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a b s t r a c t

For any prime p and group G, denote the pro-p completion of G by Ĝp. Let C be the class
of all groups G such that, for each natural number n and prime number p, Hn(Ĝp,Z/p) ∼=
Hn(G,Z/p), where Z/p is viewed as a discrete, trivial Ĝp-module. In this article we identify
certain kinds of groups that lie in C. In particular, we show that right-angled Artin
groups are in C and that this class also contains some special types of free products with
amalgamation.

© 2009 Elsevier B.V. All rights reserved.

0. Introduction

If G is a group and p a prime number, then Ĝp will denote the pro-p completion of G and cpG : G→ Ĝp the completionmap.
LetC be the class of groups G such that, for every prime p and nonnegative integer n, the homomorphism induced by cpG from
the continuous cohomology groupHn(Ĝp,Z/p) to the discrete cohomology groupHn(G,Z/p) is an isomorphism, whereZ/p
is viewed as a discrete, trivial Ĝp-module. This class of groups has recently piqued the interest of researchers in connection
with the conjecture, originally due toM. Atiyah, that the L2-Betti numbers of a finite CW-complexwhose fundamental group
is torsion-free are always integers; see [1].
For any group G, Hn(Ĝp,Z/p) ∼= Hn(G,Z/p) if n = 0, 1. However, groups for which these cohomology groups are

isomorphic in higher dimensions appear to be quite rare. The most obvious examples of groups in the class C are free
groups, since, for G free, both Hn(Ĝp,Z/p) and Hn(G,Z/p) are trivial if n ≥ 2. Finitely generated nilpotent groups are also
easily seen to be in this class, as we demonstrate below in Corollary 1.3. Other, more exotic, examples of such groups may
be found scattered throughout the literature. For instance, in [2] it is shown that a particular species of one-relator group
belongs to C. In addition, P. Linnell and T. Schick [1] prove, using results from [3], that certain kinds of Artin groups reside in
this class.Moreover, in [4], Linnell and Schick, togetherwith I. Blomer, establish that primitive link groups lie inC. Additional
observations concerning groups in C are contained in [5,6], where three dimensional orientable Poincaré duality groups in
this class are discussed.
The goal of the present article is to identify some new types of groups in the class C. First, in Section 2, we prove that

right-angled Artin groups are in C; these are groups with a finite presentation in which the relators are all commutators of
weight 2 in the generators. In order to prove that such groups are inC, we view them as being formed by a finite sequence of
HNN extensions and employ theMayer–Vietoris sequence for an HNN extension, in both its discrete and pro-p incarnations.
At the end of Section 2 we apply a similar approach to show that right-angled Artin groups also have another property that
is often displayed by groups in C: they are residually p-finite for each prime p.
In Section 3 we invoke the Mayer–Vietoris sequence for a free product with amalgamation to identify certain free

productswith amalgamated subgroups that belong toC. Our principal results in that section are the following two theorems.
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Theorem 3.5. Assume G1 and G2 are groups with a shared finitely generated central subgroup A. If G1/A and G2/A both belong
to C, then G1 ∗A G2 is in C.

Theorem 3.10. Let G1 and G2 be groups that lie in C and are residually p-finite for every prime p. Then, if A is a cyclic subgroup
common to both G1 and G2, G1 ∗A G2 is in C.

Examples of groups that satisfy both of the conditions in Theorem 3.10, i.e., that are in C and residually p-finite for every
prime p, are free groups, finitely generated torsion-free nilpotent groups and – in view of our results from Section 2 – right-
angled Artin groups.
We conclude Section 3 by describing an example of a free product of two finitely generated torsion-free nilpotent

groups with a noncyclic, noncentral amalgam that lies outside of the class C. This example demonstrates that our stringent
hypotheses in Theorems 3.5 and 3.10 regarding the amalgam cannot be weakened in any significant way.

1. Notation and preliminary remarks

In this sectionwe establish the notation and terminology that wewill use in the rest of the article. In addition, we discuss
some elementary properties of the class C.
For any two elements x and y in a group G, we define [x, y] = x−1y−1xy. Throughout the paper, p will denote a prime

natural number. A groupwith order a finite power of pwill be referred to as p-finite. Moreover, a group G is residually p-finite
if, for every g ∈ G− {1}, there exists a p-finite quotient of G in which the image of g is nontrivial.
If G is a group, N E G, and [G : N] is a finite power of p, we write N Eo(p) G, where the notation is suggested by the fact

that N is open in the pro-p topology on G. If H is a subgroup of a group G, we will write H ≤c(p) G if H is closed in the pro-p
topology on G, and we write H Ec(p) G if, in addition, H is normal.
Since we will be working with both pro-p and discrete cohomology, it will be helpful to distinguish between the two

