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Abstract

An m-by-n matrix A is called totally nonnegative if every minor ofA is nonnegative. The
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1. Introduction

The Hadamard product of two m-by-n matricesA = [aij ] andB = [bij ] is de-
fined and denoted by

A ◦ B = [aij bij ].
The Hadamard product plays a substantial role within matrix analysis and in its ap-
plications (see, for example, [12, Chapter 5]). A matrix is calledtotally positive, TP
(totally nonnegative, TN) if each of its minors is positive (nonnegative), see also
[1,7,14]. This class arises in a long history of applications [10], and it has enjoyed
increasing recent attention.

Some classes of matrices, such as the positive definite matrices, are closed
under Hadamard multiplication (see [11, p. 458]), and given such closure, inequal-
ities involving the Hadamard product, usual product, determinants and eigenvalues,
etc. may be considered. For example, Oppenheim’s inequality states that

det(A ◦ B) �
n∏

i=1

aii detB

for any two n-by-n positive definite matricesA = [aij ] and B (see [11, p. 480]).
Since Hadamard’s inequality

detA �
n∏

i=1

aii

also holds for positive definite matricesA = [aij ], it follows from Oppenheim that

det(A ◦ B) � det(AB),

i.e., the Hadamard product dominates the usual product in determinant.
Unfortunately, it has long been known (see also [13,16]) that TN matrices are not

closed under Hadamard multiplication; e.g., for

W =

1 1 0

1 1 1
1 1 1


 , WT =


1 1 1

1 1 1
0 1 1


 , (1)

W is TN, but

W ◦ WT =

1 1 0

1 1 1
0 1 1




is not. Similarly, TP is not Hadamard closed. Not surprisingly then inequalities such
as Oppenheim’s do not generally hold for TP or TN matrices. However, there has
been interest in significant subclasses of the TP or TN matrices that are Hadamard
closed, i.e., are such that arbitrary Hadamard products from them are TP or TN. Some
of these subclasses include tridiagonal TN matrices, inverses of tridiagonal M-matri-
ces, nonsingular totally nonnegative Routh–Hurwitz matrices, certain Vandermonde
matrices, etc.; discussion of such classes may be found in [8,9,15–17,19].
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Our interest here is similar but in a different direction: what may be said about
those special TN matrices whose Hadamard product withany TN matrix is TN?
Thus, we define theHadamard core of them-by-n TN matrices, CTNm,n, as follows:

CTNm,n = {A ∈ TN : B ∈ TN ⇒ A ◦ B ∈ TN} .

When the dimensions are clear from the context we may delete the dependence onm
andn. It is a simple exercise that for min{m, n} � 2, CTN= TN, but as indicated by
the nonclosure, CTN is properly contained in TN otherwise (min{m, n} > 2). The
Hadamard core of TP may be similarly defined, but, as its theory is not substantially
different (because TN is the closure of TP), we do not discuss it here.

We first begin to describe CTN and are able to give a complete description when
min{m, n} < 4. Interestingly, perhaps the simplest description is via two test ma-
trices, and we raise the question as to whether there is a finite set of test matrices
in general. Surprisingly the core seems rather large. We also characterize the zero–
nonzero patterns for which every TN matrix lies in the core. This gives insight into
the core in general, as, for example, any tridiagonal TN matrix lies in the core. One
motivation for considering the core is that we are able to show that Oppenheim’s
inequality does hold when, in addition toB being TN,A lies in the core. The proof
requires noting facts about certain “retractibility” properties of TN matrices (see [5]),
that are of independent interests. This work naturally raises further questions, some
of which we mention at the conclusion.

2. Preliminaries and background

The set of allm-by-n matrices with real entries will be denoted byMm,n, and if
m = n, Mn,n will be abbreviated toMn. ForA ∈ Mm,n the notationA = [aij ] will in-
dicate that the entries ofA areaij ∈ R, for i = 1, 2, . . . , m andj = 1, 2, . . . , n. The
transpose of a givenm-by-n matrix A will be denoted byAT. For A ∈ Mm,n, α ⊆
{1, 2, . . . , m}, andβ ⊆ {1, 2, . . . , n}, the submatrix ofA lying in rows indexed byα
and the columns indexed byβ will be denoted byA[α|β]. Similarly, A(α|β) is the
submatrix obtained fromA by deleting the rows indexed byα and columns indexed
by β. If A ∈ Mn andα = β, then the principal submatrixA[α|α] is abbreviated to
A[α], and the complementary principal submatrix isA(α). If x = [xi] ∈ Rn, then
we let diag(xi) denote then-by-n diagonal matrix with main diagonal entriesxi . We
begin with some simple yet useful properties concerning matrices in CTN.

