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Abstract

Attribute Grammars are the specification language of many tools that automatically generate pro-
gramming language implementations. We consider the problem of verifying properties of attribute
grammar specifications, particularly properties that are not well supported by existing tools. Rather
than propose methods for extending existing tool implementation techniques, we propose the use
of off-the-shelf formal methods tools as the basis for attribute grammar verification. Off-the-shelf
tools can provide significant expressive power at a much lower cost than extending an existing
evaluator generator. As a specific example, we describe how to use the Alloy model finding and
checking tool to verify properties of remote attribution constructs in the LIDO attribute grammar
specification language. A naive application of this approach has significant performance overheads;
we discuss techniques for limiting the scope of the problems that are solved to make the approach
tractable.

Keywords: Compiler generation, attribute grammars, formal methods, software verification.

1 Introduction

Attribute Grammars are a well-established formal notation for specifying the
semantics of programming languages and structured text [1,13,14,16]. Many
methods exist to generate efficient evaluators from attribute grammars [2,10].

Attribute evaluator generators typically focus on the core problem of pro-
ducing an efficient evaluator from a user-supplied attribute grammar. Peri-
pheral functionality that is potentially useful during development but not
required to produce an evaluator is often omitted. Examples of this kind of
functionality include browsers to show the attribute grammar from different
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perspectives or analyses for discovering or checking formal properties of gram-
mars. In other current work we are addressing the former kind of functionality
by developing integrated development environments for attribute grammars
including the application of program slicing methods to facilitate viewing [18].

The present paper focuses on the second class of functionality: formal
analysis of attribute grammar properties [3]. Of course, evaluator generators
have to analyse various formal properties of the input grammar to verify that
an evaluator can be produced or to produce a correct evaluator (e.g., attrib-
ute dependences, circularity). We are interested in providing analyses that
augment the feedback provided by generators.

Our techniques can be applied to many different analyses. To keep our
presentation concrete, we use as a running example the diagnosis of problems
with remote attribution constructs in the LIDO specification language from
the LIGA attribute grammar system [9]. The aim is to provide proper feedback
when an INCLUDING attribution construct reaches up the abstract syntax
tree (AST) to obtain an attribute value from an ancestor node, but where
the ancestor node will not necessarily be present in the tree. In this situation
we want to present the user with an example of the problem rather than just
a notification that the error exists (LIGA’s current behaviour). Section 2
provides more detail about LIDO and the INCLUDING problem.

Rather than modify existing attribute grammar systems to add extra feed-
back, we have chosen an approach based on an off-the-shelf formal methods
tool. Formal methods can provide an expressive platform for describing soft-
ware properties and assertions about them. The properties and assertions
are independent of particular programming notations, so front-ends can be
written to enable the analysis tool to be used with different languages. For
many problems a formal methods tool can be used to achieve an effective
implementation with much less effort than modifying an existing generator.
This strategy also maintains the modularity of the overall system because the
generator can focus on its task and the auxiliary tools can provide support for
peripheral problems.

Our method is based on formal relational models as supported by the
Alloy model finding and checking tool [6]. Section 3 summarises the relevant
capabilities of Alloy and discusses its suitability for the class of problems
we are addressing. A crucial aspect of the tool is its capability to provide
counterexamples to illustrate violations of assertions.

Section 4 provides the details of our method consisting of the following
main steps:

(i) The attribute grammar to be analysed is automatically translated into
a model specification that includes both properties of grammars in gen-
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eral and properties of the specific grammar under analysis (Sections 4.1
and 4.2). In our example, the general properties include the fact that
all grammars have a single root non-terminal and that non-terminals are
related by parent and child relationships which are inverses of each other.
Grammar-specific properties include the identity of the root non-terminal
and the parent relationship between non-terminals as implied by the pro-
ductions of the grammar.

(ii) The properties that we wish to check are expressed as assertions about
a model that conforms to the model specification (Section 4.3). The as-
sertions required are automatically derived from the attribute grammar.
In our example, for each remote attribution construct, we assert that the
ancestor node named in the construct must be reachable in all possible
ASTs.

(iii) The model specification and the assertions are then passed to Alloy for
automatic analysis. Alloy proceeds to generate models that conform to
the specification and check that the assertions are true for these models.
A model that doesn’t satisfy the assertions constitutes a counterexample.
In our example, a counterexample will consist of a model that describes a
particular AST and a path through it that does not contain the ancestor
node. We post-process the counterexample model from Alloy notation
back into a path in user-level notation for presentation to the user in an
error message.