types in our notation. Henceforth we will employ H∗( , ) for discrete cohomology and H∗cont( , ) for pro-p cohomology.
Also, Z/p will always be viewed as a trivial module with respect to any discrete group and a trivial, discrete topological
module with respect to any pro-p group.
If H is a subgroup of the group G, we say that H is topologically p-embedded in G and write H ≤t(p) G if the subspace

topology on H inherited from the pro-p topology on G coincides with the full pro-p topology on H . Note that the following
three assertions concerning a subgroup H of a group G are equivalent:
(i) H ≤t(p) G;
(ii) for each N Eo(p) H , there existsM Eo(p) G such thatM ∩ H ≤ N;
(iii) Ĥp embeds in Ĝp.
One case of a topological p-embedding that is particularly relevant to the subject of this paper pertains to a central group

extension whose quotient is in the class C. This situation is treated in the following proposition, which is also proved in [1],
albeit in a different manner.

Proposition 1.1. Assume A
ι
� G

ε
� Q is a central group extension in which A is finitely generated and Q is in C. Then

Âp
ι̂p

� Ĝp
ε̂p

� Q̂ p is a short exact sequence of pro-p groups; in other words, ι(A)≤t(p) G.

Proof. For the sake of simplicity, we assume that A ≤ G and ι is just the inclusionmap. First we consider the case where A is
a finite p-group. We will prove that A≤t(p) G by establishing the existence of a normal subgroup N in G such that [G : N] is a
power of p and N ∩A = 1. Let ξ ∈ H2(Q , A) be the cohomology class of the extension A� G � Q . The group H2cont(Q̂

p, A) is
the direct limit of the discrete cohomology with coefficients in A of all the quotients of Q̂ p over open normal subgroups. This
means that, since the map H2cont(Q̂

p, A)→ H2(Q , A) is surjective, there exists REo(p) Q such that the image of ξ in H2(R, A)
is trivial. Thus we have U Eo(p) G containing A such that U splits over A. Let V E U such that U = AV and A ∩ V = 1. Take
N to be the intersection of all the conjugates of V in G. Then N E G and N ∩ A = 1. Moreover, each of these conjugates is
normal in U with index a power of p, and there are only finitely many of them. Hence [U : N] is a power of p, implying that
[G : N] is also a power of p. It follows, then, that A≤t(p) G.
Now we consider the case where A is an arbitrary finitely generated abelian group. Let BEo(p) A. Since A is finitely

generated, B contains a normal subgroup C of G such that [A : C] is a power of p. By the first case, A/C Et(p) G/C . Hence
there exists N Eo(p) G such that A ∩ N ≤ C ≤ B. Therefore, A≤t(p) G. �

Proposition 1.1 has the following two corollaries regarding the class C.

Corollary 1.2. Let A� G � Q be a central group extension with A finitely generated. If A and Q are in C, then G is in C.

Proof. By Proposition 1.1, Âp � Ĝp � Q̂ p is a short exact sequence of pro-p groups for each prime p. It follows, then, from
the Lyndon–Hochschild–Serre spectral sequences for A � G � Q and Âp � Ĝp � Q̂ p that the map Hncont(Ĝ

p,Z/p) →
Hn(G,Z/p) is an isomorphism for each prime p and n ≥ 0. �
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Corollary 1.3. The class C contains all finitely generated nilpotent groups.
Proof. Clearly, any cyclic group is in C. It follows, then, from Corollary 1.2 that every finitely generated abelian group is in
the class as well. Hence, by inducting on the nilpotency class and again applying Corollary 1.2, we can deduce that every
finitely generated nilpotent group is in C. �

Even though all finitely generated nilpotent groups are in C, not every polycyclic group lies in the class. For instance, if G
is the semidirect product of Z⊕ Zwith Zwhere 1 induces the automorphism of Z⊕ Z that interchanges the components,
then, whenever p is odd, Ĝp ∼= Ẑp ⊕ Ẑp, implying that H2cont(Ĝ

p,Z/p) � H2(G,Z/p).

2. Right-angled Artin groups

Right-angled Artin groups are defined as follows.

Definition. A right-angled Artin group is any group with a finite generating set X and a presentation of the form

〈X | [x, y] = 1 for all (x, y) ∈ Σ〉

for some subsetΣ of the Cartesian product X × X .

