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We study Z-graded modules of nonzero level with arbitrary weight
multiplicities over Heisenberg Lie algebras and the associated gen-
eralized loop modules over affine Kac–Moody Lie algebras. We con-
struct new families of such irreducible modules over Heisenberg
Lie algebras. Our main result establishes the irreducibility of the
corresponding generalized loop modules providing an explicit con-
struction of many new examples of irreducible modules for affine
Lie algebras. In particular, to any function ϕ : N → {±} we associate
a ϕ-highest weight module over the Heisenberg Lie algebra and a
ϕ-imaginary Verma module over the affine Lie algebra. We show
that any ϕ-imaginary Verma module of nonzero level is irreducible.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Affine Lie algebras are the most studied among the infinite-dimensional Kac–Moody Lie alge-
bras and have widespread applications. Their representation theory is far richer than that of finite-
dimensional simple Lie algebras. In particular, affine Lie algebras have irreducible modules containing
both finite- and infinite-dimensional weight spaces, something that cannot happen in the finite-
dimensional setting. These representations arise from taking non-standard partitions of the root
system; that is, partitions which are not equivalent under the Weyl group to the standard parti-
tion into positive and negative roots (see [DFG]). For affine Lie algebras, there are always only finitely
many equivalence classes of such non-standard partitions (see [F4]). Corresponding to each partition
is a Borel subalgebra, and one can form representations induced from one-dimensional modules for
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these Borel subalgebras. These modules, often referred to as Verma-type modules, were first studied by
Jakobsen and Kac [JK], and by Futorny [F3,F4]. Results on the structure of Verma-type modules can
also be found in [Co,F1,FS].

Let g be an affine Lie algebra, h its standard Cartan subalgebra, and z = Cc its center, where c
is the canonical central element. Let V be a weight g-module, that is, V = ⊕

μ∈h∗ Vμ , where Vμ =
{v ∈ V | hv = μ(h)v for all h ∈ h}. If V is irreducible, then c acts as a scalar on V called the level
of V. The theory of Verma-type modules is best developed in the case when the level is nonzero [F4].
For example, the so-called imaginary Verma modules induced from the natural Borel subalgebra are
always irreducible when the level is nonzero [JK,F2].

The classification of irreducible modules is known only for modules with finite-dimensional weight
spaces (see [FT]) and for certain subcategories of induced modules with some infinite-dimensional
weight spaces (see for example, [F3,FKM,FK]). Our main goal is to go beyond the modules with finite-
dimensional weight spaces and to construct new irreducible modules of nonzero level with infinite-
dimensional weight spaces. Examples of such modules have been constructed previously by Chari and
Pressley in [CP] as the tensor product of highest and lowest weight modules.

Here we consider different Borel-type subalgebras that do not correspond to partitions of the root
system of g. Such a subalgebra is determined by a function ϕ : N → {±} on the set N of positive
integers, and so is denoted bϕ . The subalgebra bϕ gives rise to a class of g-modules called ϕ-imaginary
Verma modules. These modules can be viewed as induced from ϕ-highest weight modules over the
Heisenberg subalgebra of g. This construction is similar to the construction of imaginary Whittaker
modules in [Ch], but unlike the modules in [Ch], our modules over the Heisenberg subalgebra are
Z-graded. If ϕ(n) = + for all n ∈N, then bϕ is the natural Borel subalgebra of g.

We establish a criterion for the irreducibility of ϕ-imaginary Verma modules. It comes as no sur-
prise that any such module is irreducible if and only if it has a nonzero level.

Next we consider the classification problem for irreducible Z-graded modules for the Heisenberg
subalgebra of g. The ones of level zero were determined by Chari [C]. Any such module of nonzero
level with a Z-grading has all its graded components infinite-dimensional by [F1]; otherwise, it is a
highest weight module. We classify all admissible diagonal Z-graded irreducible modules of nonzero
level for an arbitrary infinite-dimensional Heisenberg Lie algebra. Since the Z-graded components
of a module are not assumed to be finite-dimensional the restriction on a module to be diagonal is
natural. We show that these modules have a Z

∞-gradation and can be obtained from weight modules
over an associated Weyl algebra as in [BBF] by compression of the gradation.

The restriction on a module to be admissible leads to an equivalence between the category of
admissible diagonal Z-graded modules for Heisenberg Lie algebras and the category of admissible
weight modules for the Weyl algebra A∞ [BBF]. Examples of such modules were considered earlier by
Casati [Ca], where they were constructed by means of an action of differential operators on a space of
polynomials in infinitely many variables (compare Theorem 4.21 below). Examples of non-admissible
diagonal Z-graded irreducible modules were constructed in [MZ].

We use parabolic induction to construct generalized loop modules for the affine Lie algebra g.
The modules are induced from an arbitrary irreducible Z-graded module of nonzero level for the
Heisenberg subalgebra of g. This construction extends Chari’s construction to the nonzero level case.
Our main result establishes the irreducibility of any generalized loop module induced from a diagonal
irreducible module of nonzero level for the Heisenberg subalgebra. By this process, we obtain new
families of irreducible modules of nonzero level for any affine Lie algebra. The irreducible modules
constructed in [Ca] are “dense” in the sense that they have the maximal possible set of weights and
hence are different from the ones studied here.

It should be noted that all results in our paper hold for both the untwisted and twisted affine Lie algebras.
The structure of the paper is as follows. In Section 3, we construct ϕ-imaginary Verma modules

for affine Lie algebras for any function ϕ : N → {±}, and establish a criterion for their irreducibility
in Theorem 3.5. In Section 4, we consider various types of modules (torsion, locally-finite, diago-
nal, and admissible) for the Heisenberg algebra. Theorems 4.5 and 4.15 (see Corollary 4.16) provide
the classification of all irreducible Z-graded admissible diagonal modules of nonzero level for the
Heisenberg algebra. Finally, in Section 5, we introduce generalized loop modules for affine Lie algebras
and study their structure. These modules are induced from finitely generated Z-graded irreducible
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diagonal modules over the Heisenberg subalgebra of g. Our main result is Theorem 5.6 which estab-
lishes the irreducibility of any generalized loop module induced from such an irreducible diagonal
module of nonzero level for the Heisenberg subalgebra. Hence, we develop a method for construct-
ing new irreducible modules for affine Lie algebras starting from an irreducible diagonal module over
the Heisenberg subalgebra. In general, these modules cannot be obtained by the pseudo-parabolic
induction method considered in [FK].

