
Science of Computer Programming 3 (1983) 223-278

North-Holland

223

INCREASING MODULARITY AND
LANGUAGE-INDEPENDENCY IN
AUTOMATICALLY GENERATED COMPILERS*

Harald GANZINGER

Insrilur fiir Informatik, Technische Unioersitiir Miinchen. D-8000 Miinchen 2. Fed. Rep. Germany

Communicated by M. Paul

Received June 1983

1. Introduction

The aim of this paper is to introduce a method for obtaining modular compiler

descriptions that, paraphrazing [26],

- exhibit a semantic processing based on fundamental concepts of languages and

compiling;

- are easily modifyable and adaptable to different but related languages;

- are combinations of language-independent modules;

- are subject to automatic compiler generation.

1.1. Related work

The work reported here is based on ideas from (modular) algebraic specifications

of abstract data types [3 1,2,6,23], abstract semantic algebras [25,26], and compiler

descriptions based on attribute grammars [22].

Many papers have utilized ideas of abstract data type theory to improve the

structure of semantics definitions and/or compiler descriptions. In [4], following

[lo] and [24], the fundamental algebraic structure of denotational semantics defini-

tions and syntax-oriented compiler descriptions has been recognized. Following

[30], in [7], [16], and [20] the use of abstract data types has been suggested. In

particular the latter paper was concerned with structuring compiler definitions

hierarchically, using the specification language OBJ [191. In addition, many authors

of denotational descriptions have tried to impose structure on their descriptions. In

particular [29] and [30] proposed general language independent combinators,

abbreviating pieces of A-notation. Algebraic descriptions of compilers in the context

of automatic compiler generation are considered in [161 and [8]. Modularization of

compiler descriptions is not investigated in these papers.

* This work was in part supported by the Sonderforschungsbereich 49, Programmiertechnik. at the

Technical University of Munich.

0167~6423/83/93.00 0 19X3. Elsevier Science Publishers B.V. (North-Holland)

22-I H. Ganzinger

We agree with [26] in that none of the mentioned approaches has succeeded in

reaching the goals that have been stated above.’ A detailed justification of this claim

is to be found in [26]. We give the intuitive reason for the principal problem that

arises in semantics and compiler descriptions.

1.2. The problem

The theory of abstract data types in the classical sense [21,31,2] views a software

module as a package of functions which the user of the module may call. The data

elements themselves are only implicitly given by the set of all terms in the functions.

Compiler modules decorate nodes of parse trees with semantic information. E.g.,

a module that handles the declarations associates declaration information with

applied occurrences of identifiers. So, it has to handle data of sorts

Stat, Id, Decllnfo

and to provide a function

find : Stat, Id + Decllnfo,

where Srut represents all statement nodes in a parse tree. jind(s, x) is supposed to

find that declaration for x that is visible at s. Specifying the properties of the elements

of Stat requires to model this set of nodes together with their syntactic relationships

in the program. E.g., it has to be specified that

find(s, x) = d

if s is a statement in a scope p containing a declaration c that binds the identifier

x to d. Thus, it is not sufficient to know the internal structure of a statement s. The

context of s in the program is relevant, too.

Authors of algebraic specifications of languages and compilers usually consider

the syntax of a language to be given by a system of (syntactic) operators, e.g.

if Exp then Stat else Srut+ Srut

Var := Exp + Stat
. . .

In any model, Stat is, then, the set of all objects that can be represented as terms

in if_then_else, _ := 2 etc. The context in which a syntactic construct occurs in a

program is not available. As a consequence, this technique is not adequate to model

an algebra of nodes in parse trees. Rather, something that establishes the following

equation would be needed:

Stat = {(r, u) 1 t parse tree, u node in t labelled by Stat}

Now, to generate this set would require to specify primitive functions such as

son(t, v) and uncesror(t, u). These primitives are no total functions. It is well known

’ Some of the mentioned papers are concerned with semantics descriptions so that only goals (i)-(iii)

apply.

Increasing modularity and language-independency in compilers 225

that algebraic specifications of partial functions tend to be complicated. Even if this

was acceptable, the level on which specifications would have to be written is too

low. To specify the detection of syntactic patterns in order to decide upon which

semantic rule to apply has to be ‘implemented’ by hand in terms of tree-walk

operations.

Mosses [X,26], circumvents this difficulty by indexing semantic operators, such

as find in the above example, by semantic information about the syntactic context

in which it is applied. This goes beybnd the classical technical and, as we believe,

methodological framework of abstract data type specifications. Mosses’ specifications

are two-levelled: One level provides the specification of the index algebras and a

second level contains the specification of the properties of the semantic operators.

The mathematical basis for specifications of this kind is in this author’s view not

fully developed yet. Moreover. Mosses does not yet provide a formal basis for

combining his ‘semantic algebras’. (Such a framework exists for specifications in the

classical sense [6,3,5,23].) In [26], it is still in general necessary to modify the

axioms of one semantic algebra to be able to combine it with a second algebra. It

is not at all clear, how language specifications can be obtained as combinations of

the specified language concepts. Nevertheless, Mosses’ approach has motivated a

great deal of this work, To get around the problems that exist with Mosses’ approach,

we have developed a different extension of the classical concepts.

1.3. Basic idea

We represent syntactic conditions such as

s is a statement in a scope p

or

c is a declaration in a scope p

as relations in an appropriate algebraic structure. The specification of a compiler

module, thus, consists of the specification of two kinds of objects:

- relations between syntactic constructs,

- functions that yield semantic values denoted by syntactic constructs.

Consider, again, a module that implements symbol table handling for a PASCAL-

like language. Here, the relevant language constructs are declarations, scopes, and

applied occurrences of identifiers. Syntactic relations between such constructs can

be expressed as formulas in the following four elementary relations:

rl(c, C’) = C -*‘scope with binding constructs C’,

r2(C, Cl, C2) = c+ Cl;C2,

r3(C) z C + noBindings

r4(C, I, D) = C+bindItoD.

The relation symbols define a ‘language’ of constructs c that can be viewed as an

abstraction of the concrete language PASCAL. This abstraction is specifically tailored

226 H. Ganzinger

to the language facet ‘binding of identifiers’. The abstract syntactic notions are

scopes and declarations. Any language facet (e.g. statements) that is irrelevant with

respect to this problem is only referred to as a construct that contains no bindings.

The semantic objects which the module compiles are represented by operators. In

our example we have, e.g.,

fWC, I).

The abstract semantic notions are identifiers I, declaration information D, and

the finding of declarations to which an identifier is bound to. The latter depends

on the context C of binding constructs of the applied occurrence of the identi-

fier I.

For any concrete program, the identification process itself is viewed as the

evaluation of find at (syntactic) constructs C. The latter are described as solutions

to formulas built from the relation symbols. The formulas represent the abstract

structure of the context of C in a program. E.g., the fact that C is an applied

occurrence of an identifier x that is directly contained in a scope S which introduces

exactly one declaration of a variable x of type integer would, then, be expressed

by the formula

(S * scope with binding constructs Cl) A (C + noBindings)

A (Cl + C2 ; C) A (C2 + bind x to ‘integer’)

where S, Cl, C2, and C are variables. Now, the symbol table handling module

would have to return find(c, x) = integer, for any value c for C that makes the above

formula to be satisfyable.

Our approach will be based on the following basic conceptual assumptions about

compiler modules:

(1) The specification of (the implementation of) a compiler module consists of

the definition of a set of new types, functions, and relations from given types,

functions, and relations.

(2) The relations represent syntactic facts about the context of a construct in a

program. The functions evaluate semantic information.

(3) The user of a compiler module may ask the evaluation of semantic operators

applied to syntactic constructs where the latter are identified as solutions to formulas
built from relations. This goes beyond the classical framework of imperative or

functional programming. Not the characteristic function of a relation is called by

the user (this is how relations are used in imperative and functional programs).

Rather, the set which the relation represents (e.g. set of tuples (S, C, Cl, C2) that

satisfies the above formula) is the data object that is to be explicitly manipulated

by the module. (In language implementations, the parse tree of a program is a data

structure in which all syntactic relations can be represented.) Modules in this sense

are related to nonprocedural or relational programming in languages such as

PROLOG.

Increasing modularit,v and language-independenqv in compilers 227

2. Representation of modules

2. I. Informal introduction

The signature of a module lists the sets of sorts (i.e. type names), operators (i.e.

function symbols), and relation symbols, together with their parameter and result

sorts, which the module exports.

Example 2.1. Signature of module Allot.

S Integer, Mem Unit
--_

size(Mem Unit) : Integer

o#set(Mem Unit) : Integer
address(Mem Unit) : Integer

memory + segment consisting of Mem Unit
Mem Unit + segment consisting of Mem Unit

MemUnit -$ elementary of size Integer
MemUnit+ MemUnit concatenated MemUnit
Mem Unit + Mem Unit overlapped Mem Unit

The example gives the signature of a compiler module that performs storage

allocation for source program data. In the examples, ‘I---” will be used to separate

sorts, operators, and relation symbols. Sorts are named by identifiers starting with

an upper-case letter. Operators will be written in either prefix or mixfix notation.

Relation symbols will be written as ‘syntactic productions’
_

y,- . . .-y,-+.-X,-. . . -xn: m,naO,
X;, Yi sorts.

(Here, “-” stands for strings that are, like “+ “, parts of the name of the relation.)

Production rules define the kind of syntactic derivation relations which the relation

symbols are supposed to capture. Note, however, that we do not employ the concept

of a grammar nor do we restrict ourselves to context-free rules. In principle, a

relation symbol denotes an arbitrary set of signature

Y, x. * *x Y,XX,X* 1 .xX”.

E.g., MemUnit + elementary of size Integer represents binary relations

-+ elementary of size_ G Mem Unit X Integer.

Similarly, memory + segment consisting of MemUnit is a unary relation

memory + segment consisting of _ G MemUnit.

Formally, signatures 2 = (S, 0, R) consist of a set of sorts S, an S* x S-indexed

family of sets fl,,...,“*, of operators, and an S*-indexed family of sets R,,...,” of

relation symbols. Operators f with parameter sorts s,, - . - , s, and result sort so are

228 H. Gon:inger

denoted by f :s, . * . s,,s~,.~ Similarly, relation symbols r with argument sorts SI, * . * , s,

are written as r:SI * - . s,.

Generally, if Y = (Yl)ia, is a family of sets, then we will also denote by Y the

disjoint union {y:i) i E I, y E Yi} of the Yi. We will omit the index : i if no confusion

can arise.

The representation of a module is established by defining its sorts, operators, and

relation symbols in terms of already defined ones.

The representation of a (compiler) module A4 is defined by a signature morphism,

called representation (map), p : Iiw + T,, where 2’,, is the signature of the module

M and 2, is the signature of types, operators, and relation symbols which the

module imports.
Signature morphisms will be formally introduced below. We will first illustrate

their intuitive meaning as specification of the representation (or implementation)

of the components of a module. p defines the sorts, operators, and relation symbols

of & in terms of the &-constructs.

Example 2.2. Module Allot : Signature and representation.

Integer - Integer; A SIZE

Mem Unit - (iTup, STOP, offset, size : Integer) ;

h UNIT, UNITI, UNIT& UNIT3, U

size(u):Integer-u.size

offset(u) : Integer - u. offset
address(u):IntegerHu.iTop
-__

memory + segment consisting of UNIT*
UNIT. iTop = 0
UNIT.O&t = 0

UNIT-, Segment consisting of UNITY H

UNITY. iTop = UNIT. iTop
u~IT.Si2e = ~~1~1.size

UNITI, offset = 0
UNIT. STOP = UNITl. STOP

UNIT-, elementary of size SIZE-
UNIT.STOP = UNIT. iTop + SIZE

UNIT.SiZe = SIZE

UNIT1 + UNIT2 concatened UNITY H

uNIT2.offset = UNIT~.O@~

UNIT3.Offset = UNITl.OffSet + UNIT2.SiZe

UNITL?.iTOp = UNIT~.I’TO~

UNIT3.iTOp = UNIT2.STop

z In examples we will also use the notation f(s,, . . S,):SO or f:$ * . . % + SO.

Increaring modulariry and language-independency in compilers 229

UNITl.STOp = UNIT~.STOP

UNll-l.siZ = UNIT2.siZe + UNIl-3.siZe

UNrr1 + UNIT2 overlapped UNIX-~ ++

UNIT2.oflset = ~~~~l.oflser

UNIT3.oflser = ~~1~1.offsef

UNI&?.iTOp = UNIT~.I’TOP

UNIT3.iTop = UNITl.iTOp

u~lTl.sToP= max(uNIT2.sTop, uNIT3.STOp)

UNIT-1 .Si.Ze = mLX(UNIl%SiZe, UNIT3.siZe)

The example gives the representation map for the module Alfoc

PA : rAIIoc --, 2Srandord

where ZSlandPld is the signature of predefined standard types that include a definition

of Integer. For the intuitive meaning behind these definitions cf. next section. For

now we are only interested in the constituents and the basic form of the representa-

tion maps we are dealing with.

We have used the notation

x-p(x)

for sorts, operators, and relation symbols x. This means that p(x) is the representation

of x. For sorts s, we allow the representation by tuples of imported sorts. This

tupling is what would be called a record type in a PASCAL-like language. E.g.

Mem Unit H (iTop, STOP, offset, size : Integer);
A UNIT, UNITI, UNIT& UNIT& U

means that the carrier set for sort MemUnit is represented by the Cartesian product

Integer X Integer X Integer X Integer

where iTop, STOP, offset, and size are the names of the projections to the single

components, e.g. if u E MemUnit, then u.ofset is the third component of u.

A UNIT,. . . , u declares UNIT,. . . , u to be variables of sort MemUnit to be used in

the definition of the representation of the operators and relation symbols.

Integer - Integer

specifies that integers are represented by themselves.

Operators are represented as tuples in terms of imported operators. Terms may

also contain projections to components of variables. E.g.

oJ%ef (u) - u. offsef

specifies that the offset of a Meml-Jnit u is its offset component. Similarly, the

address of u is its iTop-component. These are very simple examples for representa-

tions of functions. A more complicated example would be

shift(u)-(u.iTop+ 1, u.sTop+ 1, u.offset+ 1, u.size)

if shift was an operator of signature shift(MemUnit):MemUnit.

230 H. Ganzinger

Needless to say that the operator representations have to be consistent with the

sort representations in the following sense: if f:S, . * * s,,so, then p(f) is an p(So)-

tuple of terms with a parameter sequence p(s, . . . s,). So a more exact notation

would be

A v.ofset(u)r-*h u.iTop, u.sTop, u.ofsef, u.sire. (U.&et)
A u.Shift(u)~

A U.i?bp,u.STOp,u.offset,u.Size. (u.iTop-+1,u.STOp+1,u.O~Set+1,u.Size).

Relation symbols are represented by formulas over imported operators and relations.

Here we restrict ourselves to formulas that are finite conjunctions of the following

kinds of atomic formulas:

- equations of form x0 = xl or x0 =f(xl, . . . , HI), with variables xi and operator

f;
- relation expressions r(x1, . . . , xn), with a relation symbol r and variables xi.

For technical reasons, we have restricted ourselves to equations of the above

types as the possibility of defining conjunctions of such equations allows for simulat-

ing any equation between arbitrary terms.3 In the above example,

UNIT+ elementary of size sIzE_

UNIT.STOp = UNIT.iTOp + SIZE

UNIT.SiZe = SIZE

specifies the relation _ + elementary of size_ as

(UNIT, SIZE) E _ + elementary of size- c3

UNIT.STOp = UNIT.iTOp +SIZE A UNIT.siZe = SIZE.