Proposition 2.1. Suppose A and B are two m-by-n matrices in the Hadamard core.
Then A ◦ B, the Hadamard product of A and B, is in the Hadamard core.

Proof. Let C be anym-by-n TN matrix. ThenB ◦ C is TN sinceB is in CTN. Hence
A ◦ (B ◦ C) is TN. ButA ◦ (B ◦ C) = (A ◦ B) ◦ C. ThusA ◦ B is in CTN, sinceC
was arbitrary. �
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Note that ifD = [dij ] is a diagonal matrix, then detDA[α|β] = detD[α]detA[α|
β]. Hence ifA is TN, thenDA is TN, for every entry-wise nonnegative (and hence
totally nonnegative) diagonal matrixD. Moreover, observe thatD(A ◦ B) = DA ◦
B = A ◦ DB, from which it follows thatDA is in CTN wheneverD is a TN diagonal
matrix andA is in CTN. The above facts aid in the proof of the following proposition.

Proposition 2.2. Any rank one totally nonnegative matrix lies in the Hadamard
core.

Proof. Let A be a rank one TN matrix, sayA = xyT, in which x = [xi] ∈ Rm

andy = [yi] ∈ Rn are entry-wise nonnegative vectors. LetD = diag(xi) andE =
diag(yi). Then it is easy to show thatA = DJ E. (Observe thatJ = eeT, in which
e is a vector of ones of appropriate size. ThenDJ E = D(eeT)E = (De)(eTE) =
xyT = A.) SinceJ is in CTN, we have thatDJE is in CTN, in other wordsA is in
CTN. �

Note that the example given in (1) implies that not all rank two TN matrices are
in CTN, and in fact by direct summing the matrixA in (1) with an identity matrix
follows that there exist TN matrices of all ranks greater than one that are not in CTN.
We now note a very useful fact concerning an inheritance property for matrices in
CTN.

Proposition 2.3. If an m-by-n totally nonnegative matrix A lies in the Hadamard
core, then every submatrix of A is in the corresponding Hadamard core.

Proof. Suppose there exists a submatrix, sayA[α|β], that is not in CTN. Then
there exists a TN matrixB such thatA[α|β] ◦ B is not TN. EmbedB into anm-by-n
matrix C = [cij ] such thatC[α|β] = B, andcij = 0 otherwise. It is not difficult to
show thatC is TN, since any minor that does not lie in rows contained inα and
columns contained inβ is necessarily zero. Now considerA ◦ C. SinceA[α|β] ◦ B

is a submatrix ofA ◦ C andA[α|β] ◦ B is not TN, we have thatA ◦ C is not TN.
This completes the proof. �

The next result deals with the set of column vectors that can be inserted into a
given matrix in CTN in such a way so that the resulting matrix remains in CTN. We
say that a columnm-vectorv is inserted in column k (k = 1, 2, . . . , n, n + 1) of an
m-by-n matrix A = [b1, b2, . . . , bn], with columnsb1, b2, . . . , bn, if we obtain the
newm-by-(n + 1) matrix of the form[b1, . . . , bk−1, v, bk, . . . bn].

Proposition 2.4. The set of columns (or rows) that can be inserted into an m-by-n
TN matrix in the Hadamard core so that the resulting matrix remains in the Hadam-
ard core is a nonempty convex set.
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Proof. SupposeA is anm-by-n TN matrix in CTN. LetS denote the set of columns
that can be inserted intoA so that the new matrix remains in CTN. It is easy to verify
that 0∈ S, henceS /= ∅. We verify the second claim only in the case of inserting
column vectors in positionn + 1, i.e., borderingA. The argument is similar for all
other insertion positions. Letx, y ∈ S. Then the augmented matrices[A|x] and[A|y]
are both in CTN. Supposet ∈ [0, 1] and consider the matrix[A|tx + (1 − t)y]. Let
[B|z] be anym-by-(n + 1) TN matrix. Then