2. Preliminaries

Let g denote an affine Lie algebra over the complex numbers C. Associated to g is a finite-
dimensional simple Lie subalgebra ġ with Cartan subalgebra ḣ and root system �̇. There are elements
c,d of g (the canonical central element c and the degree derivation d) so that h = ḣ ⊕ Cc ⊕ Cd is a
Cartan subalgebra of g, and z =Cc is the center of g. The algebra g has a root space decomposition

g = h⊕
⊕

α∈h∗\{0}
gα

relative to h, where gα = {x ∈ g | [h, x] = α(h)x for all h ∈ h}. The set � = {α ∈ h∗\{0} | gα �= 0} is the
root system of g. Let �̇ = �̇+ ∪ �̇− be a decomposition of the corresponding finite root system �̇

of ġ into positive and negative roots relative to a base Π of simple roots. When there are two root
lengths, let �̇l and �̇s denote the long and short roots in �̇ respectively. The root system � of g

has a natural partition into positive and negative roots, � = �+ ∪ �− , where �− = −�+ . Moreover,
�+ = �re+ ∪�im+ , where the imaginary positive roots �im+ = {nδ | n ∈ Z>0} are positive integer multiples
of the indivisible imaginary root δ, and the real positive roots �re+ are given by

�re+ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{α + nδ | α ∈ �̇+, n ∈ Z}, if r = 1 (the untwisted case),
{α + nδ | α ∈ (�̇s)+, n ∈ Z}

∪ {α + nrδ | α ∈ (�̇l)+, n ∈ Z}, if r = 2,3 and not A(2)
2� type,

{α + nδ | α ∈ (�̇s)+, n ∈ Z}
∪ {α + 2nδ | α ∈ (�̇l)+, n ∈ Z}
∪ { 1

2 (α + (2n − 1)δ) | α ∈ (�̇l)+, n ∈ Z}, if A(2)
2� type.

(2.1)

We refer to [K] for basic results on Kac–Moody theory and for the notation used in (2.1).
A subset S of � affords a partition of � if S∪(−S) = � and S∩(−S) = ∅. A partition � = S∪(−S)

is said to be closed if whenever α and β are in S and α + β ∈ �, then α + β ∈ S. For any S giving
a closed partition of �, the spaces gS = ⊕

α∈S gα and g−S = ⊕
α∈−S gα are subalgebras of g, and

g = g−S ⊕ h⊕ gS is a triangular decomposition of g.
A weight module V with respect to h has a decomposition V = ⊕

λ∈h∗ Vλ , where Vλ = {v ∈ V |
hv = λ(h)v for all h ∈ h}, and we say that the set of weights of V is the support of V and write
supp(V) = {λ ∈ h∗ | Vλ �= 0}.

2.1. Imaginary Verma modules

Let � = S ∪ (−S) denote a closed partition of �. By the Poincaré–Birkhoff–Witt theorem, the
triangular decomposition g = g−S ⊕ h⊕ gS of g afforded by S determines a triangular decomposition
of the universal enveloping algebra U(g) of g given by U(g) = U(g−S) ⊗ U(h) ⊗ U(gS). Let bS = h⊕ gS

be the associated Borel subalgebra. Any λ ∈ h∗ extends to an algebra homomorphism (also denoted
by λ) on the enveloping algebras U(h) and U(bS) with zero values on gS . Corresponding to any such
λ is a one-dimensional U(bS)-module Cv with xv = λ(x)v for all x ∈ U(bS). The induced module

MS(λ) = U(g) ⊗U(bS) Cv,
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is a Verma type module as defined in [Co] and [FS]. The canonical central element c acts by multiplica-
tion by the scalar λ(c) on MS(λ), and we say that λ(c) is the level of MS(λ). Clearly, MS(λ) � U(g−S)

as a g−S-module.
When S = �+ , the module MS(λ) is an imaginary Verma module. It was shown in [F2] that the

imaginary Verma module MS(λ) is irreducible if and only if λ(c) �= 0.

3. Verma modules corresponding to the map ϕ

3.1. ϕ-Verma modules for the Heisenberg subalgebra

The subspace L := Cc ⊕ ⊕
n∈Z\{0} gnδ forms a Heisenberg Lie subalgebra of the affine algebra g.

Thus, [x, y] = ξ(x, y)c for all x ∈ gmδ , y ∈ gnδ , where ξ(x, y) is a certain skew-symmetric bilinear form
with ξ(gmδ,gnδ) = 0 if n �= −m, and whose restriction to gmδ × g−mδ is nondegenerate for all m �= 0.
The algebra L has a triangular decomposition L = L− ⊕Cc ⊕ L+ , where L± = ⊕

n∈N g±nδ .
Now let ϕ :N→ {±} be an arbitrary function defined on N = {1,2, . . .}. The spaces

L±
ϕ =

( ⊕
n∈N,ϕ(n)=±

gnδ

)
⊕

( ⊕
m∈N,ϕ(m)=∓

g−mδ

)

are abelian subalgebras of L, and

L = L−
ϕ ⊕Cc ⊕ L+

ϕ

is a triangular decomposition. Of course, if ϕ(n) = + for all n ∈ N, then L+
ϕ = L+ , and this is just the

triangular decomposition above.
Let Cv be a one-dimensional representation of Cc ⊕ L+

ϕ , where cv = av for some a ∈ C and
L+
ϕ v = 0. The corresponding ϕ-Verma module is the induced module

Mϕ(a) = U(L) ⊗U(Cc⊕L+
ϕ ) Cv.

Clearly, Mϕ(a) is free as a U(L−
ϕ )-module of rank 1 generated by the vector 1 ⊗ v .

When ϕ(n) = + for all n ∈ N, then Mϕ(a) is just the usual Verma module for the Heisenberg Lie
algebra L. Note that if ϕ1 �= ϕ2 then Mϕ1 (a) and Mϕ2 (a) are not isomorphic.

Remark 3.1. Let S = �+ and consider the imaginary Verma module MS(λ) where λ ∈ h∗ . This module
has both finite- and infinite-dimensional weight spaces relative to h. By [F2], the sum of the finite-
dimensional weight spaces in MS(λ) is the Verma module Mϕ(λ(c)) for the Heisenberg subalgebra L,
where ϕ is the function with ϕ(n) = + for all n ∈ N.

Since U(L) has a natural Z-gradation, we obtain for an arbitrary function ϕ the following:

Proposition 3.2. Mϕ(a) is a Z-graded L-module, where

Mϕ(a) =
⊕
n∈Z

Mϕ(a)n,

and Mϕ(a)n = U(L−
ϕ )n v. If ϕ(k) �= ϕ(�) for some k, � ∈ N, then Mϕ(a)n is infinite-dimensional for any n ∈ Z.

