of the time. However, the
situation is not much better for the monthly simulations (50% of observed bracketed by the behavioural
simulations). The results for other humid and sub-humid sites where the monthly simulations are at
least adequate (according to the criteria given in Section 3.3) are similar. However, the length of time
that the observed data are bracketed by the range of disaggregated monthly ensembles for the semi-
arid sites tends to be much less (14% for the BOT-Tati site, for example; Fig. 7). This is largely because the
majority of the non-zero flows in the semi-arid sites are associated with almost immediate responses to
rainfall that are highly affected by miss-matches between the timing of the daily rainfall and observed
flow data (Fig. 7). For the more humid, catchments, the low flows are generally adequately simulated,
even if many of the events are not properly time-matched.

5. Discussion and conclusions

There are two main components to this section. The first discusses whether the disaggregation
approach can be used in data-scarce or totally ungauged situations and therefore, whether there is
some potential for using global rainfall data, together with regionalised values for the parameters of the
disaggregation method. The question of whether the Pitman model parameters can be satisfactorily
regionalised is important, but beyond the scope of this paper (Hughes, 2013). The second question is
whether the daily disaggregation results can be considered suitable for several (possibly inter-linked)
purposes and whether there are any key limitations to the approach that can be identified. While the
authors accept that there are certainly alternative approaches to generating daily time series of stream
flow, it was not the purpose of this paper to compare different methods. The disaggregation method
used has been designed to be a pragmatic approach to adding value to existing set-ups of monthly
hydrological and water resources systems models. Notwithstanding the more restricted objectives of
this study, it would certainly be useful in the future to compare the results of this simple disaggregation
approach with the application of daily hydrological models coupled to rainfall disaggregation methods
such as those described by Thober et al. (2014).

The FDC scaling columns of Table 4 do not provide a great deal of support for the possibility of
regionalising the scaling parameters based on climate or physical catchment properties likely to affect
the relationship between monthly and daily FDCs. This is partly because similar results can be obtained
with different combinations of the three parameters and the fact that the high flow end of the FDC
scaling is considerably affected by the length of the record and therefore the lowest % point value in
the monthly data. The results for the group of catchments used in this study suggest that some general
rules could be established for critical points in the relationship that might be useful in establishing
appropriate parameters under ungauged situations. These include the point at which the two curves
cross (generally a lower % point for arid and steep catchments), the ratio of peak daily to monthly
flow (higher for arid and steep catchments), the duration of zero flows in arid catchments (from 10%
to 20% greater for daily FDCs compared to monthly) and the ratio of monthly to daily low flows in
more humid catchments (typically very low in strongly seasonal regimes, but higher in others). These
rather qualitative observations need to be further quantified by comparing monthly and daily FDCs
for more catchments in the region.

The API parameters also show a relatively high degree of scatter throughout the catchments with
very few patterns emerging, except for a general trend of lower K parameters (steeper recessions) in
semi-arid and steep catchments, as would be expected. There are no obvious patterns in the PThresh
parameter variations. The problem with site K7H001 referred to in Section 4.4 illustrates the potential
impact that data errors (or lack of temporal agreement between rain and flow events) have on the
calibration of the API parameters, especially when only objective functions are relied on. It is also
worth noting that the final daily flow simulations are not very sensitive to the API parameters as long
as they remain within ‘sensible’ ranges (i.e. 0.96–0.99 for K and mostly 1.0–10.0 for PThresh: Fig. 5). It
is therefore highly unlikely that using different API parameters for different periods (e.g. wet and dry)
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will make any substantial difference to the model results. For the same reason, split sample calibration-
verification tests were not considered to be likely to add any value to the model assessments and were
not undertaken as part of this study.

Apart from the regionalisation of the disaggregation parameters, the other issue is whether the
globally available rainfall datasets are appropriate for simulating monthly and daily catchment stream
flow responses. Table 3 compares the monthly simulation results using local and CRU rainfall data and
in general terms there are few differences. There are some catchments where the CRU data perform
much worse (K4H003, K7H001 and T4H001), some where the CRU results are better in some respects
(C7H003, ZIM B15 and ZIM B29) and others where there is little to choose between the two  results.
It has been difficult to assess the real value of the ARC2 daily rainfall data, partly because there are
many catchments without daily observed flows in the post-2000 years and partly because the monthly
simulations for the other catchments are generally much poorer in this period. If the disaggregation
model calibration (using observed flow volumes) results shown in Fig. 3 (using local rainfall data) are
compared with those in Fig. 4 (using ARC2 rainfall data), it can be concluded that the ARC2 data are
not as appropriate for use as local data. However, there are some catchments (C8H006 and T4H001)
where the ARC2 calibrations are better and this may  be an indication of very poor local rainfall data
in these areas.

Four purposes have been identified as potentially benefiting from the disaggregation of simulated
monthly flows to daily flows. The first is high flow analysis which includes flood frequency analysis,
but could also include floodplain or wetland inundation studies. The second and third are water quality
modelling and environmental flow assessments, where high flow simulations may  also be important.
The fourth is the scheduling of run-of-river abstractions, which may  also be linked to environmental
flow assessments.