Our objective in this section is to prove that right-angled Artin groups are in the class C. The approach we use in
studying these types of groups owes a great deal to [7]. It was also employed in [8] to prove that these groups have the
same cohomology as their profinite completions. The key to our method is to view these groups as being formed by a finite
sequence of HNN extensions. In analyzing HNN extensions we will employ the following notation: given a discrete group
G and an isomorphism φ : H → K , where both H and K are subgroups of G, the HNN extension of G with respect to φ is
denoted by Gφ . In other words,

Gφ = 〈G, t | t−1ht = φ(h) for all h ∈ H〉.
In addition to HNN extensions of discrete groups, we will refer to pro-p HNN extensions. As described in [9], from any

pro-p group Γ and any continuous isomorphism θ : ∆→ Λ, where∆ andΛ are both closed subgroups of Γ , we can form
the pro-p HNN extension of Γ with respect to θ . If Γ ,∆ andΛ are each embedded in the pro-p HNN extension, we refer to
the latter as a proper pro-p HNN extension. In [9] it is observed (without proof) that any proper pro-p HNN extension gives
rise to a Mayer–Vietoris sequence that relates the cohomology of the extension to that of the group Γ and the subgroup∆.
This sequence is a special case of the Mayer–Vietoris sequence for the fundamental group of a finite graph of pro-p groups,
which can be derived from some of the results in [10].
Our interest is in the case when Γ = Ĝp, ∆ = Ĥp, Λ = K̂ p and θ = φ̂p, where G is a discrete group with topologically

p-embedded subgroups H , K and φ : H → K is an isomorphism. In this case, Ĝpφ is the pro-p HNN extension of Ĝ
p with

respect to φ̂p. Moreover, if G is topologically p-embedded in Gφ , then the pro-p HNN extension is proper and, therefore,
gives rise to a Mayer–Vietoris sequence. This sequence and its relationship to the discrete Mayer–Vietoris sequence for Gφ
are described in the following theorem.

Theorem 2.1. Let G be a group with isomorphic, topologically p-embedded subgroups H and K . Assume φ : H → K is an
isomorphism and G≤t(p) Gφ . Then, for each positive integer n, we have a commutative diagram

Hn−1cont (Ĝp,Z/p) −→ Hn−1cont (Ĥp,Z/p) −→ Hncont(Ĝ
p
φ,Z/p) −→ Hncont(Ĝ

p,Z/p) −→ Hncont(Ĥ
p,Z/p)y y y y y

Hn−1(G,Z/p) −→ Hn−1(H,Z/p) −→ Hn(Gφ,Z/p) −→ Hn(G,Z/p) −→ Hn(H,Z/p),

(2.1)

in which the rows are exact and the vertical maps are induced by the pro-p completion maps for G, H and Gφ .

Theorem 2.1 provides us with the following conditions under which an HNN extension is in the class C.

Corollary 2.2. Let φ : H → K be an isomorphism, where H and K are subgroups of a group G that are topologically p-embedded
for every prime p. Assume, further, that G≤t(p) Gφ for each p. If G is in C and H is in C, then Gφ belongs to C.

Proof. In diagram (2.1) the first, second, fourth and fifth vertical maps are isomorphisms, forcing the third map to be one
as well. Hence Gφ is in C. �

Unfortunately, it is usually not the case that the base group is topologically p-embedded in an HNN extension. However,
this does hold for the following type of HNN extension.

Lemma 2.3. Let G be a group and H ≤t(p) G. Define the group Γ by

Γ = 〈G, t | t−1ht = h for all h ∈ H〉.

Then G≤t(p) Γ .
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Proof. AssumeN Eo(p) G. Then there is an epimorphism θ : Γ → G/NmappingG canonically ontoG/N and t to 1.Moreover,
Ker θ Eo(p) Γ and Ker θ ∩ G ≤ N . Therefore, G≤t(p) Γ . �

The above lemma, in conjunction with Corollary 2.2, immediately yields the following result.

Lemma 2.4. Assume G is a group and H ≤t(p) G for every prime p. Define the group Γ by

Γ = 〈G, t | t−1ht = h for all h ∈ H〉.

If G and H are in C, then Γ also lies in C.

We now employ Lemma 2.4 to establish that every right-angled Artin group is in C. Before proceeding with the proof,
we require the following lemma.

Lemma 2.5. If G is a right-angled Artin group with generating set X, then, for every X ′ ⊆ X, 〈X ′〉≤t(p) G.

Proof. The proof is by induction on the cardinality of X , the case |X | = 1 being trivial. Assume |X | > 1. If X ′ = X , then the
conclusion follows at once. Assume X ′ 6= X , and let x ∈ X − X ′. Define H to be the group generated by X − {x} with all of
the same relators as G except those involving x. Furthermore, let Y be the set of all elements in X − {x} that commute with
x in G. Then

G = 〈H, x | [x, y] = 1 for all y ∈ Y 〉.