Proof. Suppose n ∈ Z�0 and set M = Mϕ(a). If ϕ(1) = −, then there is some r ∈ N so that ϕ(r) = +.
Let x ∈ Lδ and y ∈ L−rδ be nonzero. Since the vectors xn+kr yk v ∈ Mn are linearly independent for all
k � 0, we have that Mn is infinite-dimensional. Similarly, the vectors x(rk−1)n ykn v ∈ M−n are linearly
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independent for all k � 1, so that M−n is infinite-dimensional as well. The argument when ϕ(1) = +
is analogous. �
Proposition 3.3. Mϕ(a) is irreducible if and only if a �= 0.

Proof. Let {xi}i∈N be a basis of L+
ϕ of root vectors, and let {yi}i∈N be the dual basis of L−

ϕ so that

[xi, y j] = δi, jc for all i, j. Set k̄ = (k1,k2, . . .) where ki ∈ N ∪ {0} for each i and only finitely many ki

are nonzero, and say k̄ < �̄ if there is some s such that ki = �i for i < s and ks < �s . The elements
x(k̄) = ∏

i xki
i and y(k̄) = ∏

i yki
i are well defined since L+

ϕ and L−
ϕ are abelian. Moreover, the vectors

y(k̄)v as k̄ ranges over all such tuples in (N∪ {0})∞ form a basis for Mϕ(a).
Now suppose a �= 0, and let w = ∑

k̄ ξ(k̄)y(k̄)v be a nonzero element of Mϕ(a), where only finitely
many of the scalars ξ(k̄) ∈ C are nonzero. Let m̄ be the largest tuple with ξ(m̄) �= 0. Then since
xi y�

i v = [xi, y�
i ]v = �ay�−1

i v for each � � 0, it follows that

x(m̄)w = ξ(m̄)

(∏
i

mi !
)

a
∑

i mi v.

Since a �= 0, this implies that the submodule generated by w contains v and so is all of Mϕ(a). But w
was an arbitrary nonzero element, so Mϕ(a) is irreducible in this case.

If a = 0, then N := ⊕
k̄ �=0̄ Cy(k̄)v is a proper submodule. �

3.2. ϕ-Imaginary Verma modules for g

For ϕ : N→ {±}, next we construct a g-module containing a submodule for the Heisenberg subal-
gebra L isomorphic to Mϕ(a). Let λ ∈ h∗ and assume λ(c) = a. For

Sϕ = �re+ ∪ {
nδ

∣∣ n ∈N, ϕ(n) = +} ∪ {−mδ
∣∣ m ∈N, ϕ(m) = −}

,

where �re+ is as in (2.1), the spaces gSϕ = ⊕
α∈Sϕ

gα and g−Sϕ = ⊕
α∈−Sϕ

gα are subalgebras of g

affording a triangular decomposition g = g−Sϕ ⊕h⊕gSϕ of g. Let bϕ = h⊕gSϕ be the Borel subalgebra
corresponding to Sϕ , and observe that bϕ ⊃ Cc ⊕ L+

ϕ . Let Cvλ be a one-dimensional module for bϕ

with gSϕ vλ = 0 and hvλ = λ(h)vλ for all h ∈ h.
We say that the g-module

Mϕ(λ) := MSϕ (λ) = U(g) ⊗U(bϕ) Cvλ

is a ϕ-imaginary Verma module. We identify 1 ⊗ vλ with vλ . The U(L)-submodule of Mϕ(λ) generated
by vλ is isomorphic to Mϕ(a). If ϕ(n) = + for all n, then Mϕ(λ) coincides with the imaginary Verma
module MS(λ) above with S = �+ .

In the proposition below we collect some basic statements about the structure of Mϕ(λ). The
proofs are similar to the proofs of corresponding properties for the imaginary Verma modules in
[F2, Props. 3.4 and 5.3] and so are omitted.

Proposition 3.4. Let λ ∈ h∗ and assume λ(c) = a. If a �= 0, then Mϕ(λ) has the following properties.

• Mϕ(λ) is a free U(g−Sϕ )-module of rank 1.
• Mϕ(λ) has a unique maximal submodule and hence a unique irreducible quotient.
• supp(Mϕ(λ)) = ⋃

β∈Q̇+{λ − β + nδ | n ∈ Z}, where Q̇+ is the free abelian monoid generated by all the

simple roots in the base Π of �̇+ . (In the A(2)
2� -case, Q̇+ is the free abelian group generated by the simple

roots α ∈ (�̇s)+ and by the 1
2 α for the simple roots α ∈ (�̇l)+ .)

• If ϕ(k) �= ϕ(�) for some k, � ∈ N, then dim Mϕ(λ)μ = ∞ for any μ ∈ supp(Mϕ(λ)).
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We have the following irreducibility criterion for the modules Mϕ(λ).

Theorem 3.5. Let λ ∈ h∗ , λ(c) = a. Then Mϕ(λ) is irreducible if and only if a �= 0.

This theorem will be proved in Section 5.1 as a particular case of the main result (see Corol-
lary 5.7).

4. ZZZ-graded modules for Heisenberg algebras

In this section we consider Z-graded modules for the Heisenberg subalgebra L with nonzero action
of the central element c. To simplify the exposition, we will assume we have an infinite-dimensional
Heisenberg Lie algebra H = Cc ⊕ ⊕

i∈Z\{0} Cei , where [ei, e j] = δi,− jc, and [e j, c] = 0 for all i � 1 and
all j. The case of the Heisenberg subalgebra L can easily be reduced to H by choosing an orthogonal
basis in each root space gkδ and a dual basis in g−kδ for each k � 1.

Let K denote the category of all Z-graded H-modules V such that V = ⊕
j∈Z V j and eiV j ⊆ Vi+ j .

The irreducible modules in K on which c acts as zero (which we say have zero level) have been
classified by Chari in [C]. Irreducible modules with nonzero level, but with 0 < dimC V j < ∞ for at
least one j have been described in [F3].

Definition 4.1. Let V be a module for the Heisenberg Lie algebra H. Then we say

(a) V has i-torsion if eie−i has an eigenvector in V;
(b) V is a torsion module if V has i-torsion for all i ∈ Z \ {0};
(c) V is torsion free if it has no i-torsion for any i;
(d) V is locally finite if for any i ∈ Z \ {0}, eie−i is locally finite on V, that is, dim spanC{(eie−i)

k v |
k � 0} < ∞ for any v ∈ V;

(e) V is diagonal if the eie−i have a common eigenvector in V for all i ∈ Z \ {0}.

Clearly, diagonal and locally finite H-modules are torsion modules.