Thus, we omit the A -symbols between the atomic formulas of the conjunctions.

Again, the relation symbol representation has to be consistent with the sort rep-

resentation: if r is a relation symbol with parameter sorts S1 . * - s,, then p(r) is an

expression that represents a predicate with parameter sorts p(SI) * * * p(s,). A more

precise notation would, e.g., be

A UNIT, SIZE. (UNIT+ elementary of size SIZE)++

A UNIT.iTOp, UNIT.STOp, UNIT.OflSet, UNIT.SiZe.

(UNIT.STOP = UNIT.~TO~+SIZE A UNIT.S~~~ = SIZE).

Similarly,

h UNITY, UNIT& UNIT3. (UNITY + UNIT2 overlapped UNIT3) I-+

A UNITl.iTop, UNIT~.STOP, u~~rl.oflset, uNlTl.size,

UNITz.iTOJ?, UNIThi-Op, UNIT2.Offset, UNlThiZf?,

UNIT3.iTOp, UNIThTOp, UNIT%OflSef, UNIT3.siZe.

(UNIT2.Ofset = UNITl.OffSet A UNIT3.OflSet = UNITl.OflSet A

UNIT2. iTop = UNITl.iTOp A UNIT3.iTOp = UNITl.iTOp A

3 In the examples we will deliberately drop some of these restrictions and also use terms as parameters

of functions and relations.

Increasing modularity and language-independency in compilers 231

UNITkS7-OP = f?u2x(UNll-~.S7bJA UNIThTOP) A

UNITl.SiIe = mUX(UNIl%SiZe, UNITbiZe))

is the more precise notation for the representation of the overlapping relation

between memory units.

2.2. Signature morphisms

The formal model of the representation of a module, called signature morphism,
is now being introduced. We start by listing some basic notions. Let X be an

S-indexed family of sets (of variables). Furthermore, let Tn(X) be the free OR-

algebra over X, i.e. the set of all terms that can be written in the variables of X

and the operators in R. To(X), is the set of term with result sort s. Then, for

U, v E s*, U = si . * * s,, u = s’, * * - s’,,

T,(u:u)=(Ax.l,..., x.n.(t* ,..., f,);t,ET,(Y),,,},

where Y ={x.i:sili= 1,. . . , n}.

Tn(u:u) is the set of (tuples of) terms with parameter sequence of sort u and with

a result of sort u.

Example 2.3.

A u.iTop, u.sTop, u.offset, u.size.

(u.iTop+ 1, u.srop-fr 1, u.oflsel+ 1, u.size)

is a term with parameters and results in

Integer X Integer X Integer X Integer.

The set F,(X) of formulas over X is defined as

(I) x:s,y:sEX * x:s=y:sEFz(X),

(2) f:s, *. ‘S~S()Ei2yX,:siEX * X,:S,=f(X,:S,,...,X”:S,)EF~(X),

(3) KS1 ’ . ~s,ER,x,:s,EX 3 r(x,:s ,,..., x,:s,)EF,(X),

(4) 41,q2~F,(X) + ql~q2~F,(X).

Formulas become relation expressions by making some of their variables to be

bound variables. Given K = s, . * 1 s, E S*, Ez(tc) is the set of relation expressions

E,(u) ={A x1:s*, . . .) x,:s,,. gjq~ F,(X). for any X that contains the xi:si}.

The prefix A makes the xi to be the bound variables of q. The remaining variables

in q are the free variables of q. For Q = A xi, . . . , x,. q, Q(y,, . . . , y,), yi pairwise

distinct, denotes the result of replacing in q any occurrence of the ith bound variable

xi by yi, In what follows we will consider two relation expressions Ql, Q2 to be

equal, if 01 can be obtained from 02 by consistently renaming its variables.

232 H. Gonzinger

Definition 2.1. Given two signatures 1 and .Y, a signature morphism CT: 2 + 2’

consists of three components:
- a sort map us:S+S’+ sending any sort s to a nonempty tuple as(s) of sorts,’
- a S* X S indexed family of operator maps unU, sending any operator f E fl,, with
parameter sorts u and result sort s to a term a,>.,(f) E T,.(a,(~):a~(s)),
- a S*-indexed family of relation symbol maps uHU sending any relation symbol
IE R, to a relation expression uR,(r) E E~(a,(u)).

To be able to compose signature morphisms, we extend u to expressions 0 E E-(u)

by

a(xo=f(x,, * . . , x,)) =

x,.1 =g,(x,.l,. . . ,X1./C,,. ,x,.1,. . . ,X,.k,)

A *** A

xo.kO=gk(xi.l,. . . ,x,.k,,. ,x,.1,. . . ,x,.k,)

if ~(f)=Axt,. . . ,x,. (gt,.. . ,g,),xj’xj:SjI andla(s,)l=k,,

~(x~j=x,) = x”.l=x,.l~ *.a A x”.k,=x,.k,,

rr(r(x,, . . . ,x,>) = cr(r)(x,.l,.. . ,x,.k,,. ,xn.l,. . . ,x,.k,),

Cr(ql A 42) = U(ql) A CT(@).

U(A x,, . . . , x,. q) = A x,.1,. . . , x,.k,. u(q).

In the above it is assumed that, if given u and a variable x of sort S, then x.i is a
new variable of sort sli, if u(s) = s’, , . . s’” and 1 =Z is n.

Example 2.4. pA sends

A = UddreSS(U) A

memory + segment consisting of u2 A

u2 + u3 concatenated u A

u3 + elementary of size 2

to

A = u. iTop A

u2.iTop = 0 A u2.offset = 0 A

u3.offset = u2.offset A u.oflser = u2.oflset+u3.size A

u3.iTop = u2.iTop A u.iTop = u3.sTop A u2.sTop = u.sTop A

u2.size = u3.size + u.size A

u3.sTop=u3.iTop+2 A u3.size =2

’ We do not allow sorts to be mapped to the empty sequence of sorts as this would later require to
introduce operators with possibly empty result sequences. In principle. however, this restriction could
be removed.

Increasing modulariry and language-independency in compilers 233

Theorem 2.1. Signatures together with signature morphisms form a category’ denoted
SIG.

The proof is obvious. The composition cr = C/U” is defined by composing the sort,

operator, an relation symbol maps, respectively.’

Semantically, signatures represent classes of algebraic structures. Signature

morphisms define maps between such classes, thereby representing formally the

process of implementing a module in terms of the constituents of pregiven modules.

I-struct is the class of I-structures together with Z-homomorphisms between

them. A E-structure A consists of (carrier) sets s,, for any s E S, of functions

f A:S,,X.*.Xs,, -P sOA, for any operator symbol f :sI * * . s,so, and of relations r,_, c

s1 .-\ x * . * x s,,4, for any relation symbol r:s, - * * s,,. A Zhomomorphism h : A + B

between .X-structures A and B is a S-sorted family of maps h,: s, -+ sB for which

h%,(fA(x,, . . . 9 x,)) =fs(hs,(x,), . . . , hsn(x,)),

TA(XI,. . . 7 xn)*dk,(x,L.. . , hsn(x,)L

for operators f and relation symbols r as above.

Semantically, relation expressions denote relations. Given a E-structure A and

Q E E=(u), Q, E UA is defined as follows. If Q = A xI:sI, . . . , x,:s,,. 4, then QA is

thesetofall(a,,..., a,) such that there exist VdUeS (x:s)A E sA for the variables

x:s in 4 such that (xj:si)A = ai and 4 becomes a valid assertion in A. For u =

s, . * * s,, E S*, we assume u,4 = sla X. * * X s,,.

Theorem 2.2. Let u : E --, I’ be a signature morphism. Then there exists a functor
u-struct : 2“~struct + 2-struct such that the map that sends any signature 1 to I-struct

and any signature morphism u to a-struct is a (contrat.ariant) functor struct : SIG +
CAT, where CAT is the category of all categories.

Proof. Let A’ E I;‘-struct. We define a-struct(A’) = A as follows. sA = (TV,, i.e.

the product of the A’-carriers of the sorts in (T(S). For f E 0, fA = glA X. + - Xg,,,,

if a(f)=@,,.. . , g,). For rE R, r, = c(f)A’. c]

In this paper, modules are assumed to be parameterized. Sorts, operators, and

relation symbols are allowed as parameters of a module. Thus, the parameter is a

sub-signature 1 E 2,+,. For conceptual simplicity we require the parameters of a

module to be listed among the sorts, operators, and relation symbols, which the

module imports. Thus, 2 s II and the restriction of the representation map to 2

is the identity. The latter means that imported types must not be affected by the

representation map. Moreover any standard type which the operators and relation

symbols of the module refer to has to be listed among the parameters of the module.

In this paper we assume the reader to be familiar with the basic definitions of a category and a functor.

6 The composition of morphisms is written from right to left, i.e. o’&(x) = a’(o”(x)).

233 H. Gan:inger

This simplifies the technical treatment as it becomes unnecessary to distinguish
between parameter types and predefined types. Then, the parameter of the module
gives a complete specification about the required signature of possible environments.
Thus, in the above example, Integer is considered a parameter of the module. This
is indicated by the prefix $ which is used to distinguish parameter constructs. For
the examples of this paper we can assume the following signature Z’Slrrnd,,rd of
standard types to be given:

Example 2.5. Standard types.

Integer, Boo1

. . . all standard operators, e.g.
+ (Integer, Integer) : Integer

= (Integer, Integer) : Boo1
max(Integer, Integer) : Integer

. . .

As stated above, EStandard has to be contained in any signature of a module so
that, in the examples, we need not repeat its constituents.

The reader who is familiar with the use of attribute grammars will have noticed
that in the definition of the module Afloc, the representation of relation symbols
looks like an attribute grammar: Relation symbols r play the role of syntactic rules
and their images under the representation map p(r) are the attribute rules. The
association of grammar symbols to attributes is captured by the sort representations.
The attribute names are the names of the projections. In section 5 we will take a
closer look at the correspondence of attribute grammars and signature morphisms.
For now we simply state the following theorem.

Theorem 2.3. Any attribute grammar is a signature morphism, i.e. specifies (the
implementation of) a compiler module in the above sense.

This observation, which was in fact a major goal of this research, has important
practical consequences wrt. compiler generation, cf. Section 5. Note also, that the
converse of the theorem is not true, i.e. our notion of compiler modules is more
general than what is captured by attribute grammars. This will be the key to the
kind of modularization which we have in mind.

3. The definition of some basic compiler modules

We give the definition of basic compiler modules for handling bindings, for
allocation of memory for program data, and for code generation.

Increasing modularity and language-independency in compilers 735

3.1. Binding identifiers to declarations

We assume the following PASCAL-like concepts of the visibility of declarations:

Declarations occur in scopes that specify the region in which the declarations are

visible. Scopes may contain inner scopes where identifiers can be redeclared. A

scope must not contain more than one declaration of an identifier. At an application

of an identifier two situations may occur: The identifier can be qualified, i.e. consist

of an identification of a scope and the identifier itself. In this case, the corresponding

declaration must be contained in the mentioned scope. (An example is the selection

of a record field xs in PASCAL. Here, x denotes the record variable. The definition

of its type is the scope in which the field names s are declared. That declaration is

the defining occurrence for X.X) Otherwise, if the identifier is not qualified, the

declaration must be contained in a scope that is to be found in an enclosing scope.

The declaration contained in the innermost such scope is, then, the defining occur-

rence.

The compiler module Identification is assumed to be implemented upon a given

module SymbolTable that encapsulates operations on symbol tables. The signature

of SymbolTable is given in Fig. 1. The sorts and operators are assumed to have the

following properties. StStates is the domain of all states of the symbol table. Id is

the domain of identifiers. Remember, the prefix S is supposed to indicate that Id

is a (type-) parameter of the module, as is Decllnfo. the domain of semantic objects

to which an identifier can be bound to. Integers are used to number scopes (e.g.

record types, blocks). (Remember, standard types such as Integer and Boo1 together

with their standard operators are considered as parameters if they are referred to

by the module.) init initializes the symbol table. enterscope marks the begin of a

new scope. 1eaoeScope marks the end of a scope. currentscope returns the number

of the current scope. enter enters a new declaration into the symbol table. lookup
searches the symbol table for the declaration of the Id. lookupQua1 searches the

StStates, $ Id, $ Decllnfo’

$eq(Id, ld):Bool
init : StSta tes
enterScope(StStates) : StStates
leaueScope(StStates) : StStates
curren tScope (StStates) : Integer
enter(StStates, Id, DeclInfo) : StStates
lookup(StStates, Id) : Decllnfo
lookupQual(StStates, Integer, Id) : Decllnfo

Fig. 1. Module “SymbolTable”: Signature.

’ Remember that we do not explicitly list the standard type sorts (in this case Integer and Boof) and

operators that are required to be part of (the parameter) of an) module signature.

236 H. Gmringer

symbol table for the declaration of the qualified identifier X.X The last two operations

can be assumed to employ the parameter equality predicate eq for comparing

declaration entries in the symbol table with the identifier for which a declaration

is looked after. SymbolTable does not provide relations, i.e. it is a module in the

sense of functional and imperative programming. (Note that predicates such as eq
have been specified as characteristic functions rather than relations as their charac-

teristic function is the object of interest.) Therefore, we could have given a complete

formal specification of this module in the style of [17] or [20]. This is, however,

irrelevant for our considerations here. See Section 4.1. for a definition of a concrete

module SymbolTable.

Figure 2 depicts the definition of the module Identification. It gives its signature

1 Idenrificnrion as well as its representation, the signature morphism

PI : ~kfenrificariorl + ~Symbo,Table.

that specifies its implementation over SymbolTable. The notation has been explained

in Section 2. The intuitive meaning is as follows.

The bindings context Bindings of any program construct B is represented as a

pair of symbol table states obtained during analysing B. iSt is the state before and

sSt is the state after analysing the construct B.

$ Integer H Integer; AI
$ Decllnfo ++ Decllnfo ; r\ DECLINFO

$Id- Id; AID

BindingsH(iSt:StSrutes, sSt:StStates); A B, B’, SO, ~1, ~2

scope(B): Integer - currenrScope(B. iSt)
find(B, ID):++hku~(B.iSt, ID)

findC?ual(B, I, rD):Dec/Info- /ookupC?ua!(B.iSt, I, ID)

program + binding constructs B-

B.iSr = ini?
B + scope with binding constructs B’H

B’. iSt = enterScope(B. iSt)
B.s.9 = leaceScope(t3’.sSt)

BO* Bl;B2-

sl.iSt = BO.i3

B2.iSt = Bl.SSt

BO.SSt = B2.SSt

B + noBindings++
B.S.% = B.iSt

B+ bind ID to DECLINFOH

B.SSf = entfP(B.iSf, ID, DECLINFO)

Fig. 2. Module “Identification”: Signature and implementation.

Increasing modularity and language-independmc~ in compilers 237

The operators of Idenlification are scope(_). find(,_), and findOual(_.,_). The

current scope that directly encloses a binding construct b is obtained by applying

the symbol table operation currentScope to the initial symbol table state of b.

find(b, X) finds the declaration of the identifier x in the set 6 of bindings by evoking

lookup. findOual(b, X, s) searches b for the bindings that have been established in

the scope s. Then the declaration for x in s is returned.

The intuitive meaning of the relation symbols has already been illustrated in the

last section. Their implementation using symbol table operations is as follows: At

any scope construct, a new scope is opened (enterScope). The bindings B’ that have

been established inside the scope are hidden to the outside, i.e. made invisible among

the set of all bindings B encountered so far (leat’escope). Sequences of bindings

are processed from left to right. Any construct not containing a binding construct

does not change the symbol table.