[A|tx + (1 − t)y] ◦ [B|z] = [A ◦ B|t (x ◦ z) + (1 − t)(y ◦ z)].
SinceA is in CTN any submatrix ofA ◦ B is TN. Therefore we only need to con-
sider the submatrices of[A|tx + (1 − t)y] ◦ [B|z] that involve columnn + 1. Let
[A′|tx ′ + (1 − t)y ′] ◦ [B ′|z′] denote any such square submatrix of[A|tx + (1 − t)y]
◦ [B|z]. Then

det([A′|tx ′ + (1 − t)y ′] ◦ [B ′|z′])
= det([A′ ◦ B ′|t (x ′ ◦ z′)]) + det([A′ ◦ B ′|(1 − t)(y ′ ◦ z′)])
= t det([A′ ◦ B ′|x ′ ◦ z′]) + (1 − t)det([A′ ◦ B ′|y ′ ◦ z′])
= t det([A′|x ′] ◦ [B ′|z′]) + (1 − t)det([A′|y ′] ◦ [B ′|z′]) � 0,

since both[A|x] and[A|y] are in CTN. This completes the proof.�

An n-by-n matrixA = [aij ] is said to be atridiagonal matrix if aij = 0 whenever
|i − j | > 1. A nonobvious, but well-known fact is the next proposition which can be
found in [7], where tridiagonal matrices are referred to as Jacobi matrices (see also
[4] for a new proof of this fact).

Proposition 2.5 [7, p. 143]. Let T be an n-by-n tridiagonal matrix. Then T is totally
nonnegative if and only if T is an entry-wise nonnegative matrix with nonnegative
principal minors.

An n-by-n matrix A with nonpositive off-diagonal entries is called a (possibly
singular) M-matrix if the principal minors ofA are nonnegative (see [2, p. 149] or
[6, p. 391]). Ann-by-n matrix C = [cij ] is said to berow diagonally dominant if
|cii | �

∑
j /=i |cij | for i = 1, 2, . . . , n. Observe that if an M-matrix has nonnegative

row sums, then it is row diagonally dominant. Keeping this observation in mind,
Fiedler and Ptak essentially proved thatA is an irreducible (possibly singular) M-
matrix if and only if there exists a positive diagonal matrixD such thatDAD−1

is row diagonally dominant (see [6, (5.8), (6.8)]). We are now in a position to ex-
tend a result of Markham [16] (see also [9]) concerning the Hadamard product of
tridiagonal matrices.

Theorem 2.6. Let T be an n-by-n totally nonnegative tridiagonal matrix. Then T is
in the Hadamard core.



208 A.S. Crans et al. / Linear Algebra and its Applications 328 (2001) 203–222

Proof. It is enough to prove this result for the case in whichT is irreducible, oth-
erwise apply the following argument to each irreducible block and use the simple
structure of a tridiagonal matrix. LetB be an arbitraryn-by-n TN matrix. Simi-
larly we may assumeB is irreducible, which impliesbij > 0 for all i, j such that
|i − j | � 1, i.e.,B has positive “tri-diagonal part” (see [7, p. 139] and [4]). Since
pre- and post-multiplication by positive diagonal matrices does not affect the prop-
erty of being TN or whether or not a matrix is in CTN, we may assume thatbii =
1 for i = 1, 2, . . . , n and thatbij = bji for all i, j with |i − j | = 1. Notice that
if S = diag(1, −1, 1, −1, . . . , ±1), thenSTS has nonpositive off-diagonal entries,
and sinceT is TN, it follows that STS is a (possibly singular) M-matrix. More-
over, there exists a positive diagonal matrixD such thatDST SD−1 = S(DT D−1)S

is a row diagonally dominant matrix (see remarks preceding Theorem 2.6). LetC =
[cij ] = S(DT D−1)S ◦ B = S(DT D−1 ◦ B)S. SinceB is TN with bii = 1 andbij =
bji whenever |i − j | = 1, it follows that 0< bij � 1 for all i, j with
|i − j | = 1. HenceDT D−1 ◦ B is row diagonally dominant. SinceDT D−1 ◦ B is
tridiagonal, S(DT D−1 ◦ B)S has nonpositive off-diagonal entries, which im-
plies S(DT D−1 ◦ B)S is a (possibly singular) M-matrix. ThereforeDT D−1 ◦ B

is an entry-wise nonnegative tridiagonal matrix with nonnegative principal minors.
Hence, by Proposition 2.5,DT D−1 ◦ B is a TN matrix, and henceT ◦ B is a TN
matrix. ThusT is in CTN. �

We obtain a result of Markham [16] (see also [9]) as a special case.