Now letU Eo(p)〈X ′〉. By the inductive hypothesis, 〈X ′〉≤t(p) H , whichmeans that there existsN Eo(p) H such thatN∩〈X ′〉 ≤ U .
Moreover, there is amap θ : G→ H/N that mapsH canonically ontoH/N and x to 1. Hence Ker θ Eo(p) G and Ker θ ∩H ≤ N .
Thus Ker θ ∩ 〈X ′〉 ≤ U . It follows, then, that 〈X ′〉≤t(p) G. �

Theorem 2.6. Every right-angled Artin group is in C.

Proof. The proof is by induction on the number of generators, the case of one generator being trivial. Let G be a right-angled
Artin group with generating set X containing more than one element, and assume that every right-angled Artin group with
fewer generators than G lies in C. If G has no relators, then it is free and thus in C. Suppose G has at least one relator, and
assume [x0, y0] is one of its relators. Let [x0, y0], [x1, y0], . . . , [xl, y0] be a list of all the relators that involve y0. Now define
H to be the group generated by X −{y0}with all of the same relators as G except those involving y0. In view of the inductive
hypothesis, H must belong to C. Moreover,

G = 〈H, y0 | [x0, y0] = [x1, y0] = · · · = [xl, y0] = 1〉.

By Lemma 2.5, the subgroup of H generated by x0, . . . , xl is topologically p-embedded in H . Moreover, by the inductive
hypothesis, this subgroup must belong to C. Therefore, appealing to Lemma 2.4 allows us to conclude that G lies in C as
well. �

We conclude this section by showing that our conception of right-angled Artin groups as arising from a finite sequence
of HNN extensions can also be employed to establish another important property of these groups, namely, that they are
residually p-finite for every prime p. This property, however, is not a new discovery: it also follows from G. Duchamp and D.
Krob’s result in [11] that right-angled Artin groups are residually torsion-free nilpotent. Nevertheless, we include our proof
as it shares nothing with that of Duchamp and Krob, and it complements nicely the proof of Theorem 2.6. In essence, our
argument mirrors closely that of [7, Theorem 3.4].
We begin with the following concept from the theory of HNN extensions.

Definition. Let G be a group with subgroups H and K such that there is an isomorphism φ : H → K . The sequence
g0, tε1 , g1, tε2 , . . . , tεn , gn of elements of Gφ is a reduced sequence if the following conditions are satisfied:
(i) εi = ±1 for all i = 0, . . . , n;
(ii) gi ∈ G for all i = 0, . . . , n;
(iii) the sequence fails to contain any segments of the form t−1, gi, t with gi ∈ H or
t, gi, t−1 with gi ∈ K .

Reduced sequences are important for HNN extensions because of the following theorem from [12].

Theorem 2.7 ([12, Theorem 2.1]). Let G be a group with subgroups H and K such that there is an isomorphism φ : H → K . Then
the following two statements hold.
(i) Every element of Gφ has a representation as a product g0tε1g1tε2 · · · tεngn, where
g0, tε1 , g1, tε2 , . . . , tεn , gn is a reduced sequence.
(ii) If g0, tε1 , g1, tε2 , . . . , tεn , gn is a reduced sequence with n ≥ 1, then

g0tε1g1tε2 · · · tεngn 6= 1.

Now we examine two types of HNN extensions that are residually p-finite.
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Lemma 2.8. Let G be a finite p-group and H a subgroup of G. Define the group Γ by

Γ = 〈G, t | t−1ht = h for all h ∈ H〉.

Then Γ is residually p-finite.

Proof. There is a homomorphism θ : Γ → G such that θ(g) = g for all g ∈ G and θ(t) = 1. Since Ker θ ∩ G = 1, it
follows from [13, Theorem 6] that Ker θ is free. Hence Γ is an extension of a free group of finite rank by a p-finite group and,
therefore, residually p-finite. �

Lemma 2.9. Assume G is a group and H ≤c(p) G for every prime p. Define the group Γ by

Γ = 〈G, t | t−1ht = h for all h ∈ H〉.

If G is residually p-finite, then Γ is also residually p-finite.

Proof. Let x ∈ Γ − {1}. We need to find a p-finite quotient of Γ in which the image of x is nontrivial. Let

x = g0tε1g1tε2 · · · tεngn,

where g0, tε1 , g1, tε2 , . . . , tεn , gn is a reduced sequence. Since H ≤c(p) G, G contains a normal subgroup N of p-power index
satisfying the following two properties:
(1) if g0 6= 1, then g0 6∈ N;
(2) for each i = 0, . . . , nwith gi 6∈ H , gi 6∈ NH .
Now define the groupΣ by

Σ = 〈G/N, t̄ | t̄−1(Nh)t̄ = Nh for all h ∈ H〉.