At this point it seems appropriate to recall the (meta-)semantic meaning of such

definitions. Given a concrete module SymboLTable, i.e. an algebra A of signature

1 Symbolr~able, the relation _+scope with binding constructs_, for example, is in

A’ = p,-sfruct(A) defined as follows:

Bindings*, = iSt:SrStatesA x sSt:StStatesA
__+ scope with binding constructs_,, YZ BindingsA, X Bimfings,., such that

(B,B’) E _--, scope with binding constructs_A,@

(B’.iSt=enterScope,(B.iSt))~(B.sSt=leaveScope,(B’.sSt))

Since Id, Decllnfo, Bool, and Integer are the parameters of SymbolTable. they are

not the parameters of Identification, too.

3.2. Memory allocation

We assume that storage will be occupied by structured data and that the lifetimes

of different data can be overlapping. E.g., variables in parallel blocks as well as

different variants of records may be assigned to overlapping storage units. Figure
3 repeats signature and implementation of the module Allot as already given in

Section 2 based on standard arithmetic, i.e. as a signature morphism

Storage is assumed to be hierarchically structured into segments and units. A unit

is either a sequential and/or overlapping structure of subunits, or it is a not further

structured, elementary storage block, or it is again a segment. A memory unit is

implemented by the memory top iTop before and the memory top STOP after

allocating the unit. size is its size in terms of primitive units such as words or bytes.

address is the (absolute) address of a unit in the program memory. offset is the

offset of the unit wrt. the enclosing segment.

‘38 H. Gon:inger

$ Integer - Integer; ASIZE
Mem Unit - (iTop, STOP, offset, size : Integer) ;

h UNIT, UNITl, UNII-‘, UNIT3, U

size(u) : Integer - u. size
ofset(u):Znfeger- u.offset
address(u):Inreger- u.iTop

memory + segment consisting of UNIT-
UNIT. iTop = 0
UNIT. offset = 0

UNIT- segment consisting of UNIT-~ c-*

UNI-rl.iTop = UNII-.iTop
UNIT.SiZe = UNII-l.SiZe
UNITl.OflSet = 0
UNrT.STop = UNITl.STop

urwr+ elementary of size SIZE-
UNIT.STOP = uNIT.iTop + SIZE
UNIT.SiZe = SIZE

UNITE + UNITY concatenated UNITY-
UNIT2.OflSet = UNIT.l.OflSet
UNIT3.oflser = uNITl.oflser+uNI-r2.size
UNIT2.iTOp = UNITl.iTOp
UNITj.iTop = u~d.STop

UNITl.sTop = UNIT’~.STO~

UNIT1 .size = uNIr2.size + uwr3.size
UNII-1 + u~Ir2 overlapped UNITY-

uNrr2.oflSer = uN1Tl.oflser
uNIT3.Oflser = UNlrl.oflser
UNIT2.iTop = UNITl.iTop
UNIT3.iTOp = UNITl.iTOp
UNIT~.STO~ = mUX(UNIT2.STOp. UNIT3.sTop)
uNI-rl.size = max(uNI-r2.size, mn3.size)

Fig. 3. Module “Allot”: Signature and Implementation.

3._?. Code generation

We define a code generator for the control structure of while-programs. The

target language is represented by the relation symbols of the data type whose

signature is listed in Fig. 4. As, with respect to code generation, the target language

is a purely syntactic concept, we have chosen relation symbols to denote its basic

constructs. The abstract target machine is assumed to have an unbounded number

of registers regisrer(i). The intuitive meaning of the constructs is as usual. JifF means

jump, if false, on the first argument to the label that is given by the second argument.

Increasing modularir! and language-independency in compilers 239

S Integer, Texp. Tstat
--_

Texp + const(Integer)
Texp + register(Integer)
Texp + con t (Texp)
Texp-, Texp op Texp, op = + ,- ,*,/,(.), = , . . .
Texp + opt Texp) , op = - , cont. not, _ . .
Tstat + assign(Texp, Texp)
Tstat + JifF(Texp, Texp)
Tstar + Jmp(Texp)
Tstat + label(Integer)
Tstat + skip
Tstat + Tstat; Tstat

Fig. 4. Signature of target language.

Thus, the formula

~Sl+label(l)~S2+assign(V,E)~ V+ Vl+V2h Vl+register(l)

A V2~COnSt(6)AE~El+E2AEl-,COnt(E3)AE3-,E4+E5

A E4-,register(l) A E5+const(5) A E2+const(1)

A s3 --, Jmp(EL)

would characterize a statement scheme SE Tsrat containing a label variable EL over

Texp. In what follows we will choose a more concise notation, if the names of the

pairvvise distinct auxiliary variables are not of interest. We write instead

S+label(l);

assign(register(l)+const(6),cont(register(1) +const(5)) +const(1));

Jmp(d

i.e. view the relation symbols as context-free productions and identify sentential

forms of this grammar with their parses. The parses themselves can be regarded as

a particular kind of relational expressions where auxiliary variables (e.g., Sl, Sl’, . . .)

denote positions of nonterminals in intermediate sentential forms.

Figure 5 presents the source language related notions of imperative commands

which the module CodeGeneration offers, i.e. a definition of a module code gener-

ation with representation

For implementing while-programs in terms of goto-programs, label counters LabCtr
have to be maintained in order to generate unique numbers for label declarations.

c is the target code to be generated. v + mkVar(8, I) defines the ‘source language’

240 H. Gan:inger

$Integer- Integer; AI, B
Suar - Texp; AV, Vl, SVAR
Sexp)--* Texp ; AE, EO, El, E2, SEXP

Sstat-(iLabCtr, sLabCtr: Integer, c: Tstat); As, SO, sl, s2
-__
-__

V+mkVar(B, I>* V+register(B)+const(l)
vl+voffsetr~vl+v+Z

Vl+V[E]++Vl-+COnt(V)fE

E + const(I) * E + const(I)

~-,mkExp(v)~~+cont(v)
EO+El OpE2’+EO-+El 0pE2

E+-El-E-,-El
targetcode + SH

s.iLabCtr = 0
s + skip*

s.sLabCtr = s.iLabCtr
S. c + skip

sO-,sl;s2H

sl.iLabCtr = sO.iLabCtr
s2.iLabCtr = sl.sLabCtr
sO.sLabCtr = s2.sLabCtr
s0.c + sl.c;s2.c

S + SVAR := SEXPw

s.sLabCtr = s.iLabCtr
s.c --* assign(svAR, sExP)

SO --, while SEXP do sl H

s0.c + label(sO.iLabCtr);
JifF(sExP, const(sO.iLabCtr+ 1));
s1.c;

Jmp(const(sO.iLabCtr));
label(sO.iLabCtr+ 1)

sl.iLabCtr=sO.iLabCtr+2
sO.sLabCtr = sl.sLabCtr

SO + if SEXP then sl else s2 CJ
s0.c + JifF(sExP, const(sO.iLabCtr));

s1.c;
Jmp(const(sO.iLabCtr+ 1));
label(sO.iLabCtr);
s2.c;
label(sO.iLabCtr + 1)

sl.iLabCtr = sO.iLabCtr + 2
s2.iLabCtr = sl.sLabCtr
sO.sLabCtr = s2.sLabCtr

Fig. 5. Module “Code Generation”: Signature and implementation.

Increasing modularity and language-independent?, in compilers 241

construct mkVur in terms of the ‘target language’ constructs register and cow. In

vl + v[I], v is the address of the dope vector of the array. Its first element contains

the address of the array to which the index has to be added to yield the array

element vl. The code templates (rules for calculating the c-components) are as
usual. Except for standard types, the module CodeGeneration has no parameters.

3.4. Remarks

Properties of the imported operators and relations determine the properties of

the newly defined relations. We can assume that e.g.

lookup(enter(enterScope(init), “x”, “integer”), “x”) = “integer”.

This implies that the formula

program + binding constructs Cl A

Cl + scope with binding constructs C2 A

C2+C3;c4~

C3 + bind “x” to “integer” A
C4+C5;C6fl
T =find(C.5, “xl’)

can be satisfied for T = integer, only. Whereas the definition of the relations refers

to a specific implementation in terms of a given symbol table handling module, the

properties of the relations can be expressed without referring to this implementation.

They do directly model some language concept of binding identifiers to declarations

in the presence of named and nested scopes. On the next higher level of the compiler

specification only these properties are relevant. So much just for recalling the basic

idea behind encapsulation of implementation (also called abstraction).

4. Combining modules to make compilers

According to [6] and [23], signature morphisms are the only syntactic mechanism

needed for structuring data types. Semantically there are two aspects of signature

morphisms u: the forgetful functor a-srruct, cf. Section 2.2, and a-persistent type

generators

T: I-struct + E’-struct,

cf. below. Combining data types means, therefore, applying a type generator or a

forgetful functor.

Our application to compilers has required to define a version of signatures and

signature morphisms that, in contrast to the standard approach, also includes relation

symbols. Moreover, our signature morphisms in general map sorts to sequences of

sorts, operators to terms, and relation symbols to relation expressions. So it needs

to be demonstrated that this version of signature morphisms satisfies some basic

requirements, allowing to adopt the structuring principles of abstract data type

theory. In the following we will briefly state that these requirements are, in fact,

satisfied.

In the formal presentation we follow Lipeck [23]. The proofs of the theorems

given below are straightforward extensions to signature morphisms in our sense of

Lipeck’s proofs. The reader is assumed to be familiar with the basic notions and

techniques of parameterized data types although the presentation below will be

self-contained.

4.1. Parameterized dara types

A (class of) data type(s) is a pair D = (Z, Cj. consisting of a signature 1 and

full sub-category C G htrucr of I-structures that is closed under isomorphism.

a

A parameterized data type is a triple P = i D. D 1, T), where D and D 1 are classes

of data types such that

- ~l=~+(S1,R1,R1)andi-struct(C1)cC.ifiistheinclusionmorphism~~~1,

- 7: C+ Cl is an object-surjective functor.

2 is the parameter signature, C the class of parameter structures. Zl is the body

signature and Cl the class of structures that is the range of the type constructor

1 T is called object-surjectice, if for an> 11 -structure cl E Cl there exists a

Z-structure c E C such that T(c) = cl. P is called persistent, if i-strucr T = idc.

Example 4.1. We define a parameterized data type “SymbolTable” in a way such

that it is a useful basis of the compiler module Identification. Its signature has been

given in Section 3, cf. Fig. 1.

- Parameter:

C: set of all A E .&srruct (I= parameter signature of SymbolTable) such that

- IntegerA = Inf, the set of integers,

- =,+ . . are the usual standard functions on In&

- Bool,‘~ {true, false},
- Decllnfo, contains some distinguished element undefinedA,’
- eqA is an equivalence relation on Id,.

- Type constructor: For A E C set B = T(A). kvhere

StStatess =
maxsc:N,x st:NB x dt:(s:N,x i:Zd, X d:DeclInfo,)”

maxsc is the maximal scope number used so far. st is the scope table and dt is

the declarations table. Both are lists. st is a list of (natural) scope numbers whereas

* In order to keep our examples small, we are not interested in providing any realistic error handling
in the case of undeclared or multiply declared identifiers. In the former case the value w&fined, will
be returned. Therefore we need not include a specific constant undefined among the parameter constants
in I.

Increasing modularity and language-independency in compilers 243

dt is the list of declarations encountered so far. s, i, d are the scope, identifier, and

declaration information, resp., of the declaration.

init, = (0, (O), ())

enterScope, (state) =

(state. rrzuxsc + 1, srufe.st cone state. muxsc + 1, srute.dt)

leuoeScopeB (state) =
(stute.muxsc, deleteLastElem(srute.st), stute.dt)

currenrScope,(stare) = lastElem(srute. sr)

enter,(stare, x, t) =
(state.muxsc, stute.st, srute.dt cone (lastElem(stute.st), x, t))

The new declaration is appended to the existing list of declarations. In the case of

redeclaration, dt now contains more than one entry for x.

lookupB(Srute, x) = t,

if there exists 1s 1 s length(state.sf) and 1 s j< length(srute.dr) such that t =

(stute.dt)[j].d, eq(x, (stute.dt)[j].i) = true, and sture.st[l] = (sture.dt[j]).s. If more

than one such 1 and/or j exist, then take first the maximal 1 and, then, the maximal

j. If no such j and 1 exist, set t = undefined,.

lookupQ)ualB (state, b, x) = t,

where t as above, if, additionally, 1 is chosen such that srute.st[l] = b.

Note that we do not refer to any mechanism for specifying basic parameterized

data types in the sense of abstract data type theory, i.e. we are not interested in

how the classes C of parameter structures and the type constructors T are defined.

In the above example we have used a semi-formal mathematical notation. In practical

applications of the concept, data types that do not contain any relation symbols can

be given as packages in some adequate imperative programming language, e.g.

PASCAL. This makes the treatment independent of the properties of a specification

language. In particular we need not be concerned about generating executable

programs from their specifications. Here we are only interested in the mechanisms

for combining complex data types out of given elementary ones. Once the basic

data types are given in an efficiently executable form, the combining mechanisms

to be introduced below will allow to obtain an efficient implementation of the

combined data type automatically. In the following sections, the basic combinators

for data types are introduced.

4.2. Parameter passing

Given parameterized types P and P’ and given a signature morphism (Y : 2 + El’,

P’ is called an (admissible) actual parameter for P with respect to (Y, if

a-sfrucf(C1’) s C. LY is called an actual purumerer association.

211 H. Gunzinger

Passing an actual parameter to a given parameterized type has a syntactic (resulting

signature) and a semantic aspect (resulting type constructor). The result signature

is modelled by pushouts. We, first, repeat the definition of pushouts.

A diagram (in SIG)

Ul
z - Xl

a2

I i

a'2

U'l
22 - 2,

is called a pushout diagram, if

(1) it is a diagram, i.e. it commutes,

(2) for any signature 2;’ and any pair of morphisms fl : 22 + 2: and f 2 : 21 + 1’

such that f la2 =f2al, there exists a unique morphism U’ : -&,+ L’ such that

ddi=fi, i=1,2.

In contrast to signature morphisms in the classical sense, where all pushouts exist,

the following is true:

Theorem 4.1. The category SIG of signature morphisms does not hate all pushouts.

Proof. The following is a counter example: Let S = {s}, Sl = {f 1, t2}, S2 = {u 1, u2},

Rl=R2=Rl=R2=0, ~1:s~tlt2, and ~2:s~ulu2. Then, for Z’=({ul,u2},
0,0), f,:ui-vi, and f2: fi-t’i, f2al =fl~2. For a pushout EpO, there exists a

u’ : &, + 2 such that

ddl(ui)= ui=o’a’2(ti) and o’l(ul)a’l(u2)=o’2(~l)(r’2lf2).

Thus, c~‘l(ul) 2 a’2(rl) or ~‘l(u2) 2 ~‘2(t2).~ Wolog. we assume that the first

alternative is true. Then, let us consider a signature .Z”= ({xl, x2, x3),0,0) and

morphisms f “1: u 1 -xl, ~2~x2~3, f2:tl ~~1x2, ~2~x3. This, again, leads

to a commutative diagram f”2(+1 =f”lu2. Thus, there has to exist a c+“:&,+ 2”

such that d’di = f”i. Therefore,

f”2(tl)=x1x2=a”a’2(tl) and f”l(~1)=~1=~“~‘1(~1).

In particular, a”(a’l(u1)) < a”(a’2(tl)), which contradicts to a’2(tl) 5 (~‘l(u 1).