Corollary 2.7. The Hadamard product of any two n-by-n tridiagonal totally non-
negative matrices is again totally nonnegative.

3. Description of the core for min{m, n} < 4

The analysis of CTN in the 3-by-3 case differs significantly from the 2-by-2 case,
and, unfortunately, unlike the 2-by-2 case, not all 3-by-3 totally nonnegative matrices
are in the Hadamard core. Recall from (1) that the matrix

W =

1 1 0

1 1 1
1 1 1




is not a member of CTN. We will see thatW plays an important role in describing
CTN. We begin our analysis of CTN with a preliminary lemma concerning a special
class of 3-by-3 totally nonnegative matrices in CTN, that will aid the proof of the
main result to follow.
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Lemma 3.1. Let

A =

1 1 a

1 1 a

a a 1


 .

Then A is in the Hadamard core if and only if A is totally nonnegative.

Proof. The necessity follows since CTN is always contained in TN. To verify suf-
ficiency supposeA is TN. Let B = [bij ] be any 3-by-3 TN matrix. By virtue of the
2-by-2 case it is enough to show that det(A ◦ B) � 0. We make use of Sylvester’s
identity for determinants (see [11, p. 22]). Note that we may assume thatb22 > 0,
otherwiseB is reducible in which case verification of det(A ◦ B) � 0 is trivial. Using
Sylvester’s identity we see that detB � 0 is equivalent to

(b11b22 − b12b21)(b22b33 − b23b32)

b22
� (b12b23 − b22b13)(b21b32 − b31b22)

b22
.

SinceA is TN, 0� a � 1. Observe that

(b11b22 − b12b21)(b22b33 − b23b32a
2)

b22

� (b11b22 − b12b21)(b22b33 − b23b32)

b22
, since 0� a � 1

� (b12b23 − b22b13)(b21b32 − b31b22)

b22
, since detB � 0

� a2 (b12b23 − b22b13)(b21b32 − b31b22)

b22
, since 0� a � 1.

Therefore

(b11b22 − b12b21)(b22b33 − b23b32a
2)

b22

� a2 (b12b23 − b22b13)(b21b32 − b31b22)

b22
,

which implies det(A ◦ B) � 0, and henceA is in CTN. �

A similar conclusion holds (as in Lemma 3.1) for TN matrices of the form
1 a a

a 1 1
a 1 1


 .

The next two lemmas are verified separately from the main result to reduce the num-
ber of cases needed to prove the main result. The first is concerned with verifying a
necessary condition for singular TN matrices to belong in the Core, while the second
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lemma reduces the analysis of describing elements in the Core to entry-wise positive
TN matrices.

Lemma 3.2. Let A be a 3-by-3 singular totally nonnegative matrix. If A ◦ W and
A ◦ WT are both totally nonnegative, then A is in the Hadamard core.

Proof. In light of the 2-by-2 case we may assume thatA is irreducible. Moreover,
up to positive diagonal equivalence we may also assumeA is in the following form:

A =

1 a c

a 1 b

d b 1


 .

SinceA is singular, detA = 1 + abc + abd − a2 − b2 − cd = 0 or 1+ abc + abd

= a2 + b2 + cd. By hypothesis,A ◦ W andA ◦ WT are both totally nonnegative,
hence det(A ◦ W) = 1 + abd − a2 − b2 � 0, and det(A ◦ WT) = 1 + abc − a2 −
b2 � 0. Since 1+ abc + abd − a2 − b2 − cd = 0 andab � c, d � 0 (A is TN) it
follows that equality must hold in 1+ abd − a2 − b2 � 0. Similarly, equality holds
for 1 + abc − a2 − b2 � 0. This gives rise to one of the following four cases: (1)
c = 0, andab = c; (2) c = 0, andd = 0; (3) d = 0, andab = d; (4) ab = d, and
ab = c. SupposeB is an arbitrary 3-by-3 TN matrix, as withA, we may assume that
B has the following form:

B =

1 α γ

α 1 β

δ β 1


 .