Lemma 4.2. Let V be an H-module such that c acts by the nonzero scalar a on V, and assume w ∈ V is an
eigenvector for e je− j with eigenvalue λ and for eie−i with eigenvalue μ for some i �= ± j. Then er

j w and es
− j w

are eigenvectors for e je− j with eigenvalues λ − ra and λ + sa respectively, and they are eigenvectors for eie−i
corresponding to eigenvalue μ.

Proof. The Heisenberg relations imply for r, s � 1 that

e− je
r
j w = (λ − ra)er−1

j w and e je
s
− j w = (

λ + (s − 1)a
)
es−1
− j w (4.3)

from which it follows (e je− j)er
j w = (λ − ra)er

j w and (e je− j)es
− j w = (λ + sa)es

− j w . The remaining
assertion is clear from the commuting properties in H. �
Proposition 4.4. Let V be an irreducible H-module with a scalar action of c.

• If V has i-torsion, then V has a countable basis which consists of eigenvectors of eie−i , that is, eie−i is
diagonalizable on V.

• If V is a torsion module, then V is locally finite.
• If V is diagonal, then the eie−i are simultaneously diagonalizable on V for all i ∈ Z \ {0}.
• If V is a diagonal module, then V is locally finite.

Proof. When V is irreducible, it is spanned by elements of the form e j1 e j2 . . . e jk v , where v �= 0 is
an eigenvector of eie−i . The first statement is obvious if the action of c is zero, and it follows from
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Lemma 4.2 if the action of c is nonzero. For the second part, suppose V is a torsion module for H.
Given i, choose a basis of V consisting of eigenvectors of Xi := eie−i . Suppose v = v1 +· · ·+ vs , where
Xi v j = λ j v j for j = 1, . . . , s. Then

∏ s
j=1(Xi − λ j)v = 0, and hence V is locally finite. Assume next

that V is a diagonal H-module, and choose a common eigenvector v of all the Xi . Then V has a
spanning set consisting of vectors of the form e j1 e j2 . . . e jk v , and applying Lemma 4.2 as before, we
conclude that the Xi are simultaneously diagonalizable on V for all i. The last statement also follows
immediately. �

Next we consider Z
∞-graded H-modules V. By that we mean V = ⊕

k̄∈Z∞ Vk̄ where if Vk̄ �= 0, then
k̄ = (k1,k2, . . .), ki ∈ Z, and kN = 0 for all N � 0. Moreover, we require that e± jVk̄ ⊆ Vk̄±ζ j

holds

for all j ∈ Z and k̄ ∈ Z
∞ . Here ζ j ∈ Z

∞ is the Kronecker multi-index with 1 at the jth place and 0
elsewhere.

Theorem 4.5. Any Z-graded irreducible diagonal H-module V with nonzero level has a Z
∞-gradation V =⊕

k̄∈Z∞ Vk̄ .

Proof. Let V = ⊕∞
n=0 Vn be a Z-graded irreducible diagonal H-module with c acting by the scalar

a �= 0. Then all e je− j are simultaneously diagonalizable on V by Proposition 4.4. In particular, all
the homogeneous spaces Vn have a basis consisting of common eigenvectors for the elements e je− j ,
j ∈ Z\{0}. For some n, choose 0 �= w ∈ Vn , a common eigenvector for all e je− j , j ∈ Z\{0}. Let H( j) be
the Heisenberg subalgebra generated by e j, e− j for each j. Then by (4.3), U(H( j))w is spanned by the

vectors er
j w , es

− j w for r, s � 0. Now for k̄ = (k1,k2, . . . ,km,0,0, . . .) ∈ Z
∞ consider y|k1|

1 y|k2|
2 · · · y|km|

m w ,
where yi = ei if ki � 0 and yi = e−i if ki < 0. These vectors span V = U(H)w by the irreducibility of V.
For each such k̄ ∈ Z

∞ , set Vk̄ = Cy|k1|
1 y|k2|

2 · · · y|km|
m w . Then V = ⊕

k̄∈Z∞ Vk̄ . The sum is direct, since by
Lemma 4.2, the eigenvalues of the e je− j are sufficient to distinguish them. Note that all compo-
nents Vk̄ are at most one-dimensional and that V remains irreducible as Z

∞-graded module. �
4.1. Irreducible diagonal modules over Heisenberg algebras

Let H be a Heisenberg algebra as in Section 4. Denote by KH,a the category of all finitely-generated
Z-graded diagonal H-modules V, where the central element c of H acts by the scalar a ∈ C. By
ZKH,a we denote the category of all finitely-generated Z

∞-graded H-modules V with c acting by a.
Theorem 4.5 implies that any irreducible module in KH,a belongs to ZKH,a . Therefore, to classify
irreducible modules in KH,a it is sufficient to classify irreducible diagonal modules in ZKH,a .

Denote by WZKH,a the full subcategory of ZKH,a consisting of all finitely-generated H-modules
on which eie−i is diagonalizable for all i ∈ Z \ {0} (with a countable basis of eigenvectors). Note that
by Proposition 4.4 any irreducible object of KH,a belongs to WZKH,a .

Let V ∈KH,a and V = ⊕
n∈Z Vn . We may assume that the generators of V are homogeneous (say in

the spaces Vni for i = 1, . . . , s) and are common eigenvectors for e je− j , j ∈ Z \ {0}. The module V is

spanned by the vectors
∏∞

j=1 y
|k j |
j w , where w ∈ Vni is a generator which is a common eigenvector for

the e je− j for all j; y j = e j if k j � 0 and y j = e− j if k j < 0; and kN = 0 for N � 0. We assign to such a

vector
∏∞

j=1 y
|k j |
j w the gradation niζ1 + k̄ ∈ Z

∞ , where ζ1 has 1 in the first position and 0 elsewhere.
This makes V into a Z

∞-graded module. Denote this Z
∞-graded module by F1(V). Note that F1 is not

well defined as a functor from KH,a to WZKH,a since it depends on a choice of generators in each V.
On the other hand, consider any M ∈ WZKH,a , M = ⊕

k̄∈Z∞ Mk̄ . Now define a Z-grading on M

as follows: for any n ∈ Z, set Mn = ⊕
k̄ Mk̄ , where the sum is over k̄ = (k1,k2, . . .) ∈ Z

∞ , such that∑∞
j=1 k j j = n. Denote this Z-graded module by F2(M). Hence we obtain a functor

F2 : WZKH,a →KH,a.