Consequently, no pushout can exist in this situation. 0

The above proof shows that the introduction of relation symbols is not the reason

for nonexisting pushouts. The crucial point is that morphism are allowed to send

sorts, operators, and relation symbols to sequences, terms, and expressions in target

sorts, operators, and relation symbols, respectively. The following theorem gives a

sufficient and complete criterion for the existence of the sort part of pushouts. For

operators and relation symbols, analogous assertions can be proved.

9 x 2 y means here that y is a substring of x.

Increasing modularity and language-independency in compilers 213

Theorem 4.2. Assume the above diagram to be given. Furthermore, assume that

R1=02=Rl=R2=fl.

Then, the diagram is a pushout diagram, iff S& (as a monoid) is isomorphic to
(Sl + S2)*/ = , where = is the (least) congruence on (Sl + S2)* generated by

{(T1(S)‘u2(S)~SES}.

Example 4.2. We apply the theorem to the counter example given in the proof of

thelast theorem.Let S={s},S1={tl,t2},S2={ul,u2}, ul:s~fl~2,anda2:s~

ulu2. Then, {[tl], [t2], [ul], [u2]} is a minimal generator system for (Sl +S2)*/ =.

As [tlt2]=[ulu2], (Sl+S2)*/= is not freely generated.

For our purposes it is of interest that pushouts do exist if one of the two morphisms

is an inclusion.

Theorem 4.3. Given ai : 2 + Z, i = 1, 2, two signature morphisms. If 1 G 11 and
al is the inclusion morphism, then there exists a signature EW and morphisms
a’1 : 2‘2 + &, and ~‘2 : El+ .&, such that

02

I i

U’2

0’1
X2 - &J

is a pushout diagram.

Proof. Define:

S,,=(Sl-9+s2

u’2(s) = if s E S then u2(s) else s
R,,=l22+l233,

whereR3=Cf.i:u’2(u)siIf:usEOl-f&u’2(s)=s1...s,,, lsisn)
u’2(f)=if f:usEOl-0, u’2(s)=sr . ..s. then (f.l,..., f.n) else u2(f)
R,,=R2+R3, where R3={r:u’2(u)lr:uERl-R}
u’2(r) = if r E R then u2(r) else r
a’1 the inclusion 22~ 2,.

It is straightforward to prove that with these definitions the above diagram is in fact

a pushout diagram in SIG. The commutativity of the diagram follows immediately.

The pushout property requires for any signature E’ and any morphisms fl : 22 + X’,

f2: El --, E’ such that f lu2 = f2ul the existence of a unique u’ : &,-+ 27 such that

246 H. Ganzinger

u’u’l =fl and (~‘~7’2 = f2. CT’ can be defined as follows:

a’(s)=if s~S2 then fl(s) else f2(s)

cr’(f)=fl(f), if f:usER2.

Any operator f.i: us in 03 has been obtained from a uniquely determined operator
furl-flforwhicha’2(f)=(f.l,..., f.k).It is not difficult to see that in this case

f2(f) = (g,,, * *. Y glm,, g2l.. *. 9 &,z, *. . , gkl,. . . , gkmk)

is a consequence of f lo2 = f2ul. With this,

a’(O) = (gil*. - . 9 gik,).

Finally, for relation symbols r E R,,

o’(r)=if TE R2 then fl(r) else f2(r).

The properties u’u’l =fl and ~‘a’2 = f2 as well as the uniqueness of u’ follow
immediately from the definition of u’. •I

We have intentionally given the details of the definition of a’ as it is important
for the implementation of the concept. Below we will give a theorem about how
combinations of data types can be transformed into a normal form. The normal
form will be the basis for compiler generation. The construction of u’ will be essential
in the construction of the normal form.

Theorem 4.4 ([23]). Let be given a pushout diagram as abobe. Furthermore, let K

be an arbitrary category. Then, to any pair of functors Ti : K + Z,-struct for which

al -struct Tl = u2-struct T2

there exists exactly one functor Tl U T2 : K + .&,-struct for which

u’l-struct (Tl U T2) = T2 and u’2-struct (Tl U T2) = Tl.

Proof. We give a short outline of the proof.
Define, for objects k E K, B = (Tl U T2)f k) as follows:

fOrXES2U6?2UR2:xB=xr2(k,,
for x E (Sl - S2) :x5 = XT-l(k).

This implies that for any u E Sl’, uTl(li) = u’2(u)*. (Indeed, for 1 s is IuI we have,
if u.iES,

.
U-ITl(k) = ~~ial-srrucr(T1(k~) = u.bl-srruct(TZ(k)) =a2(u.i)TZ(k)=(+‘2(u.i)TZ(k)

= u’2(u.i)u.
If u.i E Sl -S, from the definition of B, u.i, = u.irI(k).) Then, we further define, for
rERl-R, rn=rrl(k)_ This is well-defined as rTl(k) G uTl(k) = u’2(u)~ and u’2(r)

is of sort u’2(u). Finally, for fie 03, it is f:us~ 01 and f.i=u’2(f).i:u’2(u)+

Increasing moduloriry and language-independent?, in compilers 2-37

a’2(S).i. Thus,fT,,I,, :u.,,1,,-,S~,,k,.i.e.f~,,~,:~‘2(U)8j(T’2(S)8. ffp,:V’2(S)B+

(a’2(s).i), is the projection to the ith component, set

fiB=nfTltk, :a’2(~4),+(a’2(s).i)~.

For morphisms h in K define g = (Tl U T2)(h) as follows:

g, =if SE S then T2(h),,z,,, else Tl(h),.

Considerations similar to the above show that g is in fact a morphism and that

Tl U T2 is a functor. The uniqueness of Tl U T2 follows immediately from the

construction. 0

Parameter passing is now defined as follows. If Pz is an admissible parameter for

PI wrt. a (both persistent parameterized types), then consider the pushout diagram

where al is the inclusion Irr 2, and where u2 = a. Then, the result of applying

Pr to I’, according to (Y is given as

apply (P,. f’z, a) = (Dz, D, 77.

where D = (IF,, T(C’2)), T= T’1T2, if T’, =(&.,,U (T,cx-struct)). This situation

will in the following be denoted by the diagram

D,
a,; T,

N Dll

a I I a’

a2; 7-z u; : r;
D2-----) D12- D

4.3. Abstraction

The second basic operation on parameterized data types is called abstraction (or
reduction). Abstraction models in our applications a kind of implementation of a

data type of signature & over a data type of signature 2,.

Given P, 2 s .X2, and arbitrary u : 12 + El such that u Iz = idI,” then

abstract(P, a) = (0, 02, T2),

where 02 = (12, a-sfruct(Cl)), T2 = a-struct T.

Combinations of data types are terms in apply and abstract over basic data types

and signature morphism. Most terms can mechanically be reduced to terms in which

abstract occurs exactly once, namely at the root of the term. This is the assertion

of the following normal form theorem that was proved in [23] and which can be

adapted to our case.

‘” It would be sufficient to require that U’U-‘, with u’ the inclusion I E 11, is an injective signature

morphism.

218 H. Garringer

Theorem 4.5. If apply(abstract(P,, p,), abstract(P,, p2), a) is defined, then there
exists a signature morphism p such that this term is equal to

Proof. We repeat the proof of [23] as we are interested in the construction of p.

The diagram below shows the general situation:

Here, the pushout (a, 5,) is the result of parameter passing in

apply(abstract(P,, p,), abstract(P?, p2), a)

whereas the pushout (p2cz, a,) represents

apply(Pr, P2, ~2~1.

This yields a’,pza = (p,a)‘p,@,. The pushout property of (a, a,) implies the existence

of a data type morphism p: D’+ I) such that p$ = u;p2 and pa’ = (pza)‘p,. This

p makes the application of abstract in the second term to be vvell-defined as

4~7~ = PC?~C?~. It remains to be shown that abstract(P, p) = P’, for P = (D2, D, T’, T2)
and P’ = (D2, D’, Fi T2). The syntactic part of this equation has already been proved.

To show p-struct T; T2 = ?={ F2 it needs, because of the last theorem, to be proved that

ap-struct T’, T2 = 6; F; T2.

This, however, is straightforward from the construction. 0

This normal form theorem is the basis for an implementation of the concept in

a compiler generating system:

Increasing modularity and language-independency in compilers 239

(1) Predefined data types such as SymbolTable or TargetLang can be assumed

to be given as a concrete package in a suitable language, say PASCAL.

(2) The compiler definition is a term in predefined data types, signature morph-

isms, apply, and abstract. The compiler generator must allow for reading in and

storing signature morphisms in the general form.

(3) The compiler generator applies the algebraic laws for apply and abstract.

This reduces the compiler definition to a term of kind

Comp = abstract(Predefined, p)

where Predefined is an apply-term in predefined data types only. The latter corres-

ponds to a number of textual expansions of the PASCAL-text of the predefined

packages.

(4) p is checked as to whether it is an attribute grammar. If this is the case, it is

transmitted to that part of the system that generates attribute evaluators.

Of course, the question is how it can be guaranteed that the transformed version

of the compiler definition p is in fact an attribute grammar. This question will be

the subject of the Section 5.

4.4. Example: Compiler for a language Ll

4.4.1. Combining the modules
For the compiler modules of the last sections it holds

Identification = abstract(SymbolTable, pr),

Allot = abstract(Srandard, pA),

CodeGeneration = abstract(TargetLang, pc).

We now combine these data types into a compiler for a simple language Ll. Ll is

a language of while-programs with a block concept and with integer variables only.

Now, the syntactic rules of the concrete language are the relation symbols whose

implementation in terms of given data types is to be defined.

First, we combine all three modules by apply:

Allot + CodeGen = apply(Alloc, CodeGeneration, idSrandord),I’
AllModules = apply(Allot + CodeGen, Identification, id S,anda,d),
LlModules = apply(AllModules, Standard, {IdSrandard, Id + Id, eq + eq,

Decllnfo + Integer}).

AllModules is the sum of all three modules, LlModules is the result of passing

Integer to Decllnfo. In this Ll-compiler, addresses are the only relevant information

about (variable) identifiers.

I* The standard types are in this case the only parameters of Allot. idSrandrrrd is the identity signature
morphism on standard types. In this application apply means disjoint union of data types without
duplicating standard types.

250 H. Gon:inger

Figures 6 and 7 depict

PI_, :&1 --, EL 1 Modulrs~

Then, the Ll-compiler is given as the data type

Ll Comp = abstract(llModufes. pLI).

Block, Statement- (enu : Bindings, memory : Mem Unit, code : Sstat)
Decl w (enu : Bindings, memory : Mem Unit)

$Id-Id
Var- (enu : Bindings, code : Suar)
Exp, Bexp - (enu : Bindings, code : Sexp)

$eq(Zd, Id) : Bool- eq(ld, Id) : Boo1

P’Og-, BLOCK-

program -, binding constructs BLOCK. enu

memory + segment consisting of BLOCK. memory
targetcode + BLOCK.~~~~

BLOCK-, begin DECL;STAT end-
BLocK.enu + scope with binding constructs C
C+DECL.enU;STAT.enu

BLocK.memory + segment consisting of U
U--f ~~~~.memory concatenated s-rAT.memory
BLOcK.code=~~~~.code

DECLO+DECLl;DECL2'+

DECLO.enu+DECLl.env; DEcL2.erru

DEcLO.memory + ~~~~l.memory concatenated DecL2.memory
DECL --* ID : integers

DEcL.enu + bind ID to address (DEcLmemory)
DEcL.memory --* elementary of size 1

STAT -, BLOCK H
STAT.~~~= BLOCK.CIIU

STAT. memory = BLOCK. memory
STAT.CO~~ = BLOCK.~~~~

Fig. 6. Definition of the Ll-compiler (Part 1).

One might visualize the definition of the Ll-compiler as consisting of three partial

translations that classify any Ll-construct with respect to the abstract constructs as

they are ‘input’ to the Identification, Allot, and CodeGeneration module, respec-

tively. The three translations are not independent of each other. E.g., in the definition

of DECL- ID:integer, the modules Identification and Allot interact with each other:

Allot determines the address of the variable which is then used to describe the kind

of the identifier in its declaration. Integer variables are assumed to occupy storage

Increasing modularity and language-independency in compilers 251

STAT0 + STAT1 ; STAT2 H
STATO.~WV+STAT~.~~IV;STAT~.~?~V
STATO. memory + STATS. memory overlapped STATS. memory
STATO. code + STATS. code ; STATS. code

STAT --, V := Exp H
STAT. memory --, elementary of size 0
s~~T.env + v.env;Exp.env
STAT. code + v. code := ExP.code

V+IDH

v. env + noBindings
v.code+mkVar(l,find(v.env,~~))

EXP+IH
EXP.CW + noBindings
EXP. code + const(I)

EXP-+VH

ExP.env = v.env
ExP.code+mkExp(v.code)

EXPO+EXPl Op EXP2 (Op= +,-,*,/)++

ExPO.env+ ExPl.env;ExP2.env
~x~O.code + ~x~l.code op ~x~2.code

STATO + while BEXP do STATS H
sT~TO.env + ~ExP.env ; sT~Tl.env
STATO. memory = STATS. memory
STATO.CO~C --, while BEXP.~O~~ do s~~~l.code

BEXP + EXP~ relop EXP2 (relop = (,), = , . . .) *
BExP.env+ ~xPl.env;ExP2.env
BEXP. code + EXP~. code relop Exp2.code

STATO + if BEXP then STATS H
sr~TO.env --, BEXP.~~~;STAT~.~~~
STATO. memory = STATS. memory
sTA’rO.code + if BEXP.cOde then STATS .code else S
S + skip

Fig. 7. Definition of the Ll-compiler (continued).

of size 1 (say, word). Concerning the addressing of program variables it is assumed

that Register 1 holds the address of the program memory. $nd(v.env, ID) is, then,

the offset of the variable in the activation record.

Just to remind the reader of the (meta-) semantics of the definition of pLlr let us

consider the implementation of the block relation. It holds

(B, D, S) E “_ + begin-;-end” G
(B.env, C) E “_ --* scope with binding constructs _” A

(C, Denv, S.env) E “_+ _ ; _“A
(B. memory, U) E “_ + segment consisting of _” A

(17, D. memory, S.memory) E _+ -concatenated 2’ A

B. code = S. code.

l-l. Canzinger

4.4.2. The expanded cersion of the LZ-compiler

According to the normal form theorem, it holds

LlComp = abstrart(abstract(Predejned, p), pL,)

= abstract(Redefined, ppL,), for some p,

where Bedefined is an apply term that unites the elementary data types Standard,
TargetLanguage, and SymbolTable and passes Integer to Decllnfo. Figure 8 shows
part of p;, =ppLl as it is implicit in the proof of the normal form theorem. In this
example, p:i is again an attribute grammar although pLI is not, i.e. the definition
of LlComp could be subject to automatic compiler generation. Appendix 1 lists
the complete definition of p’ of the Ll-compiler.

The reader should realize that descriptions such as p;, are input to compiler
generating systems today. They are quite unstructured. In particular, they do not
exhibit any language concept that the compiler has to cope with. This may be
acceptable for languages as simple as Ll. If the language, however, gets more
complex, then structuring is a must. In such cases, attribute grammars can be very
big. A notable example is the definition of the Karlsruhe ADA compiler [l]. This
document presents a 20 000 lines attribute grammar specifying the static semantics
of roughly 270 syntactic rules using about 60 different attributes. We believe that
the structuring concepts introduced above could convert even such a big compiler
definition into something readable and manageable.

In general it should be obvious that the possibility of deriving compiler descriptions
modularly out of modules that correspond to the language facets increases flexibility
and modifiability considerably. Note also that the modules which we have defined
above would allow to define compilers for much more realistic languages, too. We
show this by defining the compiler for a second simple language L2.