Observe that cases (1) and (3) cannot occur sinceA was assumed to be irreducible.
In case (2)A is tridiagonal, and hence is in CTN by Theorem 2.6. Finally, consider
case (4). Then detA = 1 + (ab)2 − a2 − b2 = (1 − a2)(1 − b2) = 0. Therefore ei-
thera = 1 orb = 1. In either caseA is of the form in Lemma 3.1 (or the remark after
Lemma 3.1) and hence is in CTN.�

Lemma 3.3. Let A be a 3-by-3 totally nonnegative matrix with at least one zero
entry. If A ◦ W and A ◦ WT are both totally nonnegative, then A is in the Hadamard
core.

Proof. It is enough to show that det(A ◦ B) � 0, for any TN matrixB. If aij = 0
for somei, j with |i − j | � 1, thenA is reducible and the result follows. So assume
eithera13 = 0 or a31 = 0. If they are both zero, thenA is a tridiagonal TN matrix
and hence is in CTN, by Theorem 2.6. Thus assume, without loss of generality, that
a31 = 0. In this case observe thatA ◦ WT = A, andA ◦ W = T , in which T is a
tridiagonal matrix. By hypothesis,T is TN, and thereforeT is in CTN (Theorem
2.6). Moreover, det(A ◦ B) � det(T ◦ B) � 0 (the first inequality follows sinceA
andB are TN, and the second inequality follows sinceT is in CTN). This completes
the proof. �
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We are now in a position to characterize all 3-by-3 TN matrices in the Hadamard
core.

Theorem 3.4. Let A be a 3-by-3 totally nonnegative matrix. Then A is in the Had-
amard core if and only if A ◦ W and A ◦ WT are both totally nonnegative.

Proof. The necessity is clear sinceW (and henceWT) is TN. Assume thatA ◦ W

andA ◦ WT are both TN. By Lemmas 3.2 and 3.3 it suffices to assume thatA is
nonsingular and entry-wise positive. As was the case with the previous lemmas to
showA is in CTN it is enough to verify that det(A ◦ B) � 0, for any TN matrixB.
Before we proceed with the argument presented here we need the following simple
and handy fact concerning TN matrices: increasing the(1, 1) or (m, n) entry of an
m-by-n TN matrix yields a TN matrix. Using this fact and (possibly) diagonal scaling
it follows that any entry-wise positive nonsingular TN matrix can be written in the
following form:

A =

1 1 1

1 1+ p 1 + p + q

1 1+ p + r 1 + s


 ,

with p, s > 0 andq, r � 0 chosen accordingly, and up to transposition we may as-
sume thatq � r. Then, using this form forA, we have that

det(A ◦ W) � 0 ⇐⇒ ps − p2 − pr − pq − qr � r,

and

det(A ◦ WT) � 0 ⇐⇒ ps − p2 − pr − pq − qr � q.

The above two conditions are equivalent to

ps − (p2 + pr + pq + qr) = ps − (p + q)(p + r) � q(� r).

Hences � ((p + q)(p + r) + q)/p. Sinces enters positively into detA and det(A ◦
B), for any TN matrixB we can assume that equality holds, i.e.,s = ((p + q)(p + r)

+q)/p. Now assume thatB is any 3-by-3 TP matrix that is of the form (similar toA)

B =

1 1 1

1 1+ t 1 + t + u

1 1+ t + v 1 + w


 ,

in which 0< t, u, v, w are suitably chosen. Sincew enters positively into detB and
det(A ◦ B) it is enough to prove det(A ◦ B) � 0 whenw is chosen as small as pos-
sible, namely,w = ((t + v)(t + u))/t (in which case detB = 0). Now consider the
matrix A ◦ B with the specified choices ofs andw above. A routine computation
reveals that

det(A ◦ B) = u(q − r)

+ 1

pt
(qpuv + t2qpv + t2qpu + t2qru + tquv
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+ p2ruv + p2quv + tqp + p2uv + 2qpt2 + qrt2

+ t3qp + t3qr + t2qv + t2qv + t2qu

+ p3uv + qt2 + t3q + tqpuv + tqruv + pqruv)

� 0, sinceq � r, by assumption.

HenceA ◦ B is TN for all TP matricesB (the 2-by-2 submatrices are necessarily
TN). The fact thatA ◦ B is TN for all 3-by-3 TN matricesB follows by a routine
continuity argument since any TN matrix is the limit of TP matrices (see [1]).�

We now present some useful variations upon and consequences of Theorem 3.4.