The group Σ is an HNN extension with base group G/N and associated subgroup NH/N . Moreover, there exists an
epimorphism θ : Γ → Σ thatmaps G canonically onto G/N and t to t̄ . Also, θ(g0), t̄ε1 , θ(g1), t̄ε2 , . . . , t̄εn , θ(gn) is a reduced
sequence. Thus, if n ≥ 1, θ(x) 6= 1 by Theorem 2.7(ii), and, if n = 0, then θ(x) = θ(g0) 6= 1. However, by Lemma 2.8,Σ is
residually p-finite; hence we can find a p-finite quotient of Γ in which the image of θ(x) is nontrivial, thus completing the
proof. �

Lemma 2.9 is the key tool we will employ to prove that right-angled Artin groups are residually p-finite. However, first
we need to show that the subgroup generated by any subset of the generating set of a right-angled Artin group is closed
with respect to the pro-p topology.

Lemma 2.10. If G is a right-angled Artin group with generating set X, then, for every nonempty subset X ′ of X, 〈X ′〉≤c(p) G.

Proof. The proof is by induction on the cardinality of X , the case |X | = 1 being trivial. Assume |X | > 1. If X ′ = X , then the
conclusion follows at once. Assume X ′ 6= X , and let x ∈ X − X ′. Define H to be the group generated by X − {x} with all of
the same relators as G except those involving x. Furthermore, let Y be the set of all elements in X − {x} that commute with
x in G. Then

G = 〈H, x | [x, y] = 1 for all y ∈ Y 〉,

making G an HNN extension with base group H and associated subgroup 〈Y 〉. Let g ∈ G − 〈X ′〉. We need to find a quotient
of G that is a finite p-group in which the image of g is not contained in the image of 〈X ′〉. Let

g = h0tε1h1tε2 · · · tεnhn,

where h0, tε1 , h1, tε2 , . . . , tεn , hn is a reduced sequence. By the inductive hypothesis, both 〈X ′〉 and 〈Y 〉 are closed subgroups
of H with respect to the pro-p topology on H . Therefore, H contains a normal subgroup N of p-power index satisfying the
following two properties:
(1) if n = 0, then h0 6∈ N〈X ′〉;
(2) for each i = 0, . . . , nwith hi 6∈ 〈Y 〉, hi 6∈ N〈Y 〉.
Now form the following group:

Γ = 〈H/N, x̄ | [x̄,Ny] = 1 for all y ∈ Y 〉.

This group is an HNN extension with base group H/N and associated subgroup N〈Y 〉/N . Thus, in view of Lemma 2.8,
Γ is residually p-finite. Let θ : G → Γ be the homomorphism that maps H canonically onto H/N and x to x̄. Then
θ(h0), x̄ε1 , θ(h1), x̄ε2 , . . . , x̄εn , θ(hn) is a reduced sequence. We claim that θ(g) 6∈ θ(〈X ′〉); it will then follow immediately
from the residual p-finiteness of Γ that there is a p-finite quotient of G in which the image of g is not contained in the image
of 〈X ′〉. If n = 0, property (1) above implies our claim immediately. Furthermore, for the case n > 0 the claim follows from
Theorem 2.7(ii). �

Now we are prepared to prove that right-angled Artin groups are residually p-finite.
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Theorem 2.11. A right-angled Artin group is residually p-finite for every prime p.
Proof. The proof is by induction on the number of generators, the case of one generator being trivial. Let G be a right-angled
Artin group with generating set X containing more than one element, and assume that every right-angled Artin group with
fewer generators than G is residually p-finite. If G has no relators, then it is free and thus residually p-finite. Suppose G has
at least one relator, and take [x0, y0] to be one of its relators. Let [x0, y0], [x1, y0], . . . , [xl, y0] be a list of all the relators that
involve y0. Now define H to be the group generated by X − {y0}with all of the same relators as G except those involving y0.
Due to the inductive hypothesis, H must be residually p-finite. Moreover,

G = 〈H, y0 | [x0, y0] = [x1, y0] = · · · = [xl, y0] = 1〉.