4.5. Example: A compiler for the language L2

L2 is a language of while-programs with type declarations and record types. We
show that L2 is just a different combination of the same concepts which Ll involved.
It should be obvious that if the compilers for both Ll and L2 can be obtained as
combinations of the previously defined modules, then this would also be possible
for a language that is the sum of the concepts of both languages. The latter would
be a fairly realistic language.

First, we construct a suitable combination of our basic modules. In L2, declaration
information is more complex. To be able to instantiate the parameter Decllnfo of
SymbolTable correspondingly, we assume a data type L2Types to be pregiven. Its
signature is shown in Fig. 9. Its meaning is informally described as follows. The
address a and the type t constitute the information mkVarInfo(a, t) about a variable
identifier. If the identifier names a field of a record, a is the offset of the field.
Otherwise, it is the address of the variable. Integer is the only elementary type. The
size (in memory units) s and the type t constitute the information mkTypeldZnfo(s, t)

. . .
Statements c*

((en u. iSr : SrSrates, enV. sSt : StStates),
(memory. iTop, memory. STOP, memory. offset, memory. size : Integer),
(code. iLabCrr, code.sLabCtr : Integer, code.c : Tstat))

. . .
BLOCK+ begin DECL;STAT end-

C.iSt = enterscope (BLocK.enu.i.9)
~~ocK.enu.sSt = leaceScope(C.sSt)
DECL. env. iSt = C. iSt
s-r~T.env.iSt = ~~c~.env.sSt
c. SSt= STAT.tW V.SSt
U.iTop = ~~~~~.memory.iTop
BLOCK. memory. size = U. size
U. offset = 0
BLOCK.memory.sTop= U.sTop
DECL. memory. offset = CJ. offset
STAT. memory. offset = U.offset + DECL. memory.size
DECL. memory. iTop = U. iTop
STAT. memory. iTop = DECL. memory.sTop
U. STOP = STAT. memory.sTop
U. size = DECL. memory. size + STAT. memory. size
STAT. code. iLabCtr = BLOCK. code. iLa bCtr
~~~~~.code.sLabCtr = ~~~~.code.sLabCtr 
BLOCK. code.c= STAT. code.c 

. . . 
STATO-, if BEXP then STAT~H 

~~x~.env.iSt=s~~TO.env.iSt 

sT~Tl.env.iSt= B~xP.env.s.9 
sT~TO.env.sSt=s~~~l.env.sSt 

STATS . memory. offset = STATO. memory. offset 
~~~~l.memory.iTop = ~~~~O.memory.iTop 
sTATO.Memory.sTop = S~~Tl.memory.sTop
STATO. memory. size = STATI. memory.size
STATO. code.c + JifF(BEXP. code,const(sTAT0.code. iLabCtr));

~~~~1.code.c; 

Jmp(const(srArO.code.iLabCtr+ 1)); 

label(sTATO.code.iLabCtr); 
s.c; 
label(sTATO.code.iLabCtr+ 1) 

STATS .code.iLabCtr = ~~~~O.code.iLabCrr + 2 
S. iLa bCtr = STAT 1. code. sLa bCtr 
STATO. code. sLabi = S. sLabCrr 
S. sLa bCtr = S. iLa bCrr 
S. c + skip 

. . . 

Fig. 8. Ll-compiler: Version p’. 



254 H. Gan:inger 

TypeDenotation, Idho, $ Id 
_-- 

$eq(ld, Zd) : Boo! 
mkVarInfo( Integer, TypeDenotation) : ldlnfo 
mkTypeIdInfo(Inreger, TypeDenotation) : Idlnfo 
intType : TypeDenotation 
recordType( Integer) : TypeDenotation 
scopeNmb( TypeDenotation) : Integer 
getType( Zdhfo) : TypeDenotation 
gefAddress( Idlnfo) : Integer 
getSize( TypeDenotation) : Integer 

Fig. 9. Data type L27’ypes: Signature. 

about type identifiers. A record type recordtype( s) is viewed as the scope s in which 

the field names are defined. Scopes are numbered by integers. scopell’mb retrieves 

the number of the scope which the (record-) type defines. 

We now define 

LZModules = apply(AllModules, 

Figures 10 and 11 give the definition of 

PLZ : IL2 + ~L2.Wodules 

such that the L2-compiler is given as 

L2 Types, { idSrandard, Decllnfo + Idlnfo, 
Jd + Id, eq + eq}). 

L2Comp = abstract(L2Moduleq pL2). 

Here record types constitute scopes of visibility for the names of the record fields. 

These names are retrieved using findQual( J3 _). With respect to storage allocation, 

record types are segments so that the offset in these segments are associated with 

the field names. Declarations of type identifiers do not require any memory to be 

allocated. 

A program variable can be a record variable. In this case the associated record 

number recordNmb identifies the record (scope) in which its field names are declared. 

Note that the languages Ll and L2 are fairly different from each other. Ll has 

a block concept and primitive types only. L2 has no block concept but allows for 

record variables and for declarations of type identifiers. Moreover there are slight 

differences with respect to control constructs. Nevertheless, the compilers for both 

languages can be constructed as combinations of the same modules. This demon- 

strates to some extent the language independency of these modules. 



Increasing modulurity and language-independency in compilers 3.55 

Stat - (ent’ : Bindings, code : Sstat) 
Decl, Field - (enc : Bindings. memory : Mem Unit) 
TypeDen - (env : Bindings, memory : Mem Unit, type : TypeDenotation) 
$Id-Zd 
Var- (enu : Bindings, code : Scar, recordNmb : Integer) 
Exp - ( en v : Bindings, code : Sexp) 
___ 

$eq(Zd,Zd):Bool-eq(Zd,Zd):Bool 
___ 

program + begin DECL;STAT end- 
program + binding constructs C 

C --, scope with binding constructs C’ 

C’+DECL.en~;STAT.enP 

memory+ segment consisting of DEcL.memory 
targetcode + ~~~~.code 

DECLO-'DECLl;DECL2- 

DECLO.eiIV+DECLl.en~;DECL2.enlJ 

DECLO. memory + DECL~. memory concatenated DECL~. memory 
DEcL + type ID = TYPEDEN- 

DECL.~~U-*TY’PEDEN.~?I~;D 

D+ bind ID to mkTypeZdZnfo(size(TYPEDEN.memory),TYPEDEN.type) 
DEcL.memory + elementary of size 0 

memory-, segment consisting of rYPEDEN.memory 
DECL + var ~D:TYPEDEN- 

DECL.enU+TYPEDEN.e~lC; D 
D + bind ID to mk VurZnfo( address( declmemory) ,TYPEDEN. type) 
DEcL. memory = TYPEDEN. memory 

TYPEDEN ainteger- 
TYPEDEN.~~~~ = intType 
TYPEDEN.memOry + elementary of size 1 

TYPEDEN + record FIELD end- 
TYPEDEN.enU + scope with binding constructs FtELD.enu 

TYPEDEN.memOry --, segment consisting of FrELD.memory 
TYPEDEN.type = recordType(scOpe(TYPEDEN.enc)) 

Fig. 10. L2-compiler (part 1). 

5. Implementation of the concept in a compiler-compiler 

The examples have demonstrated that attribute grammars are a proper subclass 

of signature morphisms. We have also investigated how compiler definitions can 

modularly be composed out of elementary modules. Here, the modules as well as 

the final compiler is formally given as a signature morphism. Abstraction and 

parameter passing are the basic operations to compose compiler definitions. 



256 H. Ganringer 

TYPEDEN+IDc* 

TYPEDEN.type=get~ype(J%Id(TYPEDEN.enL’, ID)) 

TYPEDEN.lllemOfy~elementary Of Size getSiZe(find(TYPEDEN.eflC. ID)) 

FIELDO+FIELDl;FIELD2* 

FIELDO.enU+FIELDl.eW;FIELD2.eW 

FIELDO.memory+FIELDl.memory coilcatenated wEm2.memory 
FIELD*ID:TYPEDENH 

FIELD.etIV+TYPEDEN.enV; D 
D+ bind ID to WlkvolfnfO(OffSet(FIELD.mfWlOry),TYPEDEN.type) 

m3m.memory = TYpED~N.memory 
STATO+=STATl;STAT2o 

sT~TO.env+ sT~Tl.env ;sT~~2.env 

s~~~O.memory --f s~~~l.memory concatenated s~~~2.memory 

STATO. code-, STATS. code; STATS. code 
STAT + V := EXP H 

sTAT.env + v.enc;exp.env 
STAT. memory + elementary of size 0 

STAT. code + v. code := EXP. code 
V-,ID+' 

v.env --* noBindings 

v.code+mkVar(l,getAddress($nd(v.enu,rD))) 

v.recordNmb = scopeNmb(getType( find(v.enqo))) 
Vo+ Vl.IDH 

vO.env = vl.enc 

vO.code-*vl.code offset gerAddress(,findQual(vO.en~,vl.record.Vmb,~~)) 
vO.recordNmb = scopeNmb(getType(findQual(vO.enti,vl.record*~mb,ID))) 

EXP-+IH 

~x~.enu+noBindings 

ExP.code * const(r) 

EXP-,Ve 

ExP.ent’ = v.env 
ExP.code --f mkExp(v.code) 

EXPO-,EXPl Op EXP2;OP=+,-,*,I+-+ 

ExPO.env+ExPl.env;ExP2.env 
ExpO.code + ~x~l.code op ExP2.code 

BEXP+ Ex~l relop ~xp2, refop = (,), = , . . . - 
BExP.env-,Expl.env;ExP2.enu 
BEXP.code+ ExPl.code relop ExP2.code 

STATO+ if BEXP then STATS else STATIC 
STATo.enL'+BEXP.enL'; E 
E-, STATl.enU;STAT2.enU 

sTAT0.code --, if mxP.code then STATS .code else STAT2.cOde 

Fig. 11. LZ-compiler (continued). 



Increasing modulariry and language-independenq in compilers 257 

To employ these methods in a compiler generating system based on attribute 

grammars, of interest are ways to guarantee that the resulting compiler description 

can in fact be considered as an attribute grammar rather than a more general 

signature morphism. 

The situation would be unproblematic, if attribute grammars constituted a subclass 

of signature morphisms that has ‘nice’ properties. This, however, is not the case as 

demonstrated in the following section. 

5.1. Attribute grammars 

Attribute grammars are signature morphisms u: 2-, 2’ where the (names of the) 

projections to the components of the as(s) are called the attribures of 3,” where 

any relation symbol in 2 is written as X,, + X, . . . X,, and represents a syntactic 

rule, and where the relation expression AR = a(X,,+ XI . . * X,,) is the conjunction 

of attribute evaluation rules associated with X0 + XI * * . X,,. Any atomic formula of 

AR must be of form 

X,,.io=f(Xi,.i,, . . . , xi,&), 

i.e. AR do not make use of the relation symbols of 2’. This asymmetry accounts 

for the fact that the composition of two attribute grammars is uninteresting: it is 

impossible to define a module as an attribute grammar and to call it from another 

attribute grammar. The ‘output’ of the caller is a term in T$ and does therefore 

not connect to the ‘input grammar’ of relation symbols of the module. On the other 

hand, consider the module Identification of Section 3. Suppose, the module is 

composed with a signature morphism of the following kind: 

Xenv + scope with binding constructs Y.env 

X.env’+ Y.env;Z.env 

The composition of the two morphisms results in 

Y. en v. iSt = en terscope (X. en v. iSt ) 

X. env. sSt = lea veScope( Y. en v. sSt) 

Y.env.iSt = X.env’.iSt 

Z. en v. iSt = Y. en v. sSt 

X.env’.sSt = Z.env.sSt 

which is not an attribute grammar since two different rules for the attribute env.iSt 

at Y are now associated with one syntactic rule. This is not allowed for attribute 

grammars. Thus, it is necessary to generalize the notion of an attribute grammar. 

I2 Remember that we have required that us(s) is nonempty so that grammar symbols without attributes 

are not allowed. This requirement could in principle be relaxed. Note, however, that a syntactic constructs 

‘withklut’ semantics makes no sense. 



2.58 H. Gan:inger 

At the same time this will correspond to the introduction of a restricted class of 

signature morphisms where the operators and relation symbols do more closely 

model semantic and syntactic properties, respectively. 

Before introducing the formal notions, we illustrate the ideas. Let us consider 

the rule for declarations in Ll: 

DEcI_ + rr>:integerc, 

DECL.enu + bind ID to address (DEcL.memory) 

DEcL.memofy + elementary of size 1 

The corresponding rules in ldenrificarion and Allot have been 

B+ bind ID to DECLINFOH 

B.SSZ = enter (B.~S~;ID;DECLINFO) 

UNIT+ elementary of size SIZE- 

UNIT.S%p = UNIT.iTOP +SIZE 

UNIT.SiZe = SIZE 

Let us for the moment visualize _ + bind-to- and _+ elementary of size_ as 

uninterpreted functions 

bind( Id, Decllnfo) : Bindings 
elementary (Integer) : Me&hit. 

Then, the rule for Ll-declaration would become an ordinary attribute grammar 

rule. As the functions are uninterpreted, the standard interpretation applies, i.e. 

the values for the env and memory attributes would be terms in the operators bind, 
elementary, etc. These terms can then be considered as parse trees that are subject 

to attribute evaluation according to the attribute rules given in Identification and 

Allot, respectively. The following figure illustrates the situation: 

concrete program bindings tree memory tree 

I 
DECL 

I 
DECL . em 

ID : integer bind ID to elementary of size 1 

So the basic idea is to view relations in the semantic rules as tree templates that 

are themselves subject to attribute evaluation. Applying an operator. e.g. address, 
to a node in such a tree template corresponds to referring to an attribute at that 

node. In other words, the composition a’a of two attribute grammars can be seen 

as consisting of two steps: 

(1) Given a source program tree, attribute evaluation according to a relational 

rule means constructing a graph template and associating an output node of the 

graph as value with the attribute. It has to be guaranteed that this graph is a tree 

rather than a general acyclic graph. 



Increasing modu1arit.v and language-independency in compilers 2.59 

(2) Perform attribute evaluation for the output trees of step (1) according to u’. 

Thus, the problem is to guarantee that the graph of dependencies between 

attributes that are evaluated according to relational rules can in fact be viewed as 

a derivation graph according to some formal grammar. 

5.2. Language morphisms 

The basic idea will be as follows. Relation symbols denote facts about the syntactic 

environment of a construct in a program, whereas operators yield semantic informa- 

tion about a syntactic construct. Therefore, we require signatures 2 = (S, 0, R) to 

additionally provide a partition of the sorts S = SY + SM into synfacric sorts SY 

and semantic sorts SM. For any operator f:si . * * S,,S~E f2 it is required that its 

result sort s, is a semantic sort in SM. Additionally, to any relation symbol 

r:s, - * * s, E R there shall exist a classification 6,(i) E {in, out} of any argument 

position 1 c is n of r such that any in-position i is of a syntactic sort, i.e. S,(i) = in 
implies s, E SY. If 

is a relation symbol with S,(i) = in, for 1 sisrn and &(i)=our,for m+lsisn, 
the directions in and out refer to input nodes and output nodes resp., in a graph 

scheme of the following kind: 

I . . . Xl x\/ 
A 

X IN+1 . . . -Xl 

This situation is intuitively captured by our linear notation of relation symbols as 

grammar rules 

r$x;. . .-xm-_+-xm+,-. . .-x - 
n 

where _ stands for the ‘terminal’ symbols in r. 

From now on we will consider only signatures of this restricted kind. S,(i) is 

called the direction of argument i in r. 
The conjunction of relations is now reflected by composing graph templates by 

identifying the input nodes of one template with the output nodes of the second 

template. E.g. the relation expression 

E E (XY-*rlZAZ+r2UVAU+r3ABA V+r4CD) 



260 H. Garcinger 

can graphically be written as 

fA 
*\ 

U- 
f 

13 -B 

rl -2 - r2 

Y’ \” - r4 -C 

Here, X and Y are the iii-nodes and A. * * D the our-nodes of the graph. This 
once more illustrates our view of relation expressions as graph constructors. The 
graph in the above example has the property that any node which is not an in-node 
has exactly one incoming edge and that any node which is not an out-node possesses 
exactly one outcoming edge. We call a graph of this kind complete, if it, additionally, 
does not have any in-node and if any out-node is of a semantic sort. E.g., the graph 
for 

E’ = (Eh +ilX,t +i2YhA+olhB+o2) 

is given as 

-il-_,X 
fA-o1- 

\ MU - 
r3wB-024 

rl -_,Z-r2- 

is complete, if C and D are of a semantic sort. Complete graphs can be viewed as 
graphs that represent the derivation of some terminal symbol from the empty string 
E according to a Chomsky-0 type grammar. The remaining out-nodes have to be 
of semantic sort. They represent semantic parameters of the syntactic construct 
associated with a ‘terminal’ symbol in the syntactic rule. We will now characterize 
a subclass of signature morphisms that send relation expressions that are complete 
graphs in this sense again to complete graphs. 

As indicated above, for sorts s the (names of the) projections to the components 
of U(S) are called attributes. Attributes in the classical sense are classified into 
inherited and synthesized attributes. The following definition provides for such a 
classification: We call a signature morphism cr : 2 + 2’ sorr-classified, if for any s E S 
there exists a classification &(s, i) E {in, out} of any position 1 s id n in a(s) = 
s, * - - s,. Here, in stands for inherited and out for synthesized, respectively. 

For sort-classified morphisms, we introduce the following notions: 
- A syntactic rulep is a relation expression r(xI:sI, . . . , x,x,) where r:sl . . . s, E R 

and where the Xi:Si are pairwise distinct variables. 
- Given a syntactic rule p as above, an attribute position in p is a variable Xi.j, where 
1 < is n and 1 “is ((T( Si)l is a position in a(Si). xi.j is called a defining posirion, if 



Increasing modu1arit.v and language-independency in compilers 261 

6,(i) f 6,(s,, il." x+j is called an applied posifion, otherwise. Semantic rules will be 

allowed to refer to auxlfiary attributes, too. These will be denoted as Xi.j, with 

Ir(si)l < j. For auxiliary attributes no distinction is made with respect to in and out. 
Thus, positions of auxiliary attributes are both defining and applied.“’ 
- An attribure rule is a formula of one of the following two kinds: 

- Xq,.jo=f(Xi,.jl,. . . , Xi,.jk),15 

where f E R’, xk,.j,, is a defining and the Xi,.jl, 1 2 1, are applied occurrences of 
attributes, 

- r(Xi,.jr.. . . , Xr,.in),‘e 

where TE R’, and where any of the xi,.j, is a defining position of an attribute, if 

and only if S,(I) = in. 

The rule is said to define x0. jO and the xi,. j, for which S,(I) = in, respectively. A 

rule of the first kind is called a functional rule as opposed to the relational rules 
of the second kind. 

Definition 5.1. u is called a language morphism, if 
- s E SM implies a(s) E SM’ and S,(s, 1) = out, 
and if for any syntactic rule p, a(p) is a conjunction of attribute rules for p such that 

- for any defining position of an attribute there exists exactly one attribute rule of 

p that defines this position; 

- any applied position of an attribute of a syntactic sort s’ E S’ occurs in exactly 

one relational rule of p that applies (i.e. does not define) the position. 

The first condition says that semantic sorts are translated into semantic sorts. The 
second condition guarantees that the system of attribute rules for a syntactic relation 

symbol is consistent and complete. The last condition assures that the dependencies 

between attributes of syntactic sorts are complete graphs in the above sense. 

This restricted class of signature morphisms is still somewhat wider than the class 

of attribute grammars. 

Observation 5.1. A language morphism is an attribute grammar in the classical 

sense, iff 

- each attribute rule is a functional rule, 

- each attribute is of a semantic sort, 

- each relation symbol does have only syntactic parameters. 

Defining occurrences are the inherited attributes of right-side positions and the synthesized attributes 
of (the) left-side position(s). 

” In the examples we have written simply x, for x,.1, if Io(s,)l = 1. Also, auxiliary variables have just 
been denoted by new identifiers. 

I5 This is supposed to also include equations of form x,.j= x,.1 for attributes of a semanric sort. 

” This is supposed to also include equations of form x,.j = x,.1 for attributes of a syntactic sort. Here, 

the left side is assumed to be an in-position and the right side an o&position of the ‘identity relation’ 
rG = - _. 



262 H. Gawinger 

In the next section we will indicate that the concept of attribute evaluation can 

be generalized to language morphisms: 

- attribute evaluation according to relational rules will amount to output a graph 

that represents the relational dependencies between the involved syntactic attributes; 

- semantic parameters of relation symbols are considered as to represent lexical 

information about terminals. 

For now we give some illustration using our examples of Sections 3 and 4. All 

signature morphisms defined there are language morphisms in the above sense. The 

following example is taken from the definition of pLI. 

Example 5.1 

Block, Stat c* (env : Bindings, memory : MemUnit, code : &rat) 
Decl I+ (env : Bindings, memory : Mem Unit) 
. . . 

BLOCK+ begin DECL;STAT end- 

BLOCK.C~V + scope with binding constructs C 

C + DECL.etlV ;STAT.tWV 

BLocK.memory + segment consisting of U 

U + DEcL.memory concatenated sTAT.memory 
BLOCK.~~~~ = STAT.~O~~ 

. . . 

In the examples, the argument positions left of “ + ” are the in-positions of a 

relation symbol. Conversely, the out-positions are the argument positions right of 

“ + “. In the above example, only synthesized attributes occur, i.e. any of the 

positions env, memory, and code is an our-position of the representation of Block, 