Corollary 3.5. Let A = [aij ] be a 3-by-3 totally nonnegative matrix. Then A is in
the Hadamard core if and only if

a11a22a33 + a31a12a23 � a11a23a32 + a21a12a33,

a11a22a33 + a21a13a32 � a11a23a32 + a21a12a33.

Example 3.6 [Polya matrix]. Letq ∈ (0, 1). Define then-by-n Polya matrixQ whose
(i, j)th entry is equal toq−2ij . Then it is well known (see [20]) thatQ is totally pos-
itive for all n (in fact Q is diagonally equivalent to a TP Vandermonde matrix). Sup-
poseQ represents the 3-by-3 Polya matrix. We wish to determine when (if ever)Q is
in CTN. By Corollary 3.5 and the fact thatQ is symmetric,Q is in CTN if and only if
q−28 + q−22 � q−26 + q−26, which is equivalent toq−28(1 − q2 − q2(1 − q4)) �
0. This inequality holds if and only if 1− q2 � q2(1 − q4) = q2(1 − q2)(1 + q2).
Thusq must satisfyq4 + q2 − 1 � 0. It is easy to check that the inequality holds for
q2 ∈ (0, 1/µ), whereµ = (1 + √

5)/2 (the golden mean). HenceQ is in CTN for
all q ∈ (0,

√
1/µ).

Corollary 3.7. Let A = [aij ] be a 3-by-3 totally nonnegative matrix. Suppose B =
[bij ] is the unsigned classical adjoint matrix. Then A is in the Hadamard core if and
only if a11b11 − a12b12 � 0, and a11b11 − a21b21 � 0; or, equivalently,

a11 det A[{2, 3}] − a12 det A[{2, 3}|{1, 3}] � 0,

and

a11 det A[{2, 3}] − a21 det A[{1, 3}|{2, 3}] � 0.

Even though Corollary 3.7 is simply a recapitulation of Corollary 3.5, the condi-
tions rewritten in the above form aid in the proof of the next fact. Recall that ifA is a
nonsingular TN matrix, thenSA−1S is a TN matrix, in whichS = diag(1, −1, 1, −1,

. . . , ±1) (see, e.g., [7, p. 109]).
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Theorem 3.8. Suppose A is a 3-by-3 nonsingular TN matrix in the Hadamard core.
Then SA−1S is in the Hadamard core.

Proof. Observe thatSA−1S is TN and, furthermoreSA−1S = (1/detA)B, where
B = [bij ] is the unsigned classical adjoint ofA. HenceSA−1S is in CTN if and
only if B is a member of CTN. Observe that the inequalities in Corollary 3.7 are
symmetric in the corresponding entries ofA andB. ThusB is in CTN. This completes
the proof. �

Corollary 3.9. Let A be a 3-by-3 totally nonnegative matrix whose inverse is tridi-
agonal. Then A is in the Hadamard core.

Proof. Proof follows from Theorems 2.6 and 3.8.�

Gantmacher and Krein [7] proved that the set of all inverse tridiagonal totally
nonnegative matrices is closed under Hadamard multiplication. (In the symmetric
case, which can be assumed without loss of generality, an inverse tridiagonal matrix
is often called a Green’s matrix as was the case in [7,8].) The above result strengthens
this fact in the 3-by-3 case. However, it is not true in general that inverse tridiagonal
totally nonnegative matrices are contained in CTN. Forn � 4 , CTN does not enjoy
the “inverse closure” property as in Theorem 3.8. Consider the following example.

Example 3.10. Let

A =




1 a ab abc

a 1 b bc

ab b 1 c

abc bc c 1


 ,

wherea, b, c > 0 are chosen so thatA is positive definite. Then it is easy to check
that A is TN, and the inverse ofA is tridiagonal. Consider the upper right 3-by-3
submatrix ofA, namely

M =

a ab abc

1 b bc

b 1 c


 ,

which is TN. By Proposition 2.3, ifA is in CTN, thenM is in CTN. However,
det(M ◦ W) = abc(b2 − 1) < 0, sinceb < 1. ThusA is not in CTN.

For 3� k � n, let W(k) = (w
(k)
ij ) be the 3-by-n totally nonnegative matrix con-

sisting of entries:

w
(k)
ij =

{
0 if i = 1, j � k,

1 otherwise.
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For 1� k � n − 2, let U(k) = (u
(k)
ij ) be the 3-by-n totally nonnegative matrix con-

sisting of entries:

u
(k)
ij =

{
0 if i = 3, 1 � j � k,

1 otherwise.