Scalability is an important issue for formal models of software. An approach
based on formal methods is no use if it cannot handle realistic inputs. It
often turns out that the key to controlling scalability is to make sure that the
model specification is not overly specific. For our example, this means that
we must be careful not to try to model complete ASTs. Rather, we model
paths through ASTs, which allows models to omit non-terminals that do not
occur on the path being modelled. Section 5 evaluates the performance of our
analysis on an attribute grammar that specifies the semantic analysis for a
subset of Pascal and presents further modifications that significantly improve
performance.

2 LIDO and the INCLUDING problem

LIDO is the specification language of the LIGA attribute grammar system [9];
in turn, LIGA is the major semantic analysis component of the Eli language
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1 ATTR value: int;

2 RULE: dc ::= expr ’=’ COMPUTE

3 dc.value = expr.value;

4 END;

5 RULE: expr ::= expr ’+’ term COMPUTE

6 expr[1].value = ADD (expr[2].value, term.value);

7 END;

8 RULE: expr ::= term COMPUTE

9 expr.value = term.value;

10 END;

11 RULE: term ::= digit COMPUTE

12 term.value = digit;

13 END;

14 SYMBOL dc COMPUTE

15 printf ("%d\n", THIS.value);

16 END;

Figure 1. Desk Calculator for Addition

processor generation system [4]. LIDO 1 is descended from the ALADIN lan-
guage that was the specification language in the GAG system, a predecessor of
LIGA [8]. LIDO and ALADIN have many features in common with the main
difference being that LIDO only provides a general prefix-style for expressing
computations whereas ALADIN was a full-featured functional programming
language. Most notably, both of these languages have the INCLUDING con-
struct which is at the core of the main example problem addressed in this
paper.

2.1 Desk Calculator

To give a flavour of LIDO notation, Figure 1 shows a very simple attribute
grammar for a desk calculator with only an addition operator. The grammar
calculates the value of an input expression and prints it.

LIDO can introduce attributes independently of symbols using the ATTR
keyword, so line 1 of Figure 1 specifies that the value attribute has integer
type. Computations that define how to determine attribute values are given
in association with either non-terminal symbols or rules. In Figure 1 compu-
tations of the value attribute of the dc, expr and term symbols are given in
four rules with the productions that define their structure (lines 2–13). The
use of the terminal digit in line 12 refers to the intrinsic value of the terminal
as computed by the lexical analyser. The computation that prints the value of
the dc symbol is associated with the symbol rather than with the rule defining
dc because it does not need to refer to attributes of the descendants of the
dc symbol (lines 14–16). Computations use a prefix notation to call functions
defined outside the grammar notation. In this case, a library macro ADD is

1 For full details of LIDO and its use in the Eli system please consult the Eli documentation
available in the Eli distribution from http://eli-project.sourceforge.net.
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PEN UP PEN UP

DRAW 3 DRAW 1 *

NEP NEP ***

PEN DOWN PEN DOWN *****

DRAW 1 DRAW 5 *******

NEWLINE NEWLINE

NEP DRAW 7

PEN UP NEWLINE

DRAW 2 NEP

NEP

PEN DOWN

DRAW 3

NEWLINE

NEP

Figure 2. Simple Plotter Language Sample Program and Output

used to perform integer addition and the C printf function is used to print
the value of the expression.

2.2 Simple Plotter Language

In the desk calculator example, all attribute values of symbols on the left-hand
side of productions are derived from the values of attributes on the right-hand
side; that is, from immediate child nodes in the tree. This is a very simple
pattern of attribution. In more complex examples it is often useful to be able
to refer to attribute values from nodes which are further removed: either above
the current symbol in the tree or in the sub-tree rooted at the current symbol.

The left-hand two columns of Figure 2 show a program written in a simple
language that requires this sort of processing. The language allows control of
a plotter pen. The pen may be set to the UP state or the DOWN state. In
either state the pen can be moved to the right with the DRAW command.
The DRAW command takes an integer argument which determines how many
spaces to the right the pen will move. When the pen is DOWN, it will draw a
character for each space that it moves right. When the pen is UP, the pen will
also move to the right, but will not draw anything. There is also a NEWLINE
command that will place the pen on the first space of the next line. The
right-most column of the figure shows the output that is produced by this
program.

The complete Simple Plotter Language attribute grammar is given in Fig-
ure 3. The grammar uses Eli’s Pattern-based Text Generator (PTG) library
to accumulate the output in the chain attribute pentrace (initialised on line 5
and output on line 6). Each draw command has a pattern attribute holding
the output to be produced by that command (lines 24 and 28). The pattern
for a draw command is added to the pentrace chain in line 32.