Stat, and Decl. Also, each sort is a syntactic sort. So, the language morphism 

properties require the existence of exactly one attribute rule for each defining 

occurrence (i.e. for BLocK.env C, Br_ocK.memory, U, and BLOCK.COde) and the 

occurrence of any (syntactic) applied attribute position (i.e. C, DECL.enV, STAT.enc, 

U, DEcL.memory, sTAT.memory, and STAT.code) in exactly one relational rule. 

Now, all attribute rules associated with the block rule are relational rules. E.g. 

C+ DECL.env;sTAT.env defines C and applies DECL.env and STAT.env. Here, C iS 
an auxiliary attribute of a syntactic sort that, as required, is applied exactly once 

namely in the first attribute rule. 

Let us consider a second example taken from the definition of PC. 

Example 5.2 

Ssrar- (iLabCtr, sLabCtr : Integer, c : Tsrat) 
. . . 

s0-+s1;s2w 
sl.iLabCtr = sO.iLabCtr 
s2.sLabCtr = sl.sLabCtr 
sO.sLabCtr = s2.sLabCtr 
so.c+ sl.qs2.c 



Increasing modularity and language-independency in compilers 263 

Here, Tsfur and Ssrut are the syntactic sorts, Integer is a semantic sort. iLabCrr 

is an inherited attribute, i.e. an in-position in pc( Ssrat), whereas sLubCtr and c are 
synthesized, i.e. out-positions. Then the attribute rules for SO + sl;s2 have to contain 
exactly one rule to define sO.c, sO.sLubCtr, sl.iLubCtr, and s2.iLubCtr. Obviously, 
this is the case. Moreover, s1.c and s2.c have to occur applied in exactly one 
relational rule. The rule sO.c+ sl.c;s2.c achieves this. 

Theorem 5.1. (1) The identity is a language morphism. 
(2) u’u is a language morphism, provided u and u’ are. 

Proof. (1). Set S,( s, 1) = our, for any s E S. Then, the assertion follows immediately. 
(2) Let an = u’u. Set, for s E S, 

&( s, i.j) = if S,( s, i) = S,,( si, j) then out else in. 

(Here and in the following, i.j denotes the index C:I: Ia’(s j in u”(s), if a(s) = 
s, - * - s,, lsi~n, lSj~~u’(si)~.) If SESM, then u”(~)=u’(u(~))~.94” and 

S,s,( s, 1) = S,,.( s, 1.1) = out. 
We show now that any definining attribute position has exactly one attribute rule. 

Let q = r(x,:s,. . . . , X,:S,) be a syntactic rule, let a(&) = Sil . . . Sik,r U'( Sjj) = 

Sijl . . . Sjj,,. Then, x,.j.p is a defining position in q according to a”, if 6,(i) Z a,*( Si, j.p). 

Case 1: 6,(i) = OUL Then, S,o,( Si, j.p) = in, thus S,( si, j) # Sc,( Sij, p). 

Case 1.1: 6,( si, j) = out and S,‘( Sip p) = in. Then, xi. j is an applied position in q 
and is of a syntactic sort Sij E SY’. Thus, there exists exactly one relational attribute 
rule q’ = r’(yl,. . . , y,,,) in u(q) in which Xi.j occurs exactly once, say at iO. Therefore, 
S,.( iO) = out. As S,v(SijT p) = in, u’(q’) defines exactly one attribute rule, q” for yb 
(= x,.jp). Thus, u”(q) defines the rule q” for xi.j.p. The uniqueness of this rule 
follows from the uniqueness of q’ and the uniqueness of q” in u’(q’). 

Case 1.2: 6,(si, j) = in and 6,+(sii, p) = out. Then, Xi-j is a defining position in q. 
There exists exactly one corresponding rule q’ in u(q). If SijE SM’, then u’(q’) is 
the rule for x,.j.p. Otherwise, q’ must be a relational rule (the result sorts of operators 
are semantic). If q’ = r’(y,, . . . , yk), then &.j = yh, for some iO. It holds 6,( iO) = in f 
a,,( sij, p), hence Xi.j.p is a defining position in q’ according to u’. Then, u’(q’) (which 
is contained in u”(q)) contains a rule for xi.j.p. 

Case 2: S,(i) = in. By symmetry. 
It remains to be shown that for any applied position xi.j.p in q (q as above) of a 

syntactic sort occurs in exactly one relational rule of a”. 
First we note that 6,(i) = 6,.( si, j.p) in this case. 
Case 1: 6,(i) = out. Then, 6,“( Si, j.p) = OUT, thus 6c(Si, j) = S,p( Sij, p). 
Case 1.1: S,(si, j) = out. Then, xi.j is an applied position in q of a syntactic sort. 

There exists, therefore, a unique relational rule q’ in u(q) in which Xi-j occurs. This 
occurrence is at an out-position implying that xFj.p is an applied position in q’. 
Again, there exists, then, a unique relational rule q" for q’ that applies xi.j.p. Together, 
q” is the unique relational rule for q according to a” that applies Xi.j.p. 



264 H. Ganzinger 

Case 1.2: S,(s,,j) = in. Here, xkj is a defining position in 4. Thus, there exists 
exactly one rule 4’ for 4 defining Xi*j according to 0: As Xi-j is of a syntactic sort, 
4’ has to be a relational rule. Moreover, as 4’ is defining for Xi.i, i.e. occurs at an 
in-position in q’, a,,( sij, p) = in, too. Hence, there exists exactly one occurrence of 
x,.j.p as an applied position in some relational cr’-rule q” in o(q’). The latter is, 
then, the unique applied occurrence in a a”-rule of q. 

Case 2: By symmetry. Cl 

The next theorem asserts that language morphisms are closed under parameter 
passing, i.e. the existence of certain pushout diagrams. 

Theorem 5.2. Given ui: I--* El, i = 1,2, two signature morphisms such that 2 E El 
and al is the inclusion morphism. Consider the pushout diagram 

Zf a2 is a language morphism, then u’l and 0’2 are language morphisms, too. 

Proof. We repeat the definition of E’, and of the u’i from the proof of Theorem 
4.3 about pushouts; 

S, =(Sl-S)+S2 
a’2( s) = if s E S then u2(s) else s 
R,,=R2+R3, 

where n3=Cf.i:a’2(u)si(f:us~R1-R,a’2(s)=s,...s,, l<iSn} 

u’2(f)=if f:usEL!l-O,a’2(s)=s,~:~*s, then(f.l,...,f.n) else a2(f) 

RW =R2+R3 whereR3={r:u’2(u)(r:uERl-R} 
u’2( r) = if r E R then (+2(r) else r 
a’1 the inclusion 22 C_ Z:,. 

It remains to specify the sort classification of the o’i and the classification of the 
parameter positions of the relation symbols in R,. We define, for ~‘1, 

S,.,( s, 1) = out for s E S2. 

(Note that a’2 is an inclusion, i.e. u’2(s) E S,.) For (~‘2, we define 

&,(s, 1) = out for s E Sl -S, 
&+,( s, i) = 6,,( s, i) for s E S and all i. 

Finally, for S, we set 

sYP,=sY2-t(sY1-sY), SM,=SM2+(SMl-SM). 



Increasing moduhit_v and language-independency in compilers 265 

The directions of the arguments of R,-relation are as follows: 

s ,V,C,,(i)=S,(i) forrER2, 

s gfZ(,j( i.j) = if S,(i) = in then 6uZ(Sir j) else l&2( s;, j), 

if r:sr - * *s,,~(Rl-R), lsisn, l=~j~lla’2(s~)j. 

Here, the index i.j is given as in the proof of the last theorem. The assertion of the 

theorem is an immediate consequence of these definitions and the definition of a 

language morphism. 0 

5.3. Generation of attribute evaluators for language morphisms 

The theorems of the last section have stated that language morphisms are closed 

under applying the combinators apply and abstract in the following sense: 

Corollary 5.1. Let 

TV,, . . . , Pm ~1,. . . , a,,,) 

be a term in parameterited data types Pi, in language morphisms OiT and in the 
combinators apply and abstract. If, after applying Theorem 4.5, this term can be 
transformed into an equivalent term 

abstract( T’(PI, . . . , P,, a’,, . . . , ai 1, a>, 

then any of the 01 as well as u are again language morphisms. 

This result suggests the following treatment of modular compiler descriptions in 

a compiler generating system: 

The compiler generating system accepts as parameters in apply and abstract terms 

language morphisms only. The language morphism property can be checked 

automatically. 

The corollary guarantees that any combination of the so described compiler 

modules is of form 

where _E’r 21 is the parameterized data type that results from combining all 

predefined data types by an apply-term, and where u is a language morphism. 

For language morphisms, attribute evaluators can be generated under the follow- 

ing additional assumptions: 

- Any operator of the predefined data types has only parameters of semantic sorts 

and can, thus, be called like a function of a, say, PASCAL-package of procedure and 

type definitions. 

- Relational attribute rules are handled as if the relation symbol was a function 

constructing the graph of relational dependencies between attributes of a syntactic 

type. This graph can be viewed as the target program that is the final output of the 



266 H. Gotcinger 

attribute evaluation process. This target program will usually represent an intermedi- 
ate code, subject to later machine code generation, cf. Section 6. 
- Any semantic parameter of a relation symbol in 21 is considered as lexical 
information about a terminal symbol. The latter is assumed to be provided by the 
lexical analyser. 

6. Other applications 

The principal idea behind the modularization concept was to base the description 
of compiler modules on specifically tailored abstractions of the concrete syntax of 
the language. As a consequence, there exist different syntactic representations of 
the source programs on the level of compiler descriptions. The combinators apply 

and abstract allow to adapt modules to new syntactic environments. In this section 
we demonstrate how this can be utilized to describe transformations of source 
program representations at compile time. 

6.1. Relating concrete and abstract syntax 

The concrete parse tree of a source program is its most detailed syntactic rep- 
resentation. It is usually too big and contains too much irrelevant structure to be 
actually built up during compilation. Most systems that can generate multi-pass 
compilers, therefore, provide for constructing an abstract tree instead. Some com- 
piler generating systems automatically cut the tree where only trivial semantic rules 
are associated [27]. The compiler describer has to associate the semantic rules with 
the concrete syntax. Others [15] allow the user to explicitly specify the abstract 
syntax using special description tools such as string-to-tree grammars. This has the 
advantage that semantic parts of the compiler description can be based on the 
abstract syntax, achieving some independence from the parsing technique and 
reducing the amount of trivial semantic rules. 

In our approach, the transformation of the concrete into the abstract parse tree 
can easily be described as a signature morphism. Figure 12 shows part of a signature 
morphism pCA that sends the concrete syntax Ll C of Ll into the abstract syntax 
that is the basis for LlComp. The abstract syntax is ambiguous, e.g. EXP+ 

EXP op EXP, the concrete is not. It contains less (chain) productions, nonterminals, 
delimiters, and keywords. This results in 

L 1 c-Camp = ahstract( F’redejined, to,-&, ) 
= abstract(abstract(Predefined, piI ), pCA). 

The first variant would correspond to an adaptation of the compiler description to 
the concrete syntax. This process takes place at description time. The second variant 
views the compiler as a sequence of two translation steps. The first is syntactic 
analysis and the construction of the abstract parse tree. The second step is the rest 
of the compilation process. The first variant would be chosen for a one-pass compiler. 



Increasing modularity and language-independency in compilers 267 

. . . 
StatList I+ Statement A STATS, STATSO, STATS 1 
WhileStat -Statement A WHILE 
Stat H Statement A STAT 

Exp - Exp A E, EO, El 

Term - Exp A T, TO, Tl 

Factor H Exp AF 

$Id -Id A ID 

. . . 
STATS0 + STATS 1; STAT - STATS0 + STATS 1; STAT 

STATS + STAT - STATS = STAT 

STAT+‘WHlLE ++ STAT = WHILE 

*%‘E1+T++EO+E1+T 

E+T -E=T 

TO+Tl*F +‘TO+Tl*F 

T+F -T=F 

F-,(E) -F=E 

F+ID ‘-+F+ID 

Fig. 12. Compiler for concrete LI. 

Here the distinction between different syntactic environments is merely conceptual. 

The second variant would increase efficiency in a multi-pass compiler as the abstract 

parse tree would be the intermediate form that is to be explored. 

6.2. Interface to machine code generation 

Following [28], code selection is viewed as the searching of the intermediate 

program representation for patterns that can be coded into corresponding target 

machine instructions. Subsequent approaches [ 13,181, have utilized LR-parser 

generators to generate code generators from machine descriptions that relate pieces 

of machine code to patterns of intermediate language constructs. It is obvious that 

this purely syntactic treatment requires as much semantic information to be encoded 

syntactically as possible. 

Example 6.1. Consider the Ll-expression a[i]+x. The left tree below is its abstract 

parse tree. However, a tree that is suitable for code generation would have to have 

a shape like the right tree. (It is assumed that for the array variable a a dope vector 

allocation scheme is to be used and that variables are addressed via offsets to an 

address kept in register Rl.) 



268 H: Ganringer 

EXP 

/I\ /+\ 
EXP EXP 

/I\\ + I 

cant cant 

I I 

7’ [ Exp I 

Var 

I I /+\ /+\ 
a Var X cant cant leg const 

I I I I I 
i 

/ +\ /+\ 

1 X 

reg const reg const 

I I I I 
1 a 1 i 

The example demonstrates that the trees from which code is to be generated are 

different from abstract parse trees. 

[ 141 and [ 181 apply this code generation concept to a fixed source language such 

that the generation of the intermediate program is performed by a hand-written 

compiler frontend. MUGS [15] is the only compiler generating system that provides 

a tool for describing syntactic transformations of the intermediate program rep- 

resentation. This allows, among others, for specifying the transformation of the 

abstract parse tree into an intermediate form suitable for machine code generation. 

However, this part of a1uc2 has not been implemented yet so that no practical 

results have been obtained so far. 

In the context of viewing a compiler as a language morphism, a different idea is 

quite obvious: The constructs of the target language can be represented as relation 

symbols. This corresponds to our definition of TargetLang. Then, the handling of 

syntactic attributes during attribute evaluation, cf. Section 5.3 amounts to building 

up the graphs which the values of the syntactic attributes denote. 

Example 6.2. For the above expression e, attribute evaluation in the Ll-compiler 

yields a relation expression of form 

EO+El+E2h 

El + cont(E3) A 

E3+E4+E5h 

E4+E6+E7h 

E6+ register( 1) A 

E7* const(a) A 

E5+E8+E9h 

E 8 + register( 1) A 

E9+ COnSt(i) A 

E2-,cont(ElO)~ 

ElO+Ell+E12~ 

E 11 --, register( 1) A 

E12+ consr(x) 



Increasing modularity and language-independency in compilers 269 

which, if written as a tree (the logical variables Ei representing its nodes), has 

exactly the form as required in the last example. 

7. Conclusions 

The main contribution of this paper is the introduction of a concept for modular 

definition of software for language implementation. The basic idea was to employ 

relations to characterize syntactic contexts of constructs in a program. The relation 

symbols can be viewed as defining an abstract syntax that is specifically tailored to 

the module being defined. Thereby, modules become independent of the concrete 

(syntax of the) language. Modules in our sense encapsulate implementation decisions 

that correspond to fundamental semantic concepts and compiling techniques, such 

as binding concept, control constructs, type concept. This increases flexibility of 

language implementation considerably. 

The main technical achievements are due to the formal system which we employ 

for specifying the implementation of relations. Rather than adopting a general 

logical framework such as the one provided by PROLOG, we introduced an extended 

version of the concept of a signature morphism which is the basic formal tool of 

known approaches to structuring specifications of abstract data types. As we have 

demonstrated, this allows to apply basic results of abstract data type theory about 

the structuring and parameterizing data types: Basic compiler modules can be 

defined according to the specific language concepts a compiler has to deal with. 

Then, the modules can be combined (using apply and abstract) such that they, 

finally, make the complete compiler for the concrete language. Secondly, and this 

is important from a practical point of view, we have indicated that attribute grammars 

are a particular subclass of such signature morphisms. This way we are able to apply 

the structuring techniques to compiler descriptions as they are input to today’s 

compiler generating systems. In such applications one has to find ways to guarantee 

that a compiler description which has been combined out of library modules can in 

fact be viewed as an attribute grammar, as it has been the case for our sample 

compilers. A solution to this problem has been provided’by the notion of a language 

morphism. Language morphisms form a subclass of signature morphisms that is 

closed under the combinators we use and is at the same time an ‘algebraic variant’ 

of attribute grammars. 
We have, thus, also given a new algebraic view of attribute grammars. different 

from that of [9]. Whereas in the latter paper attributes are functionalized into 

attribute dependencies to obtain denotational semantics definitions in the sense of 

[4], we have modelled the process of attribute erxduation algebraically. This corres- 

ponds to what a compiler module does, namely decorate intermediate forms with 

semantic information. 

This paper has only dealt with aspects of modular implementation of compiler 

modules. An open problem is how to specify the abstract properties that a module 



270 H. Gonzinger 

is required to have. ‘How’ means that the specification language should have ‘nice’ 
properties. (At the end of Section 2 we have specified a property of identification 

as a first order formula.) The properties should allow to obtain results about the 
existence of (persistent) type constructors for parameterized specifications of rela- 
tions and to investigate their correspondence to forma1 implementations of the kind 
introduced above. 

Another aspect that has not investigated in full detail yet concerns the problem 
of compiler correctness. One of the important goals that modularization is supposed 
to achieve is that the structure of program correctness proofs can be chosen according 
to the module structure of the program: first the modules are proven correct 
separately and, then, the correctness proof of the program is obtained by combining 
the proofs. In fact, formal investigations of this problem have substantiated this 
claim, cf. [ll, 12,14,23-J, among others. We believe that the specification of the 
semantics of programming languages can be derived in exactly the same way as 
shown in this paper for compilers. Data types that specify the semantics of the 
language facets involved are combined into the definition of the semantics for the 
particular language. Then, the correctness of its compiler follows from the correct- 
ness of its modules. 

Appendix A. Expanded version of the Ll-compiler 

Block, Statement - 

( env. iSt : StSta tes, en v. sSt : StSta tes) , 

(memory. iTop, memory. STOP, memory. offset, memory.size : Integer), 

( code. iLa bCtr, code. sLa bCtr : Integer, code. c : Tsta t)) 

Decl w 
(( env. iSt : StStutes, env. sSt : StStates), 

(memory.iTop, memory.sTop, memory.offset, memory.size : Integer)) 

$Zd- Id 
Varw 

(( env. iSt : StStutes, env.sSt : SfStutes), 

code:Texp) 
Exp, Bexp- 

(( env.iSt : StStates, env.sSt : StStates), 
code : Texp) 

__- 

$eq(Id, Id) : Boof - eq( id, id) : Boo1 
___ 

PI-Og-, BLOCK- 

BLOCK. env. iSt = init 
BLOCK. memory. iTop = 0 
BLOCK. memory.offset = 0 
BLOCK. code. iLabCtr = 0 



Increasing modularity and language-independency in compilers 271 

BLOCK+ begin DECL;STAT end- 
c.iSt = enrerscope (BLocK.enu.iSt) 

~~oc~.enu.~St= leaueScope( C.&t) 

DEcL.env.iSI = C.i.9 

STAT. env.iSt= D~c~.env. s.St 

c. SSt = STAT. en t'. SSt 

U. iTop = BLOCK. memory. iTop 

BLOCK. memory. size = U. size 

U. offset = 0 

BLocK.memory.sTop = UsTop 

DECL. memory. offset = CJ. offset 

STAT. memory. offset = U. offset + DECL. memory.size 

DECL. memory. iTop = U. iTop 

STAT. memory. iTop = DECL. memory.sTop 

U.sTop = STAT.memory.sTop 

U. size = DEcL. memory.size + STAT. memory. size 

STAT.code. iLabCtr = BLOCK. code. iLab& 

~~oc~.code.sLabCP = STAT.code.sLabCtr 

BLOCK.~~~~.C=STAT.~~~~.C 

DECLO+DECLl;DECL2- 

~Ec~l.enu.iSt= DEcLO.enu.iSt 

DEcL2.enu.iSt = DEcLl.enasSt 

DEcLO.enu.s.9 = DEcL2.env.sSt 

DECL 1. memory. offset = DECLO. memory.ofset 

DECL~. memory. offset = DECLO. memory. offset + DECL 1. memory. size 

DECL~. memory. iTop = DECLO. memory. iTop 