By Lemma 2.10, the subgroup of H generated by x0, . . . , xl is closed in H with respect to the pro-p topology. Therefore,
invoking Lemma 2.9, we can conclude that G is residually p-finite. �

3. Free products with amalgamation

In this sectionwe prove that certain free productswith amalgamated subgroups are inC. Our arguments are based on the
Mayer–Vietoris sequence for free productswith amalgam, in both its discrete and pro-p versions.Webegin by recalling some
facts about pro-p free products with amalgamation from [9]. If Γ1 and Γ2 are pro-p groups with a common closed subgroup
∆, then we can always form the pro-p free product of Γ1 and Γ2 with amalgamated subgroup ∆; this is the pushout of
Γ1 and Γ2 over ∆ in the category of pro-p groups. If Γ1, Γ2 and ∆ are all embedded in this pushout, which is by no means
always the case, then the latter is referred to as a proper pro-p free product with amalgamation. Associated to a proper pro-p
free product with amalgamation is a Mayer–Vietoris sequence that relates the cohomologies of the various groups to one
another. Like the HNN version, it is really a special case of the Mayer–Vietoris sequence associated to a finite graph of pro-p
groups, mentioned in the previous section.
We are interested in the special situation when Γ1 = Ĝ

p
1, Γ2 = Ĝ

p
2 and ∆ = Ĥ

p, where G1 and G2 are discrete groups
with a shared topologically p-embedded subgroup H . In this case, the pro-p completion of G = G1 ∗H G2 is the pro-p free
product of Ĝp1 and Ĝ

p
2 with amalgamated subgroup Ĥ

p. Moreover, this pro-p free product with amalgam is proper if and only
if both G1 and G2 are topologically p-embedded in G. In this case, we have a Mayer–Vietoris sequence for Ĝp relating the
cohomologies of Ĝp1, Ĝ

p
2 and Ĥ

p. This sequence is described in the following theorem, which also reveals the connection to
the discrete Mayer–Vietoris sequence for G.

Theorem 3.1. Let G1 and G2 be groups with a common subgroup H that is topologically p-embedded in both groups, and let
G = G1 ∗H G2. Assume, further, that G1 and G2 are both topologically p-embedded in G. Then, for each positive integer n, we have
a commutative diagram

Hn−1(Ĝp1, A)⊕ H
n−1(Ĝp2, A) −−−−→ Hn−1(G1, A)⊕ Hn−1(G2, A)y y

Hn−1(Ĥp, A) −−−−→ Hn−1(H, A)y y
Hn(Ĝp, A) −−−−→ Hn(G, A)y y

Hn(Ĝp1, A)⊕ H
n(Ĝp2, A) −−−−→ Hn(G1, A)⊕ Hn(G2, A)y y

Hn(Ĥp, A) −−−−→ Hn(H, A),

(3.1)

in which the columns are exact and the horizontal maps are induced by the pro-p completion maps for G1, G2, H and G.

The above theorem allows us to stipulate a set of conditions under which a free product with amalgamation lies in the
class C.

Corollary 3.2. Let G1 and G2 be groups with a common subgroup H that is topologically p-embedded in both groups for each
prime p. Furthermore, assume G1 and G2 are both topologically p-embedded in G = G1 ∗H G2 for every p. If G1, G2 and H are all
in C, then G also belongs to C.
Proof. The first, second, fourth and fifth horizontal maps in (3.1) are isomorphisms, forcing the third to be one as well. �

The catch with Corollary 3.2 is that it is difficult to show that the factors in a free product with amalgamation are
topologically p-embedded. However, an important situation in which this holds is described in the following lemma, similar
to [14, Theorem 3.1].
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Lemma 3.3. Let G1 and G2 be groupswith a common subgroup H. Assume that, for each pair {N1,N2}with Ni Eo(p) Gi, there exists
a pair {P1, P2} such that Pi Eo(p) Gi, Pi ≤ Ni and P1 ∩ H = P2 ∩ H. Then G1 and G2 are topologically p-embedded in G1 ∗H G2.

To prove the above lemma, we require the following theorem of Higman [15].

Theorem 3.4 (Higman). Let G1 and G2 be finite p-groups with a common cyclic subgroup A. Then G1 ∗A G2 is residually p-finite.

Proof of Lemma 3.3. Let G = G1 ∗H G2. Assume N1 Eo(p) G1 and N2 Eo(p) G2. Then there exists a pair {P1, P2} such that
Pi Eo(p) Gi, Pi ≤ Ni and P1 ∩ H = P2 ∩ H . Since P1 ∩ H = P2 ∩ H , P1H/P1 ∼= P2H/P2. We can then identify these two
groups via this isomorphism and form the free product with amalgamation

Ḡ = G1/P1 ∗P1H/P1 G2/P2.