For our purposes, the most relevant part of this grammar is the use of the
INCLUDING remote attribution construct in line 25. The language semantics
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1 ATTR pattern: PTGNode;

2 CHAIN pentrace: PTGNode;

3

4 RULE: program ::= pen blocks COMPUTE

5 CHAINSTART HEAD.pentrace = PTGNULL;

6 PTGOut (TAIL.pentrace);

7 END;

8 RULE: pen blocks LISTOF pen block END;

9

10 RULE: pen block ::= ’PEN’ pen modifier commands ’NEP’ COMPUTE

11 pen block.pattern = pen modifier.pattern;

12 END;

13 RULE: pen modifier ::= ’DOWN’ COMPUTE

14 pen modifier.pattern = PTGAsIs ("*");

15 END;

16 RULE: pen modifier ::= ’UP’ COMPUTE

17 pen modifier.pattern = PTGAsIs (" ");

18 END;

19 RULE: commands LISTOF command END;

20 RULE: command ::= draw END;

21 RULE: command ::= pen block END;

22

23 RULE: draw ::= ’DRAW’ length COMPUTE

24 draw.pattern = repeatPTG (length,

25 INCLUDING pen block.pattern);

26 END;

27 RULE: draw ::= ’NEWLINE’ COMPUTE

28 draw.pattern = PTGAsIs ("\n");
29 END;

30

31 SYMBOL draw COMPUTE

32 THIS.pentrace = PTGSeq (THIS.pentrace, THIS.pattern);

33 END;

Figure 3. Simple Plotter Language Attribute Grammar

are that the state of the pen for a draw command is to be obtained from
the block that immediately encloses the draw command. Thus the computa-
tion obtains the pattern to be applied when drawing from the draw symbol’s
pen block ancestor. On line 11 pen block obtains the actual pattern from its
pen modifier descendant (lines 14 and 17).

2.3 The problem with INCLUDING

The Simple Plotter Language grammar is correct but it illustrates a typical
situation where a mistake is easy to make. A likely initial attempt at specifying
the INCLUDING is:

RULE: draw ::= ’DRAW’ length COMPUTE

draw.pattern = repeatPTG (length,

INCLUDING pen modifier.pattern);

END;

In other words, we are attempting to directly access the pen modifier pattern
from the draw context. Unfortunately, this usage is statically illegal because
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pen modifier will never be an ancestor of draw. When processed by the Eli
system, this version produces the following error message.

"spl.lido", line 25,30: ERROR: in some contexts none

of the INCLUDING symbols is found

¿From this error message it can be difficult to diagnose the problem. In general
it requires careful analysis of the abstract syntax to determine the relationship
between draw and pen modifier.

Instead of just notifying the user about the error, the system could provide
a counterexample that illustrates the problem. In this case a counterexample
will be a path in some tree, from the context of the INCLUDING (draw) to the
root of the grammar, that does not include the required symbol (pen modifier).
The method we describe in the rest of this paper produces the following mes-
sages in addition to the one above.

"spl.lido", line 25,30: eg, can get to root via path:

draw -> command -> commands ->

pen block -> pen blocks -> program

"spl.lido", line 25,30: pen modifier symbol(s) will not be

reachable by INCLUDING in some trees

These messages clearly identify the problematic symbol and a way in which
the static requirements of INCLUDING are violated. With this information
the cause of the problem is almost always immediately apparent.

The INCLUDING problem is actually more complicated than presented
here. LIDO also allows computations to be associated with symbols instead
of rules. Moreover, it is possible to have class symbols that do not appear in a
production, contrasted with tree symbols that occur in productions and hence
in the AST. Class symbols can be inherited onto tree symbols thereby allowing
their attribution to be reused. This capability lies at the heart of LIGA’s
support for reusable attribution modules [11]. Since class symbols can have
attribution and hence INCLUDING constructs, any system for diagnosing
problems with INCLUDING must also take into account symbol inheritance.

2.4 Impact

It is easy to conceive of other forms of analysis that would be useful. For
example, once the user has received the extended message above, they will
probably want to find a common ancestor of pen modifier and draw. Once an
ancestor is determined, pen block in this case, the pattern can be transported
there and it will then be accessible from draw using an INCLUDING. So,
support for finding common ancestors is another potentially useful analysis.
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LIDO supports other remote attribution constructs. CONSTITUENT(S) is
similar to INCLUDING except that it creates a dependency between a symbol
and one or more other remote symbol below the current symbol in the tree.
The CHAIN construct creates a chain of dependent values which are threaded
throughout all the symbols in a depth-first left-to-right order through the tree.
These constructs have similar static checks that could be analysed in a similar
way to the INCLUDING problem illustrated in this paper.