~~~~2.memory.iTop = ~~c~l.memory.sTop 

DECLO. memory. STOP = DECL~. memory.sTop

DECLO. memory.size = DECL~. memory. size + DECL~. memory.size

DECL + minteger ++
DEcL.env.sSr = enrer(DEcL.env.iSt,rqDEct.memory.iTop)

DECL. memory.sTop = DECL. memory. iTop + 1

DECL. memory. size = 1

STAT+BLOCK'-+

BLOCK. env. i.9 = STAT. env. iSt

STAT. env.sSt= BLOCK.CIIU. sSt

BLOCK. memory. offset = STAT. memory. offset

~~~~~.memory.iTop = ~~~~.memory.iTop 

~~~~.memory.sTop = ~~~~~.memory.sTop 

STAT. memory. size = BLOCK. memory. size

~~~~~.code.iLabCIr = ~~~~.code.iLabCtr 

STAT. code. sLabCtr = BLOCK. code. sLabCtr 

STAT. code. c = BLOCK. code. c 



272 H. Gatcinger 

STATO+STATl;STAT2++ 

s~~~l.eno. iSt = STATO. env.iSt 
STAT2.enU. iSt= STATl. enU.sSt 
STATO.~~%SS~=STAT~.~~V.SS~ 

~~~~l.memory.offset=~~~~O.memory. offset 
STAT2.memory.offset=~~~~O.memory.o)@et

~~~~l.memory.iTop=~~~~O.memory.iTop 

S~~~2.memory.i~op=~~~~O.memory.iTop 

~~~~O.memory.sTop = max(sTAT1 .memory.sTop, sTAT2.memory.sTop) 
sT~~O.memory.size = max(sTAT1 .memory.size,sr~T2.memory.size)
STATE . code. iLabCtr = STATO. code. iLa bCtr
STATS. code. iLa bCtr = STATS. code. sLa bCtr
s~~~O.code.sLabCrr = s~~~2.code.sLabCtr
STATO. code.c+ STATS. code.c; STATS. code.c

sTAT+V:=EXPw

STAT. memory. STOP = STAT. memory. iTop + 0
STAT. memory. size = 0
v. env. iSt = STAT. env. iSt
ExP.env.iSt = v.env.sSt
STAT. enV. SSt = EXP. en V. sSt
STAT. code. sLabCtr = STAT. code. iLa bCtr
STAT. code. c + assign(v. code, ExP. code)

V+IDH

v.env.sSr = v.env.iSr

v.code + register(1) +const(fookup(v.env.iSt, ID))

EXP+IH

~xp.env.sSt= ~X~.env.iSt
ExP.code += const(I)

EXP+Vw

v. env. iSt = EXP. env. iSt
ExP.env.sSt = v.env.sSt
EXP.code + cont(v.code)

EXPO+EXPl Op EXP2 (op= +,-,*,/)H

ExPl.env.iSr = Ex~O.eno.iSt
ExP2.env.iSt = Expl.env.s.9
ExPO.env.sSr = Exp2.env.sSt
ExPO.code + ExPl.code op ExP2.code

STATO-, while BEXP do STAT~H
BEXP.env.iSt=STATO.env.iSt

sT~-rl.env.iSt = ~~xp.env.sSt
~T~~O.env.sSt=s~~~1.env.sSt

STATS. memory. offset = STATO. memory. offset
STATI. memory. iTop = STATO. memory. iTop

Increasing modularity and language-independency in compilers 273

ST~TO.memory.sTop= ~~~~‘l.memory.sTop
STATO. memory. size = STATS. memory. size
STATO. code. c + labei(STAT@ code. iLab&) ;

JifF(BExP.code. const(srATO.code.iLabC’lr+ 1));

S~~~1.code.c;

Jmp(const(sTATO.code.iLabCtr));
label(sri\rO.code.iLabCtr + 1)

STATS .code.iLubCtr = STATO.COde. iLubCrr + 2
STATO. code. sLu bCtr = STATS . code. sLu bCtr

BEXP+EXPI relop ~xp2 (relop=(,),=,...)-
ExPl.enu.iSt = BExP.enu.i.9

ExP2.env.iSt = Expl.env.sSt
BExP.env.sSr = ExP2.env.sSr
~~~~.code+~x~l.code relop ~xp2.code 

STATO- if BEXP then STATS- 

BExp. enu.iSt = STATO.~W.~S~ 
sTATl.env.iSt=BEXP.en~.sSt 

STATO. env.sSt = STATS. enas 
STATS. memory. offset = STATO. memory. offset 
~~~~l.memory.iTOp=S~~~O.memory.iTOp 

sTAT0. memory. sTop = STATS . memory. sTop
STATO. memory. size = STATS . memory. he