Note also that F2 preserves irreducibility.
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4.2. Weight modules for Weyl algebras

Fix a nonzero a ∈ C. For n = 1,2, . . . , consider the nth Weyl algebra An with generators xi, ∂i , i =
1, . . . ,n, and defining relations [∂i, ∂ j] = 0 = [xi, x j] and [∂i, x j] = δi, ja1. The algebra An is isomorphic
to the tensor product of n copies of the first Weyl algebra A1, which is the associative algebra of
differential operators on the affine line. We allow n to be ∞, in which case A∞ is just the direct limit
of the algebras An .

We will classify irreducible modules in KH,a using the classification of irreducible weight
A∞-modules. By specializing c to a and identifying ∂i with ei and xi with e−i for all i > 0 (after
a suitable normalization), we obtain an isomorphism of the universal enveloping algebra of H modulo
the ideal generated by c − a with A∞ . Hence, any irreducible module V ∈ KH,a becomes a module
for A∞ .

Set [n] = {1,2, . . . ,n} (where n = ∞ is allowed and [∞] =N). In An , the elements ti = ∂i xi , i ∈ [n],
generate the polynomial algebra D = C[ti | i ∈ [n]], which is a maximal commutative subalgebra of An .
Denote by G the group generated by the automorphisms σi , i ∈ [n], of D, where σi(t j) = t j − δi, ja1.
Then G acts on the set maxD of maximal ideals of D.

A module V for An is said to be a weight module if V = ⊕
m∈maxD Vm , where Vm = {v ∈ V | mv = 0}

(see [DGO,BB], and [BBF]).
If V is a weight module and Vm �= 0 for m ∈ maxD, then m is said to be a weight of V,

and the set {m ∈ maxD | Vm �= 0} of weights of V is the support of V. It follows easily from
the fact that xid = σi(d)xi and yid = σ−1

i (d)yi for all i and all d ∈ D that xiVm ⊆ Vσi(m) and
∂iVm ⊆ Vσ−1

i (m)
.

Each weight module V can be decomposed into a direct sum of An-submodules:

V =
⊕
O

VO, VO :=
⊕
m∈O

Vm

where O runs over the orbits of G on maxD. In particular, if V is irreducible, then its support belongs
to a single orbit.

Following [BBF], we say that a maximal ideal m of D is a break with respect to i ∈ [n] if ti ∈ m. Let
I(m) denote the set of breaks of m. An orbit O is degenerate with respect to i if i ∈ I(m) for some
m ∈O. Often we simply say O is degenerate without specifying i or m. When I(m) = ∅ for all m ∈ O,
then O is said to be nondegenerate.

A maximal ideal m of D is a maximal break with respect to I ⊆ [n] if ti ∈ m for each i ∈ I, and
t j /∈ τ (m) for each j ∈ Ic := [n] \ I and each τ ∈ G. The order of the maximal break is the cardinality
of I, which may be infinite.

We will always assume that a degenerate orbit O for An has a maximal break m. The only time this
assumption is necessary is when n = ∞ (see [BBF, Lem. 2.5]). We say that an An-module is admis-
sible if its weights belong to either a nondegenerate orbit or a degenerate orbit O with a maximal
break.

The classification of irreducible admissible weight An-modules was obtained in [BB], and in [BBF]
for the case n = ∞. We briefly recall this classification for the sake of completeness.

For a given orbit O, we define the set BO as follows. If O is nondegenerate, then any max-
imal ideal gives a maximal break with respect to the empty subset of [n]. We fix a choice of a
maximal ideal m in O, and set BO = {m} and Om = O. In this case I(m) = ∅, since there are no
breaks.

Now let O be a degenerate orbit, and assume m is a fixed maximal break in O. Let I= I(m) be
the set of breaks for m. Define

BO =
{(∏

j

σ
δ j

j

)
(m)

∣∣∣ δ j ∈ {0,1} if j ∈ I, δ j = 0 if j ∈ Ic, and only finitely many δ j �= 0

}
.

(4.6)



292 V. Bekkert et al. / Journal of Algebra 373 (2013) 284–298
The σi commute, so the product is well-defined. For each p = (
∏

j σ
δ j

j )(m) ∈ BO , we set

Op :=
{(∏

j

σ
γ j

j

)
(p)

∣∣∣ γ j = (−1)δ j+1k, k ∈ Z�0 if j ∈ I, and γ j ∈ Z if j ∈ Ic
}
, (4.7)

where only finitely many γ j are nonzero.
Suppose first that O is a nondegenerate orbit of G on maxD. Set A = An and

S(O) =
⊕
n∈O

D/n, (4.8)

and define a left A-module structure on S(O) by specifying for i ∈ [n] and d ∈ D that

xi(d + n) := σi(d) + σi(n), ∂i(d + n) := tiσ
−1
i (d) + σ−1

i (n). (4.9)

As S(O) is generated by 1 +m, we have that S(O) ∼= A/Am where 1 +m �→ 1 + Am.
Now assume that O is degenerate, and m is the fixed maximal break. For p ∈BO set

S(O,p) :=
⊕
n∈Op

D/n, (4.10)

where Op is as in (4.7). One can define a structure of a left A-module on S(O,p) by the same formulae
as in (4.9), but with the understanding that when the image is not in S(O,p), the result is 0. Assuming

p = (
∏

j σ
δ j

j )(m), we have in this case S(O,p) ∼= A/A〈p, zi, i ∈ I〉 where zi = xi if p is a break with
respect to i, and zi = ∂i otherwise. The isomorphism is given by 1 + p �→ 1 + 〈p, zi, i ∈ I〉. It follows
from the construction that S(O) and S(O,p) are irreducible A-modules.

Theorem 4.11. (See [BBF, Thm. 4.7].) Let O be an orbit of maxD under the group G. Then the modules S(O) and
S(O,p), where p ∈ BO , constitute an exhaustive list of pairwise nonisomorphic irreducible admissible weight
An-modules with support in O.

Let W(An) be the category of all finitely generated admissible weight An-modules, n � ∞, and let
Hn denote the (2n + 1)-dimensional Heisenberg Lie algebra with basis c, ei, e−i, i ∈ [n] (where n = ∞
is allowed, [∞] =N, and H∞ = H). Then we immediately have the following.

Corollary 4.12. Suppose a �= 0.

• Every irreducible module of the category KHn,a is isomorphic (up to an automorphism of Hn) to an irre-
ducible module in W(An) for any n < ∞.

• Every irreducible module of the category W(An) is isomorphic (up to an automorphism of Hn) to an irre-
ducible module in KHn,a for any n.

Note that KH,a contains irreducible modules which are non-admissible weight modules over A∞ .
The first such examples were constructed in [MZ]. Assume V = ⊕

i∈Z Vi ∈ KH,a . For any nonzero ho-
mogeneous v ∈ Vi , let s(v) = { j ∈ Z \ {0} | e j v = 0} ⊂ Z. Set

Ω = {
s(v)

∣∣ 0 �= v ∈ Vi, i ∈ Z
}
.