The real benefit of automatic analysis of the kind described in this section
is apparent when bigger grammars are considered. If the attribute grammar
contains dozens of non-terminals, defined by 50–100 rules, with dozens of at-
tributes then manually determining the relationships between non-terminals
can mean wading through a large amount of irrelevant detail. This problem
gets even worse when the grammar is comprised of independent modules pos-
sibly with references to library modules or when the grammar was developed
by somebody else. In these cases the user may have to search through multiple
grammar files some or all of which were not written by them. In contrast, an
automatic approach integrates nicely with the normal reporting mechanisms
of the system and requires no extra work on the part of the user.

3 Formal Methods

Formal methods have been used for decades to aid in the development of soft-
ware, with the goal of ensuring that it meets its stated requirements. Formal
methods analysis tools, which are used to automate to a greater or lesser
extent the checking of the correctness of a system, can be divided into two
general types: proof assistants and model checkers.

Proof assistants (also known as theorem provers), guide users through a
series of logical deductions relating to their software specification. Systems
comprising complex data types can be described quite elegantly, using the
mathematically-based languages of proof assistants. In particular, infinite
structures such as trees pose no particular impediment to these techniques.

The level of automation available with different proof assistants varies, but
ultimately either an assertion is proved or a point is reached where no further
deductions can be made. If the proof is concluded successfully then a great
deal of information about the problem is established and one may have much
confidence in the result. However, if a proof cannot be completed, then the
technique provides very little additional information about the problem that
may help the developer progress with the development of the software. The
cause of the problem may be in the software under development, but it could
also lie with the proof tactics themselves. In general, successful use of a proof
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assistant requires significant intervention from the developer.

Like proof assistants, model checkers in general can verify the correct-
ness of a system however in contrast to proof assistants, model checkers do
not provide much additional information about a correct software descrip-
tion. However they can usually be used without developer intervention and
can identify counterexamples to illustrate the falsity of assertions. Counter-
examples can provide significant assistance during the software development
process because they point to specific circumstances in which desired proper-
ties of the software fail to hold. For our purposes, counterexamples are crucial
because they form the basis of providing better feedback to an attribute gram-
mar developer.

The most widely-known class of model checking tools operate on finite-
state models. The symbolic model verifier SMV is a well-known tool in this
class [15]. SMV takes a description of a finite-state machine and a specifica-
tion expressed as a statement in the Computational Tree Logic (CTL) which
is a form of temporal logic. The verification goal is achieved by a search
of the state space defined by the machine description. The search yields a
counterexample whenever it finds a state in which the CTL specification is
not satisfied. The counterexample consists of the sequence of states leading
up to that point. From the states in the counterexample the developer can
determine circumstances in which the machine would violate its specification.

Finite-state models are a powerful specification method and tools like SMV
are able to search very large state spaces. This method is most suitable for
verification of complex concurrent systems such as communication protocols or
hardware architectures where the notion of state is prevalent. We have applied
this approach to modelling attribute grammars but found the semantic gap
between the attribute grammar concepts we want to model and the notion
of finite-state machines to be too great. In attribute grammar analysis it is
not natural to think in terms of states and state variables and SMV doesn’t
support mechanisms for abstracting away from the underlying state-based
model. We were able to produce counterexamples using SMV but the machines
and specifications were unintuitive and unwieldy.

Instead, we have based our work on the Alloy tool 2 which provides some of
the advantages of both of the two types of formal methods described above [6].
The Alloy specification language uses a first-order relational logic, is declar-
ative and is based on the formal specification language Z [17]. Unlike Z,
Alloy specifications can be analysed automatically in much the same way as a
finite-state machine specification can be analysed by a model checker. Just like
model checkers based on finite-state models, Alloy provides counterexamples

2 Alloy is available at http://alloy.mit.edu.
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to illustrate non-satisfiable assertions.

Alloy’s method is governed by the scope of the model which limits the
maximum size of the atom sets underlying the modelled relations. Thus the
approach is fundamentally incomplete in the sense that an unduly small scope
may prevent a counterexample from being found. We do not believe this is
a serious problem for our approach since we are not relying on the model
checkers ability to detect errors but rather to illustrate errors that are already
known to exist. We discuss the issue of scope selection in Section 5.

Unlike finite-state model checkers, Alloy’s specification language is ex-
pressive enough to make it easy to reason about systems with states made
of complex data structures. Alloy’s expressive relational language is therefore
well suited to describing the tree or graph-like structures inherent in attribute
grammars. Further, since a grammar is not a dynamic system, but rather a
static structure, Alloy’s relational logic provides a more intuitive language for
describing assertions regarding a grammar than a temporal logic such as CTL.

3.1 Alloy by example

This section briefly introduces the Alloy specification language by way of a
simple model specification of families. This example is loosely based on sample
code supplied with the Alloy distribution. We will introduce Alloy notations
informally since in most cases they correspond closely with well-known con-
cepts of logic and mathematical relations. The Alloy manual contains a full
description of the specification language syntax and semantics [6].