STATO.COde.c-*~iff(BEXP.COde,COBSt(STATO.COde.iLubC~r));

STATS . code. c;
Jmp(const(s-rA-rO.code.iLubCtr+ 1));

label(s’rATO.code.iLubCtr);
s.c;
label(srATO.code. iLubCtr+ 1)

STAT 1. code. iLubCtr = STATO. code. iLu bCtr + 2
S.iLubCtr = s~~~l.code.sLubCtr
STATO. code. sLu bCtr = S. SLU bCtr
S. sLu bCtr = S. iLu bCtr
Sc-,skip

Appendix B. Expanded version of the LZ-compiler

stat-

(env. iSt : StStu tes, en R sSt : S&u res) ,

(code.iLubCtr, code.sLubCtr : Integer, code. c : Tstut))
Decl, Field w

((en u. iSt : S&u tes, en u. sSt : StStutes) ,
(memory.iTop, memory.sTop, memory.oflset, memory.size : Integer))

274 H. Ganzinger

TypeDen -

((en L’. iSt : StStates, en t’. sSt : StSrates) ,

(memory.iTop, memory.sTop, memory.oj,%er, memory.size: Integer),
rype : TypeDenotation)

Sld-Id
Var-

((enc.iSt : SrStates, eno.sSr : StSrates),
code : Texp,
recordNmb : Integer)

Exp -
((enc.iSt : StStates, env.sSt : StStates),
code : Texp)

Seq(Za’,Id):Bool-eq(ld,Id):Bool

program- begin DECL;STAT end -
C.iSt = init

C’. iSf = enterScope(C. iSt)
C. sSr = lea ueScope(C’. sSr)
DEcL.enu.iSt = C’.iSt
sT~T.env.iSt = ~~c~.enV.sSt
C'.sSt = s~~T.env.sSt
DECL. memory.iTop = 0
DECL. memory.offset = 0
STAT. code. iLab& = 0

DECLO+DECLl;DECL2+'

DECL~ .enu.iSt= DECLO.~~W.~S~

D~c~?.enu.iSt=~~~~l.enu.sSt

DECLO.enV.SSt=DECL2.enV.sSt

DECL 1. memory. offset = DECLO. memory.offset
DEcL2.memory.offset = DEcLO.memory.offset + DecLl.memory.size
~~~~l.memory.iTop = ~~c~O.memory.iTop 
DEcI_?.memory.iTop = ~~~~l.memory.sTop 
D~~~O.memory.sTop = ~~~~2.memory.sTop 
D~c~O.memory.size = ~E~~f.memory.size + D133_2.memory.size 

~~c~+type ID=TYPEDEN- 

TYPEDEN.enV.iSt= DECL.t?nV.iSt 

D.iSt=TYPEDEN.enV.sSt 

~~c~.enV.sSt= D&t 
D.sSt=enter(D.iSt, ID, mkType~dlnfO(TYPEDEN.memory.size, 

TYPEDEN.tyPt?)) 

~~~~.memory.sTop = ~~~~.memory.iTop+ 0 
~~c~.mernory.size = 0

Increasing modulariry and language-independency in compilers 27.5

TYPEDEN.memory.iTop=O

-rwEDEN.memory.oflset = 0

DECL-, Var ID:TYPEDEN-

TYPEDEN.env.iSt = DEcL.enc.iSt

D.iSt =TYPEDEN.enV.SSt
DEcL.env.sSt = D.sSt

D.sSt = enter(D.iSt, ID, mkVurlnfo(decl.memory.iTop, TYPEDEN.~~~~))

rvpEDEN.memory.offset = DEcL.memory.offset

~~~~~~~.memory.iTop = ~~c~.memory.iTop 

DECL. memory.sTop = TY PEDEN. memory. STOP 

DECL.memory.si.Ze= ~Y~~~~~.memory.size 

TYPEDEN+ integer- 
TYPEDEN. type = intType 

TYPEDEN.memory.sTop=TYPEDEN.memOry.iTop-t~ 

TYPEDEN.memOry.Size=l 

TYPEDEN-, record FIELD end- 

FIELD.enV.iSt = enterScope(rwEDEN.env.iSt) 
TYPEDEN.eIIV.SSt = feaveScope(FrELD.env.sSt) 
FIELD.memory.iTop =~~~~~~~.memory.iTop 

TYPEDEN.memory.size= FIELD.memory.size 
FIEI_D.memory.oj$et = 0 
TYPEDEN.memOry.STOp= FlELD.memory.sTop 

TYPEDEN.~~~~ = recordType(currentScope(ruPEDEN.env.iSt)) 
TYPEDEN+ID- 

TYPEDEN.~~~~ = getType(lookup(rvPEDEN.enc.iSt.I~) 
~Y~~~~~.memory.sTop = rwEDEN.memory.iTop + SIZE 

TYPEDEN.memory.size=SIZE 

SIZE= getSiZe( ~OOkup(TYPEDEN.enV.iSt, ID)) 

FlELDO-+FIELD1;FIELD2- 

FIELDl.et1V.iSt=FIELDO.enV.iSt 

FIELD2.etlV.ist=~I~~~l.enV.sst 

FIELDO.etIV.SSt=FIELD2.eilV.SSt 

FIELDl.memory.offset = FIELDO.memory.offset 
FIELD2.memory.offset = FIELDO.memory.offset + FtELDl.memory.size 
~~~~~I.memory.iTop = ~~~~~O.memory.iTop 
FIELD2.memory.iTop = FIELD~.memory.sTop

~~~~~O.memory.sTop = FIELD2.memory.sTop 

FIELDO.memory.size = FIELDl.memory.si.Ze+FIELD2.memory.size 
FIELD+ ID:TYPEDEN- 

TYPEDEN.enV.iSt = FIELD.enV.iSt 

D.iSt =TYPEDEN.enV.SSt 

FlELD.eflV.SSt = D.sSt 
D.sSt = enter( D.iSt, ID, mkVar~nfo(FIELD.memory.o~set, TYPEDEN.type)) 



276 H. Gan:lngrr 

rwEDr3.memory.offset = FIELD.memory.qffset 
TYPEDEN.memory.iTop = FIELD.memorv.iTop 
~~~~~.memory.sTop = rwEDEN.memor~.sTop 
F~~~~.memory.size = ~YPED~N.memory.si:e

STAti+STATl;STAT2-

sr~Tl.enu.iSt= sT~TO.enu.iSt
sr~T2.eno.iSt = STATS .env.sSt

STATO.~~ V.SSt= STAT2.enU. SSt
STATS. memory. offset = STATO. memory q&et
STATS. memory. offset = STATO. memory. o.fset + STATS . memory. size
s~~~l.memory.iTop = ~~~~O.memory.iTop
~~~~2.memory.iTop = ~~~~l.memory.sTop 
S~~~O.memory.sTop = s~~T2.memory.sTop 
S~~~O.memory.size = ~~~Tl.memory.si:e+sT~T2.memory.size 
S~~~l.code.iLabCtr = ~~~~O.code.iLabCtr 
s~~~2.code.iLabCtr = s~~~l.code.sLabCtr 
s-rATO:code. sLa bCtr = STAT'.?. code. sLa bCtr 
STATO. code.c-, STATS. code.c; STATS. code.c 

STAT+V:ExP- 

v. en 0. iSt = STAT. env. iSt 
ExP.env.iSt = v.env.sSt 
s~~T.env.sSt= ~xp.env.sSt 

sTAT.memory.sTop = sTA-r.memory.iTop + 0 
STAT. memory. size = 0 
STAT. code. sLa bCtr = STAT. code. iLa bCtr 
STAT. code.c+ assign(v. code, EXP. code) 

V+ID- 

v.env.sSt =v.env.iSt 

v.code+ register( 1) -tconst(getAddress( lookup(v.enu.iSt, ID))) 

v.recordNmb = scopeNmb(getType( lookup(\..enu.iSt, ID))) 

VO+Vl.ID'-+ 

vl.eno.iSt=vO.enu.iSt 
vO.env.sSt=vl.env.sSt 
vO.code + vl.code+getAddress(lookupQual(vO.env.iSt, 

vl.recordNmb, ID)) 

vO.recordNmb = scopeNmb(getType( lookupQual(vO.env.iSt, 
vl.recordNmb, ID))) 

EXP-I- 

ExP.env.sSt= ExP.env.iSt 
EXP. code-, const(x) 

EXP-,V- 

v.enu.iSt = Ex~.enu.iSt 
ExP.env.sSt = v.env.sSt 
EXP. code + cant (v. code) 



Increasing modular+ and language-independency in compilers 277 

EXPO'EXPl Op EXP2; Op= +,-,*,/'+ 

ExPl.ent’.iSt =ExpO.env.iSr 
~xP2.enu.i.9=EXPl.enu.sSt 

EXPO.ena.sSt=EXP2.env.sSt 

EXPO. code + EXP 1. code op EXP~. code 
BEXP-, EXPl rf?lOp EXP2, &O/l = (,), = , . . . H 

Expl.enu.i.9 = mxp.env.iSt 
~x~2.env.iSt = ~x~l.env.sSt 
BExp.env.s.9 = Exp2.env.s.9 
~~~~.code-,~x~l.code relop ~x~2.code 

STATO+~~ ~~~~then STATS else STATS ++

Brzxp.env.iSt = sTATO.env.iSt
E.i.9 = BExp.env.sSt
STATO. env. s.9 = E. SSt
STAT 1. env. iSt = E. i.9

sT~T2.env. iSt = STATS .env.sSt
E. sS(= STATS. en v. sSt
sTATO.code.c~JifF(BEXP.code,const(sTATO.code.iLabCtr));

STATS . code. c;
Jmp(const(sTATO.code.iLabCtr+l));

label(STATo.code.iLabCtr);

STAT2.code.C;

label(sTAT.code.iLabCtr+ 1)

STATS. code.iLabCtr = STATO.code.iLabCtr + 2
STATS. code. iLa bCtr = STATS . code. sLa bC(r
STATO. code. sLabCtr = STATS. code. sLabCtr

References

[1] J. Uhl, S. Drossopoulou, G. Persch, G. Goes, M. Dausmann, G. Winterstein and W. Kirchgfssner,

An attribute grammar for the semantic analysis of Ada. Lecture Notes in Computer Science 139

(Springer, Berlin, 1982).

[2] J.A. Goguen, J.W. Thatcher and E.G. Wagner, An initial algebra approach to the specification,

correctness, and implementation of abstract types, in: R.T. Yeh, Ed., Currenr Trends in Programming
Methodology, IV: Data Structuring (Prentice-Hall, Englewood Cliffs, NJ, 1978) 80-149.

[3] J.W. Thatcher, E.G. Wagner and J.B. Wright, Data type specification: Parameterization and the
power of specification techniques, Proc. SIGACT 10th Annual Symposium on Theory of Compuring

(1978) 119-132.

[4] J.W. Thatcher, E.G. Wagner and J.B. Wright, More on advice on structuring compilers and proving

them correct, Proc. ICALP 1979, Lecture Notes in Computer Science 71 (Springer, Berlin. 1979).

[5] H. Ehrig, H.-J. Kreowski, J.W. Thatcher, E.G. Wagner and J.B. Wright, Parameter passing in

algebraic specification languages, Proc. ICALP 1980, Lecture Notes in Computer Science 85
(Springer, Berlin, 1980).

[6] R.M. Burstall and J.A. Goguen, The semantics of CLEAR, a specification language. Version of
Feb. 80, Proc. 1979 Copenhagen Winter School in Absrracr Software Specificarions.

[7] M. Broy, and M. Wirsing, Algebraic definition of a functional programming language and its
semantic models, Technische Universitit Miinchen, Report TUM-18008 (1980).

278 H. Ganzinger

[S] H. Christiansen and N. Jones, Control Row treatment in a simple semantics-directed compiler

generator, in: D. Bjbrnet, Ed., Formal Description of Programming Conceprs II (North-Holland,

Amsterdam, 1983) 73-96.

[9] L.M. Chirica and D.F. Martin, An algebraic formulation of Knuthian semantics. Proc. 17rh IEEE
Symposium on FOCS (1977) 127-136.

[IO] J. McCarthy and J. Painter, Correctness of a compiler for arithmetic expressions, .\fath. Aspecrs

of Compur. sci., Proc. Symp. Appl. Marh. 19 (1967) 33-41.

[l l] H.-D. Ehrich, On the theory of specification. implementation, and parameterization of parameter-

ized data types, L ACM 29 (I) (1982) 206-227.

[12] H. Ehrig, and H.-J. Kreowski, Parameter passing commutes with implementation of parameterized

data types, Proc. 9th ICALP, Lecture Notes in Computer Science 140 (Springer. Berlin, 1982)
197-211.

(131 M. Ganapathi, Retargetable code generation and optimization using attribute grammars,CSTR-406,

Computer Science Department, University of Wisconsin, Madison (1980).

[14] H. Ganzinger, Parametetized specifications: parameter passing and implementation with respect
to observability, Trans. Progr. Languages and Systems 5(2) (1983) 318-351.

(151 H. Canzinger, R. Giegerich, U. Miincke, and R. Wilhelm, A truly generative semantics-directed

compiler generator, ACM Symposium on Compiler Construcrion, Boston, SIGPLIV-Notices (1982).

[16] M.-C. Gaudel, Correctness proof of programming language translation, in: D. Bjarner. Ed., Formal

Description of Programming Concepts II (North-Holland, Amsterdam, 1983) 25-42.

[I 71 J. Guttag, W. Horowitz and D. Musser, Abstract data types and software validation. Comm ACM

21 (12) (1978) 1043-1064.

[18] R. S. Glanville and S.L. Graham, A new method for compiler code generation, Proc. 5th ACM
Symposium on POPL (1978).

[lQ] J.A. Goguen, Some design principles and theory for OBJ-0, Proc. lnternarional Conference on
Mathematical Srudies of Informarion Processing. Kyoto (1978).

[20] J.A.Goguen and K. Parsaye-Ghomi, AIgebraic denotational semantics using parameterized abstract

modules, Lecture Notes in Computer Science 107 (Springer, Berlin, 1981) 292-309.

[21] C.A.R. Hoare, Proof of correctness of data representations, Acra Informat. 1 (1972) 271-281.

[22] D.E. Knuth, Semantics of context-free languages. 5larh. Sysrems Theory 2 (1968) 127-145.

[23] U. Lipeck, An algebraic calculus for structured design of data abstractions (in German), PhD-Thesis,

Universitiit Dortmund (1982).

[24] F.L. Morris, Advice on structuring compilers and proving them correct, Proc. POPL, Boston (1973) - .
144-152.

1251

1261

~71

1281

P. Mosses, A constructive approach to compiler correctness, Lecture Notes in Computer Science

94 (Springer, Berlin, 1980).

P. Mosses, Abstract semantic algebras !, in: D. Bjorner, Ed., Formal Descriprion of Programming
Concepts 11 (North-Holland, Amsterdam, 1983) 45-70.

K. Raihl, M. Saarinen, E. Soisalon-Soininen. and M. Tienari, The compiler writing system HLP,

Report A-1978-2, Department of Computer Science, University of Helsinki t 1978).
K. Ripken, Formale Bexhreibung von Maschinen, Implementierungen und optimierender Ma-
schinencodeerzeugung aus attributierten Programmgraphen, Report TUXI-if731, TU Miinchen
(1977).

[2Ql J.-C. Raoult and R. Sethi, On metalanguages for a compiler generator, Proc. ICALP f 982, Aarhus.

[301 M. Wand, Semantics-directed machine architecture, Proc. POPL (1982).

c311 S.N. Zilles, An introduction to data algebras, Working draft paper, IBM Research, San Jose (1975).