We say that V is admissible if every totally ordered subset of Ω (under containment of subsets) has
an upper bound. Denote by AKH,a (respectively AZKH,a) the full subcategory of KH,a (respectively
WZKH,a) consisting of admissible modules. Let AKHn,a , AZKHn,a , and WZKHn,a be defined similarly
for n ∈ N. Then we have
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Corollary 4.13. Assume a �= 0. Every irreducible module in the category AKHn,a is isomorphic (up to an auto-
morphism of Hn) to an irreducible module in W(An) for any n � 1.

Example 4.14. To illustrate Corollary 4.13, suppose O is nondegenerate, and m is the designated
maximal ideal of O. Consider the irreducible weight module for A = A∞ given by S(O) = A/Am =⊕

n∈O D/n, where D = C[ti | i ∈ N], and D/n ∼= C for any n ∈ O. Then S(O) becomes a Z-graded
irreducible H-module if we set

S(O) =
∑
k∈Z

Sk(O),

where

Sk(O) =
∑

η j∈Z,
∑

j jη j=−k

D
/((∏

j

σ
η j

j

)
(m)

)
,

where only finitely many η j are nonzero. The homogeneous space S0(O) = D/m.

As a consequence of Corollary 4.13 we have the following stronger version of Theorem 4.5.

Theorem 4.15. For nonzero a ∈ C, there is one-to-one correspondence between the isomorphism classes of
irreducible modules in the categories AKH,a, AZKH,a and W(A∞).

Combining Theorem 4.15 and Theorem 4.11, we obtain the classification of irreducible modules
in AKH,a .

4.3. Irreducible locally-finite modules over L

Now consider the Heisenberg subalgebra L = Cc ⊕ ⊕
k �=0 gkδ of the affine Lie algebra g. For each

k ∈ Z, k �= 0, assume dk = dimgkδ and write [dk] = {1, . . . ,dk}. Choose a basis {xk,i | i ∈ [dk]} for gkδ so
that [xk,i, x−k, j] = δi, jkc for all i, j. Then for every i and k, the elements xk,i and x−k,i generate a Lie
subalgebra isomorphic H1.

We will consider Z-graded L-modules V = ⊕
j∈Z V j where gkδV j ⊆ Vk+ j for all k and j. One can

easily extend Definition 4.1 to the algebra L substituting basis elements {e�} by {xk,i}.
Fix a ∈ C \ {0}. Let KL,a be the category of all Z-graded diagonal L-modules V where the central

element c of L acts by the scalar a ∈C. Similarly one defines categories AKL,a and AZKL,a . Clearly, all
statements from the previous sections can be generalized to the setup of the Heisenberg algebra L. In
particular, there exists the Weyl algebra Ã, generalizing A∞ , which takes into account the dimensions
of the spaces gkδ . Then Theorem 4.15 has the following straightforward generalization for L.

Corollary 4.16. For a ∈ C \ {0}, there is one-to-one correspondence between the isomorphism classes of irre-
ducible modules in the categories AKL,a, AZKL,a and W(̃A).

Example 4.17. Let a ∈ C \ {0} and ϕ : N → {±} be any function. Then the ϕ-Verma module Mϕ(a)

is an irreducible object in the categories KL,a and AZKL,a . If ϕ(k) = + and ϕ(�) = − for some
k, � ∈ N, then all the homogeneous components of Mϕ(a) in the Z-grading are nonzero and infinite-
dimensional.
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4.4. ϕ̃-Imaginary Verma modules for g

We will generalize the construction of the ϕ-Verma modules for L as follows. Set

J=
⋃
k∈N

{
(k, i)

∣∣ i ∈ [dk]
}
. (4.18)

Consider a function ϕ̃ : J → {±}, and define Lie subalgebras L±
ϕ̃

of L by the following rule. For k ∈
Z \ {0}, we say that xk,i ∈ L±

ϕ̃
if either k > 0 and ϕ̃(k, i) = ±, or if k < 0 and ϕ̃(−k, i) = ∓, where the

xk,i are as in the first paragraph of Section 4.3. Then

L = L−
ϕ̃

⊕Cc ⊕ L+
ϕ̃
,

where L±
ϕ̃

are abelian subalgebras of L.

Remark 4.19. The function ϕ̃ clearly depends on the initial choice of orthogonal bases in the imag-
inary root spaces gkδ with respect to the nondegenerate form on g. On the other hand, for each
positive integer k, the number of + and − in the image of ϕ̃ does not depend on the choice of bases.

Let Cv be a one-dimensional representation of Cc ⊕ L+
ϕ̃

with cv = av for a ∈ C and L+
ϕ̃

v = 0. Then

we construct the corresponding ϕ̃-Verma module

Mϕ̃ (a) = U(L) ⊗U(Cc⊕L+
ϕ̃

) Cv.

If ϕ̃(n, i) = ϕ̃(n, j) for all n and all i, j ∈ [dn], then Mϕ̃ (a) is just a ϕ-Verma module for L, where
ϕ(n) = ϕ̃(n, i) for each n and any i. For any function ϕ̃ , the ϕ̃-Verma module Mϕ̃ (a) is an object in
the categories KL,a and WZKL,a . One can easily see that Mϕ̃ (a) is irreducible if and only if a �= 0.

For any such function ϕ̃ and any λ ∈ h∗ with λ(c) = a, one can construct the ϕ̃-imaginary Verma
module Mϕ̃ (λ) over g generalizing the construction of Mϕ(λ) in the case of the function ϕ : N→ {±}:

Mϕ̃ (λ) := MSϕ̃
(λ) = U(g) ⊗U(bϕ̃ ) Cvλ.

Theorem 4.20. Let λ ∈ h∗ , λ(c) = a and assume ϕ̃ : J→ {±} is any function. Then Mϕ̃ (λ) is irreducible if and
only if a �= 0.

This theorem also will be proved in Section 5.1 as a particular case of the main result (see Corol-
lary 5.7).

4.5. Realization of locally-finite modules

Locally-finite L-modules have also been considered by Casati [Ca]. Following Casati’s work we will
construct realizations of irreducible locally-finite L-modules.

Let K⊆ N and set V =C[xi, x−k | i ∈ N, k ∈ K]. Then it is easy to verify that the following formulas
define a representation of A = A∞ on V:

∂i →
{

∂
∂xi

if i ∈N \ K
∂

∂xi
+ x−i if i ∈ K,

xi → xi for all i ∈N,

c → 1.
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This module is isomorphic to the universal module VK over A generated by a vacuum vector v , where
∂i v = 0 for any i ∈ N \ K. Hence VK � A/BK , where BK is left ideal of A generated by ∂i, i ∈ N \ K.
Clearly, this module is not irreducible.