The family model specification begins by specifying a class of atoms rep-
resenting people.

sig Person {
spouse: option Person,

parents: set Person

}
The above statement declares a class of people by declaring the “signature”
of relations in which people participate. A person p is related to their spouse
(who is also a person) and is related to a set of people who are the parents of
p. The spouse relation is optional (i.e., possibly empty) since not all people
have a spouse.

We partition the class of people into sub-classes of men and women using

part sig Man, Woman extends Person {}
Facts are statements regarding the membership of sets, and relations between
atoms of sets that are true of all arrangements of atoms. For example, a
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biological fact that no person can be their own ancestor could be written as:

fact Biology {
no p:Person | p in p.^parents

}
In more mathematical words this fact states that there is no member p of the
class of people such that p is in the set formed by taking the transitive closure
on the parents relationship starting at p.

Facts regarding social norms of the spouse relationship could include:

• The spouse relationship is symmetric (the tilde symbol ˜ represents the
transpose of the given relationship).
all p:Person | p.spouse = p.~spouse

• Nobody is his or her own spouse.
no p:Person | p.spouse = p

• A man’s spouse is a woman and vice versa.
Man.spouse in Woman && Woman.spouse in Man

We might like to see whether our model prohibits intermarriage. We define
this to mean that no person’s spouse is either their sibling or their parent or
other direct ancestor. None of the facts above explicitly restricts the model in
this way, but we can check whether they implicitly define this restriction by
specifying the requirement as an assertion and searching for a counterexample
to the assertion. Here is one possible assertion:

assert NoIntermarriage {
no p:Person | some p.spouse &&

((some p.spouse.parents & p.parents) ||

(p.spouse in p.^parents))

}
In other words, the assertion says that there is no person p who has a spouse
where the spouse has a parent in common with p or where the spouse is an
ancestor of p.

When presented with the model specification and this assertion, Alloy
generates models that satisfy the specification and checks that the assertion
is true in each of these models. It is important to appreciate the difference
between facts and assertions. Facts specify constraints that models must obey
to conform to the specification. Alloy will not consider models that do not
satisfy the facts. Assertions specify properties that we expect to hold but may
not actually hold for some models.

Since typical specifications describe potentially infinite structures, it is
necessary to restrict the scope of the classes used to generate models. In our
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example, we must restrict the size of the Person class; in other words, we
must specify the maximum number of people in a model that is to be checked.
For this specification the assertion fails on some models with a Person class
having scope of just three. The counterexample generated by Alloy is the
obvious one: Person 0 is the parent of both Person 1 and Person 2, and Person
1 and Person 2 are spouses of each other. Armed with the knowledge that
the existing constraints are not sufficient, the developer can add additional
constraints to the specification to ensure that this situation is not allowed.

Clearly the question of the scope of a model is important for practical
verification with Alloy. The scope must be restricted so that the method is
tractable. Alloy is implemented by translating the model specification into
a Boolean expression that is passed to an off-the-shelf SAT solver [5]. SAT
solving technology is currently quite powerful but still has limits on the size
of the expressions that can be practically analysed. By restricting the scope
of the underlying sets in an Alloy model we can limit the size of the expres-
sions that must be solved. Of course, the limit means that verification is not
complete. Even if Alloy fails to find a counterexample, there may be larger
models that violate assertions. In practice, experience shows that tractable
model sizes suffice to find problems with realistic model specifications [7,12].

4 Modelling the INCLUDING Problem

Now we turn to the task of modelling the INCLUDING problem outlined in
Section 2 using the Alloy specification language. First, we consider how to
capture the properties that all attribute grammars have which are needed to
solve the INCLUDING problem. Then we consider extending the specifica-
tion with details of a particular attribute grammar using the Simple Plotter
Language grammar from Section 2 as an example. Once the specification is
complete, we show how to express assertions about the static requirements of
INCLUDING constructs. We then describe how to extend the model to deal
with LIDO’s symbol attribution inheritance construct.

The techniques described in this section are independent of the particular
attribute grammar notation. They have been embodied in an Eli-specific tool
that translates LIDO attribute grammars into Alloy specifications. Thus the
analysis process is completely automatic. We evaluate the approach in the Eli
setting in the next section.

4.1 Properties of attribute grammars in general

For our purposes, the relevant properties of an attribute grammar relate to
paths in the ASTs conforming to the underlying context-free grammar. To this
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sig GGraph[s] {
root : s,

parent : s -> s,

child : s -> s

} {
// child is the transpose of parent

child = ~parent

// Don’t allow cycles

no n : s | n in n.^child

// No disconnected components

s in root.*child

}

Figure 4. Alloy specification of the relationship between non-terminal symbols in ASTs.

end, we model the relationships between non-terminal symbols in the AST.
There is a distinguished root non-terminal and a parent relationship between
non-terminals. A non-terminal X is a parent of a non-terminal Y if X occurs
on the left-hand side of a production and Y occurs on the right-hand side of
the same production. All non-terminals except the root will have at least one
parent. Terminal symbols are ignored because they cannot have associated
attribution in LIDO and hence don’t figure in the INCLUDING problem.