Moreover, there is an epimorphism θ : G→ Ḡ that maps G1 and G2 canonically onto G1/P1 and G2/P2, respectively. Also, by
Higman’s theorem, there is an epimorphism ε from Ḡ onto a finite p-group such that the restriction of ε to Gi/Pi is injective.
Let K = Ker εθ . Then K Eo(p) G and K ∩ Gi ≤ Pi ≤ Ni. Therefore, Gi≤t(p) G. �

Unfortunately, it is not easy to recognize when the hypotheses of Lemma 3.3 might be satisfied. Nevertheless, we will
discern two important cases where these conditions are fulfilled. The first involves a central amalgam and is treated in the
following theorem.

Theorem 3.5. Assume G1 and G2 are groups with a shared finitely generated central subgroup A. If G1/A and G2/A both belong
to C, then G1 ∗A G2 is in C.

Proof. By Corollaries 1.2 and 1.3, G1 and G2 are both in C. Our plan is to use Lemma 3.3 to establish that G1 and G2 are
topologically p-embedded in G1 ∗A G2; the conclusion of the theorem will then follow by Corollary 3.2. In order to invoke
Lemma3.3,weneed to show that, for eachpair {N1,N2}withNi Eo(p) Gi, there exists a pair {P1, P2} such that Pi Eo(p) Gi, Pi ≤ Ni
and P1 ∩ A = P2 ∩ A. Assume N1 Eo(p) G1 and N2 Eo(p) G2. Take U to be the intersection of the images of A∩N1 ∩N2 under all
the automorphisms of A, keeping in mind that there are only finitely many such images that are distinct. Then U is a normal
subgroup of both G1 and G2 contained in A ∩ N1 ∩ N2, and the index of U in A is a power of p. By Proposition 1.1, A≤t(p) Gi.
Hence we can find Mi Eo(p) Gi such that Mi ≤ Ni and Mi ∩ A ≤ U . Now we let Pi = UMi. Then Pi ∩ A = U(Mi ∩ A) = U;
moreover, Pi Eo(p) Gi and Pi ≤ Ni. Thus we have constructed the desired pair {P1, P2}. �

The second situation where the hypotheses of Lemma 3.3 are satisfied is when the amalgamated subgroup is cyclic and
the groups are residually p-finite. To verify this, we avail ourselves of the following property of residually p-finite groups,
observed in [16].

Lemma 3.6. Let G be a group that is residually p-finite, and let a ∈ G. Then, for every n ∈ N, there exists Nn Eo(p) G such that
Nn ∩ 〈a〉 = 〈ap

n
〉.

The proof of the above lemma is based on the following elementary property of finite p-groups.

Lemma 3.7. Let G be a finite p-group and a ∈ Gwith |a| = pn. Then, for every i = 0, . . . , n, there exists a quotient of G in which
the image of a has order pi.

Proof. Let |G| = pm and proceed by induction onm. The casesm = 0, 1 are vacuously true. Assumem > 1. ThenG contains a
central subgroupN of order p. In the factor groupG/N the order ofNa is either pn−1 or pn. Hence, by the inductive hypothesis,
for every i = 0, . . . , n− 1, G/N has a quotient in which the image of Na has order pi. Therefore, the conclusion holds. �

Equipped with the above lemma, we are ready to prove Lemma 3.6.

Proof of Lemma 3.6. First we consider the case where a has infinite order. Assume n ∈ N. The residual property of G allows
us to findMn Eo(p) G such that the order of the image of a in G/Mn is greater than pn. Applying the above lemma to the factor
group G/Mn, we can find Nn Eo(p) G such that the order of the image of a in G/Nn is exactly pn. Thus the subgroup Nn has the
desired property.
Now assume a has finite order, i.e., |a| = pk for some k ≥ 0. Then, appealing to the residual property of G, we can find

N Eo(p) G such that the order of Na in G/N is exactly pk. Now for n ≥ k we let Nn = N . Moreover, for 0 ≤ n < k we apply
Lemma 3.7 to G/N , obtaining Nn Eo(p) G such that the order of the image of a in G/Nn is exactly pn. The subgroups Nn, then,
enjoy the properties we seek. �

The following property of residually p-finite groups is an immediate consequence of Lemma 3.6.

Lemma 3.8. If G is a residually p-finite group, then every cyclic subgroup of G is topologically p-embedded in G.

In addition, Lemma 3.6 allows us to prove that, in free products with cyclic amalgamation, if both factors are residually
p-finite, then each of them is topologically p-embedded.
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Lemma 3.9. Assume G1 and G2 are residually p-finite groups with a common cyclic subgroup A. Then G1 and G2 are both
topologically p-embedded in G1 ∗A G2.