Now for each k ∈ K, fix ϑk ∈ C, and let ϑ = {ϑk | k ∈ K}. Then we can construct the following
quotient of VK . Let BK,ϑ denote the left ideal of A generated by the elements ∂i , i ∈ N \ K, and
xk∂k − ϑk , k ∈ K, and denote the quotient by VK,ϑ = A/BK,ϑ .

Suppose that ϑk ∈ C \Z for all k ∈ K. In this case, ∂k and xi act injectively on VK,ϑ for all k ∈ K and
all i ∈ N. Let A(i) denote the rank one Weyl algebra generated by ∂i and xi . Using the irreducibility
of the Verma module over A(i) generated by a vacuum vector v such that ∂i v = 0, we conclude that
VK,ϑ is an irreducible A-module.

This construction can be generalized to the Heisenberg algebra L. In doing this, we will adopt the
notation from Section 4.3. Then an irreducible L-module V is diagonal if the elements xk, j x−k, j are
simultaneously diagonalizable on V for all k ∈N, j ∈ [dk].

Fix a nonzero a ∈ C, and take ϑk, j ∈ C for k ∈ K, j ∈ [dk]. Set ϑ = {ϑk, j | k ∈ K, j ∈ [dk]}. Consider
the L-module VK,ϑ,a = U(L)/BK,ϑ,a , where BK,ϑ,a is the left ideal of U(L) generated by x−k, j , k ∈ N \ K,
xk, j x−k, j − ϑk, j for k ∈ K, j ∈ [dk] and c − a. Then VK,ϑ,a is an irreducible L-module if and only if for
any k ∈ K and any j ∈ [dk], ϑk, j is not an integer multiple of ka. Moreover, applying Corollary 4.16 we
have

Theorem 4.21. Up to an automorphism of L, for any irreducible admissible diagonal L-module M of level a �= 0
there exist a set K⊆ N and scalars ϑk, j , k ∈ K, j ∈ [dk] with ϑk, j not an integer multiple of ka such that M is
isomorphic to VK,ϑ,a.

Corollary 4.22. Assume M is an irreducible L-module isomorphic to VK,ϑ,a. For K ⊆ N, set yk, j = x−k, j if
k ∈ N\K for all j ∈ [dk], and let yk, j = xk, j or x−k, j if k ∈ K for all j ∈ [dk]. Then for any nonzero vector v ∈ M,
the vectors

· · · y
p2,d2
2,d2

· · · y
p2,1
2,1 y

p1,d1
1,d1

· · · y
p1,1
1,1 v (4.23)

with exponents pk, j ∈ N∪ {0} for all k, j and only finitely many of them nonzero form a basis for M.

5. Generalized loop modules

In this section, we study modules over the affine Lie algebra g induced from modules in the
category KL,a via a construction analogous to that of the loop modules in [C]. Let S denote the set
given by

S = R ∪ {
nδ

∣∣ n ∈ Z \ {0}},
where R = �re+ , the positive real roots as in (2.1). Set P = h ⊕ gS , where gS = ⊕

β∈S gβ . Then P =
(h+ L) ⊕ gR , where gR = ⊕

β∈R gβ , and P is a parabolic subalgebra of g with Levi factor h+ L.
Let V ∈ KL,a , V = ⊕

k∈Z Vk , and assume a �= 0. Suppose λ ∈ h∗ is such that λ(c) = a. Extend the
module structure to P by setting gRV = 0, and hv = λ(h)v for any v ∈ V0 and any h ∈ h. Here V0 is the
0-component of V in the Z-grading. The action of h on the other components of V in the Z-grading
differs only in the value of the degree derivation; that is, for any w ∈ Vk , hw = (λ + kδ)(h)w for each
h ∈ h. (Recall that δ is zero on ḣ⊕Cc and δ(d) = 1.)

Now consider the induced g-module given by

M(λ,V) = U(g) ⊗U(P) V. (5.1)

When V is an irreducible module in the category KL,a , then M(λ,V) is said to be a generalized loop
module. When V is a ϕ-Verma module of L for some function ϕ : N → {±}, which has been extended
to a module for P by setting gRV = 0, then M(λ,V) ∼= Mϕ(λ), the ϕ-imaginary Verma module for g as
in Section 3.2.
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Proposition 5.2. Let λ ∈ h∗ and suppose that λ(c) = a �= 0. Let V be an irreducible module in KL,a. Then

• M(λ,V) is a free U(g−R)-module of rank 1.
• supp(M(λ,V)) = ⋃

β∈Q̇+{λ − β + nδ | n ∈ Z} where Q̇+ is as in Proposition 3.4.
• dim M(λ,V)μ = ∞ for any μ of the form μ = λ − β + kδ for some β �= 0 and k ∈ Z.
• dim M(λ,V)μ < ∞ only if V is a ϕ-imaginary Verma module for some ϕ : N→ {±}, ϕ(m) = ϕ(n) for all

m,n ∈N and μ = λ − (ϕ(m)m)δ for some m ∈N∪ {0}.

5.1. Irreducibility of generalized loop modules

Let λ ∈ h∗ , λ(c) = a �= 0, and assume V is a module in KL,a . Set

M̂(λ,V) =
⊕
k∈Z

M(λ,V)λ+kδ.

Then M̂(λ,V) is an L-submodule of M(λ,V) isomorphic to V.

Lemma 5.3. Let λ ∈ h∗ , λ(c) = a �= 0, and suppose that V is an irreducible module in KL,a. Then for any
nonzero submodule N ⊂ M(λ,V) we have N̂ = N ∩ M̂(λ,V) �= 0.

Proof. Let Π = {α1, . . . ,αn} be the base of simple roots for �̇, and assume α = ∑n
j=1 k jα j where each

k j is in Z�0 (or in 1
2Z�0 for any α j ∈ (�̇l)+ in the A(2)

2� case). Set ht(α) = ∑n
j=1 k j , the height of α.

The argument will follow the general lines of the proof of [F4, Lem. 5.4] and will proceed by induction
on the height. Say α � β = ∑n

j=1 � jα j if ht(α) < ht(β) or if ht(α) = ht(β) and k1 = �1, . . . ,ks = �s , but
ks+1 < �s+1.