Figure 4 shows an Alloy specification GGraph of the parent-child relation-
ship. The specification is generic in s which is the class of atoms representing
non-terminal symbols. The first part of the specification declares the relevant
relations: a unary relation representing the root, then the binary parent re-
lation. Some properties are easier to state with a child relation than with a
parent relation so we declare that too.

After the signature are facts (or constraints) that must always hold for
every instance of GGraph. First, the child relation is just the transpose of
the parent relation so that only one of them needs to be defined explicitly.
Second, we don’t allow cycles in the child relation; this enables us to use a finite
model to describe potentially infinite ASTs arising from a recursive grammar. 3

Finally, we make sure that all components of the model are connected by
requiring that all symbols are accessible from the root.

GGraph defines all of the relationships between non-terminals. For the
INCLUDING problem we need to be able to talk about particular paths in
this graph. The following specification builds on the GGraph signature, adds
no relations, but adds a fact that restricts the path models to those where
each symbol has at most one child. For any single GGraph instance there will
be potentially many GPath instances representing all of the different paths
from symbols to the root.

3 Note that this decision is justified by the nature of the INCLUDING problem. We don’t
need to consider what happens to recursive occurrences of a non-terminal X because they
will be legal if and only if the non-recursive occurrences of X are legal.
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sig GPath[s] extends GGraph[s] {
} {

all n : s | sole n.child

}
Finally, we declare a class of symbols. This class serves as a placeholder and
will be extended by the actual symbols from a grammar in the next section.

sig Symbol {}

4.2 Properties of specific attribute grammars

Models of specific attribute grammars conform to the specifications in the
previous section but also have to provide details to fill in the gaps in those
specifications: the identity of the symbols (including which one is the root)
and the nature of the parent or child relation.

The non-terminal symbols of the grammar are declared by extending the
general Symbol class. 4 We require that the class for a particular symbol
be disjoint from that of the other symbols (indicated by the disj keyword);
otherwise, Alloy would permit models which equate different symbols.

disj sig program, pen blocks, pen block, pen modifier,

commands, command, draw extends Symbol {}
Since we do not need to consider recursive constructs, we can limit each of
these symbol classes to contain at most one atom. This constraint significantly
reduces the size of the search space.

fact atMostOne {
sole program

sole pen blocks

...

}
The identity of the root symbol and the nature of the parent or child relation
are specified by a fact about all instances g of the GGraph specification instan-
tiated with the symbol class s being Symbol. We choose to define the child
relation explicitly because it is more intuitive than the parent relation; the
parent is implicitly defined by the transpose constraint given in the previous
section.

fact {
4 In the following we assume that LIGA identifiers can be safely used directly in an Alloy
specification. In practice, some syntactic changes are required to ensure that these uses are
legal.
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all g : GGraph[Symbol] |

g.root in program

&&

g.child in (program -> pen blocks +

pen blocks -> pen block +

pen block -> (pen modifier + commands) +

commands -> command +

command -> draw +

command -> pen block)

}
The first part of the fact body says that it concerns all GGraph[Symbol] graphs
g. Then we specify that program is the root of g. Then the child relation
is defined by enumerating its constituent pairs as given by the context-free
grammar; for example, the pair (program,pen blocks) is in the child relation
because of the production program ::= pen blocks.

4.3 Assertions about remote attribution

Finally we need to express assertions that describe the static requirements
of the INCLUDING constructs in the attribution. 5 In the erroneous Simple
Plotter Language example there is only one INCLUDING:

RULE: draw ::= ’DRAW’ length COMPUTE

draw.pattern = repeatPTG (length,

INCLUDING pen modifier.pattern);

END;

The requirement implied by this INCLUDING is that from a draw context it
will always be possible to go up the AST and find a pen modifier node. We
can express an assertion that this requirement holds in Alloy as follows:

assert drawIncludespen modifier {
all p : GPath[Symbol] |

all x : draw |

some y : pen modifier |

y in x.^(p.parent)

}

5 The general form of INCLUDING allows more than one attribute to be specified, in which
case the construct is legal if any one of the specified symbols is present as an ancestor in
any AST. Our method easily extends to dealing with multiple symbols in INCLUDINGs
but we omit the detail for space reasons.
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In other words, for all paths in the graph, for each instance of a draw symbol
there must be a pen modifier that is in the transitive closure of the path’s
parent relation starting at the draw.