Although no specific statistical tests for the ability of the model to simulate extreme events were
undertaken, the results suggest that the reliability of the simulated high flows is generally inadequate
for studies involving the analysis of flood magnitude and frequency. While there are some sites where
the magnitude and frequency of high flow events are reasonably well represented by the model, this
is not the case for most sites, where the very high observed flows are generally under-simulated. It is
possible to improve the high flow simulations through re-calibration to a certain extent, but this often
occurs at the expense of other parts of the simulations. It should be noted that these comments refer
to the very extremes of the daily FDCs, while the remainder of the curves are generally well simulated
(Figs. 3c,d and 4b).

The requirements for the second and third purposes are relatively similar and include accurate
representation of FDCs, seasonality and event frequency, inter-annual variations and the details of
the low flow regimes, including the duration of zero flows in semi-arid and arid catchments. For the
majority of sites these aspects of the observed flow regimes are well represented in the simulations
(see the comparison statistics presented in Figs. 3c,d and 4b that are based on FDC data). Further evi-
dence of fitness for purpose lies in the fact that baseflow separations of observed and simulated daily
flows yield similar baseflow percentages. This suggests that the modelling approach successfully simu-
lates the balance between low-amplitude, high-frequency runoff responses and the higher-amplitude,
low-frequency events, which is important for both purposes. These two  stream flow responses could
have substantially different water quality (salt and nutrient) signatures, and simulating the correct
balance is therefore important. While accurate representation of high flows could also form part of
the requirements for water quality and environmental flow studies, the focus is more likely to be on a
wider range of events than for flood frequency analysis (e.g. from 10% exceedance and less) and these
are generally better represented than individual major flood events. Inevitably, these conclusions are
dependent upon the success of the monthly modelling and there are some sites (C7H003, W3H014
and ZAM 4005) where the combined simulations would certainly not be fit for purpose.

The final purpose referred to above is run-of-river abstraction scheduling, within which the sim-
ulation of the low flow regimes are likely to be of critical importance. The relatively high values for
the transformed NSE statistic and the high objective function values for the FDC comparisons suggest
that most of the simulations are fit for this purpose. Poor values are noted for C7H006 and the two
Botswana (Tati and Ntse) sites, but run-of-river abstraction would not be considered a realistic option
for these arid, ephemeral rivers.
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The overall conclusion about the combined modelling approach is that, as with any other model,
the quality of the results is very dependent upon the quality of the input rainfall data. However, for
most of the sites included in the study, the simulations can be considered to be useful at least for the
purposes of water quality modelling. While the CRU and ARC2 data have their limitations (particularly
associated with spatial scale), the same is true of the local rainfall data that are available. There are very
few catchments in southern Africa where there are sufficient rainfall stations to represent the typically
high degree of spatial variability in input rainfall. Generalisations about the quality of the available
rainfall data are difficult to make and clearly all hydrological studies should begin with a thorough
examination of all available data sources, an issue that can easily be neglected in practical studies in
data scarce areas, where any data that can be obtained are considered better than nothing. However,
even thorough data checks can be inconclusive in data scarce areas where there may  be no high
confidence information against which to check the model input data. The results for the combination of
CRU and ARC2 data for some of the sites are relatively encouraging, particularly in terms of reproducing
the FDCs and seasonality. This is an important result given the increasing number of catchments in
southern Africa for which there are no recent local rainfall data. The statistics presented in Fig. 4a are
often a reflection of quite bad correspondence between daily changes in rainfall and flow. While this
affects the ability of the model to accurately simulate sequences of daily flow, it does not mean that
the results cannot be used for some purposes, where reproduction of the frequency characteristics of
daily flows is the most important criterion for success.

The disaggregation approach therefore represents a parsimonious method of simulating daily time
series from existing monthly simulations (with or without uncertainty), of which many already exist
within a number of southern African countries. An obvious, but nonetheless important, conclusion is
that the daily simulations will never be better than the monthly simulations, which are highly prone
to inadequate climate data inputs. The monthly simulations may  be considered adequate for their
original purpose of yield estimation and water allocations, but there could be situations where the
performance of the monthly model is too poor to support the daily disaggregation process. In these
situations the results of the disaggregation approach may  suggest that an existing monthly model
setup and calibration should be re-visited. Poor monthly modelling results are more likely to occur
in semi-arid catchments, which are known to be difficult to model at any time scale because of high
spatial variability in both meteorological and runoff response conditions. Such problems are unlikely
to be resolved through re-calibration without additional input data. Whether existing simulations,
based on the limited availability of historical local climate data, can be successfully extended using
CRU data and then disaggregated using ARC2 (or similar satellite derived products) data, remains open
to question and this study has not been able to provide a definitive answer. The results derived from
this study indicate that this success will be regionally variable, partly reflecting the spatial variability
in the appropriateness of these global data sets, an issue that is not unique to this study (Xie and Arkin,
1995; Hughes, 2006; Voisin et al., 2008; Prakash et al., 2014).
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