By Theorem 4.21, we may assume V ∼= VK,ϑ,a for some K⊆ N and some ϑ . Let N �= 0 be a submod-
ule of M(λ,V). Assume v is a homogeneous generator of V, and let w ∈ N be a nonzero homogeneous
element. Then

w =
∑
i∈I

ui vi, (5.4)

where we may suppose that the vi are distinct monomial basis elements of the form (4.23) and the
ui are linearly independent homogeneous elements of U(g−R). We may suppose that for each i ∈ I

there is some �i ∈ Z such that ui ∈ U(g−R)−β+�iδ .
Initially assume ht(β) � 1, so that β is a simple root in �̇+ (or is 1

2 α j for some simple root

α j ∈ (�̇l)+ in the A(2)
2� case). Suppose 0 �= x ∈ gβ+mδ for some m ∈ Z. Then xvi = 0 for any i and

xw =
∑
i∈I

[x, ui]vi . (5.5)

Here [x, ui] ∈ g(m+�i)δ and [x, ui] �= 0 for all i (which can be seen from the loop realization of g).
Since the ui are linearly independent, and ui ∈ g−β+�iδ , which is one-dimensional, we have that
�i �= � j if i �= j. Fix i• ∈ I. Now using the notation of Section 4.3, we have that [x, ui• ] is a lin-
ear combination of the basis elements xm+�i• , j . We may suppose that m was chosen with |m|
sufficiently large so that m + �i• is not equal to k for any yk, j occurring in any of the vi , and
so that at least one of the xm+�i• , j appearing in [x, ui• ] equals ym+�i• , j in Corollary 4.22 (any
x-term not equal to a corresponding y-term will annihilate vi• ). Then [x, ui• ]vi• �= 0, and we
have found a nonzero element xw in N̂, which gives the starting point for induction on the
height.
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Suppose now that ht(β) > 1. A basis for U(g−R) consists of monomials of the form zpt
βt ,nt

· · ·
zp2
β2,n2

zp1
β1,n1

, where 0 �= zβ j ,n j ∈ g−β j+n jδ , β1 � β2 � · · · , and if βi = βi+1, then ni < ni+1. Thus, we
can assume for w in (5.4) that

w =
∑
i∈I

ui vi =
∑
i∈I

z
pi,t(i)
βi,t(i),ni,t(i)

· · · z
pi,2
βi,2,ni,2

z
pi,1
βi,1,ni,1

vi,

where for each i we have ui = z
pi,t(i)
βi,t(i),ni,t(i)

· · · z
pi,2
βi,2,ni,2

z
pi,1
βi,1,ni,1

; each factor zβi, j ,ni, j is basis element for

g−βi, j+ni, jδ and these basis elements are ordered as in the monomials above;
∑t(i)

j=1 βi, j = β; and∑t(i)
j=1 ni, j = �i . We may suppose that we have indexed the summands so β1,1 � β2,1 � · · · and that

among the βi, j with height equal to ht(β1,1), p1,1 is minimal.
Now suppose x ∈ gβ1,1−mδ is nonzero for some m ∈ Z, and observe that xvi = 0 for each i so that

xw is as in (5.5). Since [x, zβ1,1,n1,1 ] ∈ g(m+n1,1)δ , it is a linear combination of the xm+n1,1, j . We assume
that m has been chosen with |m| sufficiently large so that m + n1,1 is distinct from all the k with
yk, j occurring in some vi , and so that at least one of the xm+n1,1, j equals ym+n1,1, j . Since [x, u1] has

z
p1,t(1)

β1,t(1),n1,t(1)
· · · z

p1,2
β1,2,n1,2

z
p1,1−1
β1,1,n1,1

[x, zβ1,1,n1,1 ]vi �= 0 appearing in it, we will have 0 �= xw ∈ N. Because

ht(β − β1,1) < ht(β), we may apply induction to xw to find a nonzero element of N̂. �
Lemma 5.3 immediately implies our main result about the structure of generalized loop modules.

Theorem 5.6. Let λ ∈ h∗ , λ(c) = a �= 0, and assume V is an irreducible module in KL,a. Then M(λ,V) is an
irreducible g-module.

As a consequence of this result, any irreducible module V from the category KL,a with a �= 0
and any λ ∈ h∗ such that λ(c) = a will determine an irreducible module M(λ,V) for the affine Lie
algebra g. Let V and W be irreducible modules from KL,a with a �= 0, and suppose λ,μ ∈ h∗ with
λ(c) = μ(c) = a. Then the modules M(λ,V) and M(μ,W) are isomorphic if and only if V and W are
isomorphic as L-modules and λ = μ (up to a shift of gradation).

Corollary 5.7. Let λ ∈ h∗ , λ(c) �= 0, ϕ : N → {±} be any function, and let ϕ̃ : J → {±} be as in Section 4.4.
Then the ϕ-imaginary Verma module Mϕ(λ) and the ϕ̃-imaginary Verma module Mϕ̃ (λ) are irreducible.

5.2. Partial generalized loop modules

Now we consider particular examples of generalized loop modules. Assume I ⊂ N and let ϕ :
N \ I→ {±} be any function. Set KI = Cc ⊕ (

⊕
k∈I g±kδ) and let

K±
ϕ =

( ⊕
n∈N\I,ϕ(n)=±

gnδ

)
⊕

( ⊕
n∈N\I,ϕ(n)=∓

g−nδ

)
.

Then K := KI ⊕ K+
ϕ is a parabolic subalgebra of L. Let N be an irreducible diagonal Z-graded module

over the Heisenberg Lie algebra KI with nonzero level a. Extend the action to a module structure
over K by setting K+

ϕ N = 0. With these ingredients, we construct an induced diagonal L-module

V := VI,ϕ(N) = U(L) ⊗U(K) N.

Then V is the tensor product of the vector space N with the Verma module over the Heisenberg Lie
algebra Kϕ := K−

ϕ ⊕Cc ⊕ K+
ϕ . Standard arguments (compare Propositions 3.2 and 3.3) show

Lemma 5.8. The L-module V = VI,ϕ(N) is Z-graded and irreducible when a �= 0.
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Let λ ∈ h∗ be such that λ(c) = a, and suppose that M(λ,V) is the generalized loop g-module as-
sociated with λ and V = VI,ϕ(N). Alternately, we can construct an induced module directly from N
by first making N into a module for K ⊕ gR by having K+

ϕ ⊕ gR be in the annihilator subalgebra of N.
Then we can induce to a module U(g) ⊗U(K⊕gR) N for g.

Corollary 5.9. The g-module U(g) ⊗U(K⊕gR) N is isomorphic to M(λ,V) for V = VI,ϕ(N), and hence it is
irreducible.

Proof. It is sufficient to note that V = U(L)N and to apply Theorem 5.6. �
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