When presented with the model specification from the previous two sec-
tions and this assertion, we can ask Alloy to search for models that conform
to the specification but violate the assertion. We use the following Alloy check
statement to constrain the scope of the models to include no more than five
symbols since there can be no more than five symbols in a path from any
symbol to the root of this grammar. Also, we only use one GGraph instance
because it can be shared between all paths.

check drawIncludespen modifier for 5 but 1 GGraph[Symbol]

One model that violates the assertion contains the following child relation:

p.child = (program -> pen blocks +

pen blocks -> pen block +

pen block -> commands +

commands -> command +

command -> draw)

which conforms to the following erroneous path:

draw -> command -> commands -> pen block ->

pen blocks -> program

4.4 Modelling symbol inheritance

Up to this point our model specification only deals with tree symbols. We
must add modelling of inheritance relationships in order to be able to deal
properly with INCLUDING constructs that occur in class symbol attribution
or that refer to a class symbol as the ancestor symbol that must be present.
Figure 5 shows a simple example of the former case. The tree symbols are A,
B, C and D (lines 2–7). The sole class symbol is Q (line 9) which is inherited
onto D (line 8). The computation of Q.value makes use of an INCLUDING
to obtain the value from a B ancestor (line 10). If the D associated with the
Q is derived from B then the INCLUDING is legal, but D can also be derived
from C and then from A in which case no B is present.

To model symbol inheritance we extend the basic graph model with the
following two relations which are transposes of each other:

sig GGraph[s] {
...

inherits : s -> s,
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1 ATTR value: int;

2 RULE: A ::= B COMPUTE

3 B.value = 1;

4 END;

5 RULE: A ::= C END;

6 RULE: B ::= D END;

7 RULE: C ::= D END;

8 TREE SYMBOL D INHERITS Q END;

9 CLASS SYMBOL Q COMPUTE

10 INH.value = ADD (INCLUDING B.value, 1);

11 END;

Figure 5. A simple attribute grammar using symbol inheritance.

inheritedby : s -> s

} {
...

inherits = ~inheritedby

s in root.*child + (root.*child).*inherits

}
We have also extended the reachability fact to include the possibility of reach-
ing a symbol via the inheritance relationship. This makes sure that class
symbols are connected to the rest of the model. The definitions of GPath and
Symbol remain as before.

To distinguish between tree and class symbols we add an extra level of
discrimination to the symbol class and ensure that there are no other symbols.

disj sig TreeSymbol, ClassSymbol extends Symbol {}
fact { Symbol = TreeSymbol + ClassSymbol }

The actual symbols in the grammar then extend either TreeSymbol or ClassSym-
bol as appropriate.

disj sig A, B, C, D extends TreeSymbol {}
disj sig Q extends ClassSymbol {}

The root of the grammar and the child relationship are specified as before but
are augmented by a specification of the inheritance relationship between D
and Q.

fact {
all g : GGraph[Symbol] |

g.root in A

&&

g.child in (A -> (B + C) +

B -> D +

C -> D)

&&
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g.inherits in (D -> Q)

}
A slight complication arises due to the fact that Alloy may choose to omit any
of the symbols from the model of a particular path. Only the symbols that
are actually on the path need to be in the model. However, if one of those
symbols inherits one or more class symbols, then we must make sure that these
class symbols are also in the model. Otherwise, we are not able to properly
model the situation where an INCLUDING refers to a class symbol that is
inherited onto an ancestor symbol. For the example, we need the following
extra constraints which specify: 1) that if there is a D in the model then there
must be a Q too, and 2) that if there is a D in the model then every path
should have the inheritance relationship between D and Q.

fact {
some D => some Q

some D => all p : GPath[Symbol] | (D -> Q) in p.inherits

}
To express the requirement of the INCLUDING in line 10 of Figure 5 we use
the following assertion.

assert QIncludesB {
all p : GPath[Symbol] |

all x : Q |

some y : B |

y in (x.*(p.inheritedby).^(p.parent).*(p.inherits))

}
which has the same form as before except it traverses the inheritance relation
as well as the parent one. The requirement on the last line ensures that we
follow the inheritance relation down from Q to any tree symbols that inherit
Q, then go up the AST via the parent relation from those tree symbols, and
then include any class symbols inherited to the ancestor tree symbols that we
find. With this assertion we can check the INCLUDING with the command

check QIncludesB for 3 but 1 GGraph[Symbol]

and Alloy will find the following counterexample:

Q -> D -> C -> A

5 Evaluation

Our early attempts to develop models required us to model the entire grammar
at once. This turns out to be a poor strategy because it results in models
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that are so large as to be intractable to generate and check. On non-trivial
grammars we always gave up waiting for Alloy to produce a counterexample.