Proof. We need to show that, for each pair {N1,N2} with Ni Eo(p) Gi, there exists a pair {P1, P2} such that Pi Eo(p) Gi, Pi ≤ Ni
and P1 ∩ A = P2 ∩ A. Suppose N1 Eo(p) G1 and N2 Eo(p) G2. By Lemma 3.6, for each i = 1, 2, there existsMi Eo(p) Gi such that

Mi ∩ A = A ∩ N1 ∩ N2.

Now, if we take Pi = Mi ∩ Ni, then the pair {P1, P2} has the desired properties. �

In conjunction with Corollary 3.2, the above lemma yields immediately the following theorem.

Theorem 3.10. Assume G1 and G2 are groups in C with a common cyclic subgroup A. Suppose, further, that G1 and G2 are
residually p-finite for each prime p. Then G1 ∗A G2 is also in C.

To convey the significance of Theorem 3.10, we list several examples of groups that satisfy the hypotheses, i.e., that are
residually p-finite for every prime p and in C:
1. Free groups.
2. Finitely generated torsion-free nilpotent groups.
3. Right-angled Artin groups.
4. A free product of groups of type 1 or 2 with maximal cyclic amalgam. (That such a product is residually p-finite for

every prime p is established in [16].)
5. Any group G with a central subgroup A such that A is free abelian of finite rank and G/A is both in C and residually

p-finite for every prime p.
The last observation follows from Proposition 1.1. To see this, let Q = G/A and consider the short exact sequence

Âp � Ĝp � Q̂ p guaranteed by the proposition. Since the completion maps cpA and c
p
Q are injections, it follows that c

p
G is

also injective, implying that G is residually p-finite. Moreover, G is in C by virtue of Corollaries 1.2 and 1.3.
In conclusion, we present the following example illustrating that, in both Theorems 3.5 and 3.10, we cannot dispense

with the conditions placed on the amalgam. The pro-p completions of the groups involved in our example are the groups
adduced by L. Ribes [14, Section 4] (also [9, Example 9.2.9]) as yielding an instance of a pro-p free product with amalgam
that is not proper.

Example. Set N = Z ⊕ Z. Take G1 to be the semidirect product of N with Z, where 1 induces the automorphism
(a, b) 7→ (a + b, b) of N . Furthermore, let G2 be the semidirect product of N with Z, where 1 induces the automorphism
(a, b) 7→ (a, a+b) ofN . Then the isomorphic groupsG1 andG2 are finitely generated torsion-free nilpotent groups of class 2.
Let G = G1 ∗N G2. Our intention is to prove that H2cont(Ĝ

p,Z/p) = 0 whereas H2(G,Z/p) 6= 0, thereby establishing that
G lies outside of the class C. First we observe that there is a split extension N � G � F2, where F2 denotes the free group
on two generators. We now proceed to argue that the image of N in Ĝp is trivial, which will imply that Ĝp ∼= F̂ p2 . We begin
with an arbitrary epimorphism θ : G → P such that P is p-finite. Set M = Ker θ ∩ N . Then M is invariant under both the
automorphisms (a, b) 7→ (a + b, b) and (a, b) 7→ (a, a + b) of N . It is not difficult to see that this means that, whenever
(a, b) ∈ M , both (a, 0) and (0, b)must be elements ofM . ThusM = pnZ⊕pnZ for some nonnegative integer n. It is apparent
from this description ofM that N/M fails to contain any nontrivial element that is fixed by the action of F2; in other words,
θ(N) ∩ Z(P) = 1. However, since P is p-finite, this implies that θ(N) = 1. Therefore, N has a trivial image in Ĝp, so that
Ĝp ∼= F̂ p2 . Hence H

2
cont(Ĝ

p,Z/p) = 0.
Finally,we establish thatH2(G,Z/p) 6= 0. For thiswe require the following segment of theMayer–Vietoris sequence forG.

H2(G,Z/p)→ H2(G1,Z/p)⊕ H2(G2,Z/p)→ H2(N,Z/p)

Since H2(N,Z/p) ∼= Z/p and H2(G1,Z/p) ∼= H2(G2,Z/p), it will follow that H2(G,Z/p) 6= 0 if we can show that
H2(G1,Z/p) 6= 0. To investigate H2(G1,Z/p), we use the Lyndon–Hochschild–Serre spectral sequence for the extension
N � G1 � Z. In this spectral sequence, E11

∞
= E112 ∼= H

1(Z,Z/p⊕Z/p), where the action ofZ onZ/p⊕Z/p causes 1 to induce
the automorphism (a, b) 7→ (a+ b, b) of Z/p⊕Z/p. Employing the interpretation of the first cohomology group as deriva-
tions modulo inner derivations, the latter group is readily seen to be isomorphic to Z/p. Consequently, H2(G1,Z/p) 6= 0,
implying that H2(G,Z/p) 6= 0.
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