The version we present in this paper remedies this deficiency by only mod-
elling paths, which in general contain many fewer symbols than the whole
grammar. Put another way, the scope required for the symbol class need only
be big enough to deal with the longest possible non-recursive path. For real-
istic grammars, we can expect this to be in the order of 10 to 20 symbols. The
relations representing symbols that do not occur on the path can be empty so
they don’t contribute to the complexity of the solution process.

Our main evaluation has been performed on a grammar that performs
semantic analysis for a subset of Pascal [19]. The grammar has 52 productions
and uses 68 tree symbols and 25 class symbols; the class symbols come mostly
from library modules. There are 36 INCLUDING constructs in the grammar.
We ran our experiments on an Apple Powerbook G4 with 1 GHz processor
and 1GB RAM running Mac OS X 10.2.6.

We developed an Eli package that can be invoked by the user when LIGA
reports an INCLUDING problem. We implemented a translator that takes
LIDO attribute grammars and translates them into Alloy specifications as de-
scribed in Section 4. 6 (For the Pascal subset grammar the Alloy specification
is generated in a few seconds.) The Eli package translates the user’s LIDO
specifications, runs Alloy, translates the counterexamples (if any) in the Alloy
output back into LIDO terminology, and presents the counterexample in an
error message as shown in Section 2.3. If Alloy fails to produce a counter-
example then the user will just see the original LIDO messages.

We timed the analysis of the correct Pascal subset grammar in order to
determine worst case times. 7 Our current measurements show that it is pos-
sible to analyse all 36 of the INCLUDINGs in about 20 minutes of user time
with a scope of 10, or 34 minutes with a scope of 15. (The two different scopes
produce the same results.) These times benefit significantly from the decision
described in Section 4.2 to limit each symbol class to hold at most one atom.
Without this restriction a full analysis with scope 10 takes over 20 hours.

We expect our approach to be most useful once a problem with a specific
INCLUDING has been diagnosed by some other method (e.g., via a message
from LIGA). Thus, a more realistic use case is to analyse just one INCLUDING
at a time. We examined the individual INCLUDINGs in our test case and

6 Our current translator does not implement one aspect of LIGA semantics: If symbol
X inherits from symbol Y and Y has a definition of an attribute, then X can override
that definition. If Y ’s version involves an INCLUDING our current tool will incorporate
checking for that INCLUDING even though it has been overridden and will not be used.
7 We have not observed any memory consumption problems so we don’t report these meas-
urements here.
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determined the one that takes the biggest proportion of the analysis time. It
requires about 24 seconds with a scope of 10 or one minute with a scope of 15.
These times do not quite yield interactive performance but are quite bearable
for those rare situations where a diagnosis is needed.

In ongoing work, we expect to see performance improvements due to:

(i) Only modelling erroneous INCLUDING constructs. Our current model
specifications incorporate the whole grammar and assertions for every
INCLUDING. A better strategy is to target the models towards solving
only those INCLUDINGs that are triggering LIGA errors. We expect to
see diagnosis times for a problem with a single INCLUDING in the order
of ten seconds for grammars of reasonable size.

(ii) More accurate setting of the scope of the model. At present we use a
fixed scope for all grammars. A better approach would be to calculate the
maximum scope needed for a specific grammar so that we can guarantee
that no counterexample is missed but limit the redundant work that must
be done. In the INCLUDING case, this would be a measure of the longest
possible non-recursive path.

(iii) Improvements in the SAT solving technology underlying the Alloy tool.
Since we are using Alloy as a black box, we can automatically benefit as
better off-the-shelf SAT solvers come along.

6 Conclusion and Future Work

We have described a practical method for analysing attribute grammar spe-
cifications using an off-the-shelf formal methods tool. We have demonstrated
the effectiveness of the method by showing how a typical problem involving re-
mote attribution can be diagnosed automatically. Our analysis tool is portable
to other attribute grammar notations. Performance is almost acceptable for
interactive use and we have outlined modifications that we expect to improve
it even further.

Our work demonstrates that using an off-the-shelf tool approach is a viable
alternative to modifying existing tools. The tradeoff was whether the effort
to develop the LIDO to Alloy translator was likely to be more than the effort
required to modify LIGA. We believe this was clearly the case for us, being
non-LIGA experts, but we haven’t conducted a formal comparison. Also,
a large part of our translator could be used to build a translator for other
attribute grammar systems.

We plan to extend our tool to diagnose problems with other attribute
grammar constructs starting with other forms of remote attribution. We will
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also investigate whether a formal methods approach can be used to diagnose
semantic errors in attribute grammars particularly problems with the use of
standard library modules.
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