For example, ifn = 5 andk = 3, then

W(3) =

1 1 0 0 0

1 1 1 1 1
1 1 1 1 1


 ,

and

U(3) =

1 1 1 1 1

1 1 1 1 1
0 0 0 1 1


 .

Theorem 3.11. Let A be a 3-by-n (n � 3) totally nonnegative matrix. Then A is in
the Hadamard core if and only if A ◦ W(k) is totally nonnegative for 3 � k � n and
A ◦ U(j) is totally nonnegative for 1 � j � n − 2.

Proof. The necessity is obvious, sinceW(k)andU(j) are both TN. Observe that it is
enough to show that every 3-by-3 submatrix ofA is in CTN, by Proposition 2.3. Let
B be any 3-by-3 submatrix ofA. Consider the matricesA ◦ W(k) andA ◦ U(j) for
3 � k � n and 1� j � n − 2. By hypothesisA ◦ W(k) andA ◦ U(j) are TN. Hence
by considering appropriate submatrices, it follows thatB ◦ W andB ◦ WT are both
TN. ThereforeB is in CTN by Theorem 3.4. ThusA is in CTN. �

Of course by transposition, we may obtain a similar characterization of CTN in
the n-by-3 case. At present no characterization of the Hadamard core for 4-by-4
totally nonnegative matrices is known, but we offer some ideas and conjectures on
this issue in Section 6.

4. Patterns for which all TN matrices lie in the core

In this section we consider zero–nonzero patterns (which in our case will always
be zero-positive (or (0, +))-patterns) of totally nonnegative matrices in the Hadam-
ard core. Recall that anm-by-n (0, +)-sign pattern is anm-by-n array of symbols
chosen from{+, 0}, and arealization of a sign pattern, S, is a realm-by-n matrix A
such that:

aij > 0 whensij = +, and aij = 0 whensij = 0.

There are two natural mathematical notions associated with various sign-pattern
problems. They are the notions ofrequire andallow. We say anm-by-n sign patternS
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requires property P if every realization ofS has propertyP. On the other hand we say
a sign patternS allows property P if there exists a realization ofS with propertyP.
We begin our analysis here by completely characterizing all the sign patternsS that
require a TN matrix to be in the Hadamard core of the totally nonnegative matrices.

Definition 4.1. Given anm-by-n sign patternS, that allows TN, we say thatS re-
quires Hadamard coreness of a TN matrix if any totally nonnegative realization ofS
is in the Hadamard core.

Observe that in order for a given sign pattern,S to require Hadamard coreness, it
is necessary thatS be in double echelon form described below. In the following def-
inition and throughout this paper the symbol∗ in a matrix means the corresponding
entry is nonzero.

Definition 4.2. An m-by-n matrix A with no zero rows or columns is said to bein
double echelon form if:
(i) Each row ofA has one of the following forms:

1. (∗, ∗, . . . , ∗),
2. (∗, . . . , ∗, 0, . . . , 0),
3. (0, . . . , 0, ∗, . . . , ∗) or
4. (0, . . . , 0, ∗, . . . , ∗, 0, . . . , 0).

(ii) The first and last nonzero entries in rowi + 1 are not to the left of the first and
last nonzero entries in rowi, respectively (i = 1, 2, . . . , m − 1).

Thus, a matrix in double echelon form appears as follows:


∗ ∗ 0 · · · 0

∗ . . .
. . .

. . .
...

0
...

...
... 0

...
. . .

. . .
. . . ∗

0 · · · 0 ∗ ∗




.

It is not difficult to see that any TN matrix with no zero rows or columns must be
in double echelon form (see also [7]). We say that a(0, +)-patternS is in double
echelon form if every realization ofS is in double echelon form (i.e.,S requires
matrices to be in double echelon form).

Example 4.3. It is an easy exercise to show that any 1-by-1 or 2-by-2 sign pattern
in double echelon form requires Hadamard coreness of a TN matrix. We denote the
following 3-by-3 sign patterns as:

F =

+ + +

+ + +
+ + +


 , W =


+ + 0

+ + +
+ + +


 or WT =


+ + +

+ + +
0 + +


 .
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Then any 3-by-3 double echelon sign pattern other thanF, W or WT requires
Hadamard coreness of a TN matrix. To verify this, first observe that by the example
in (1) and Example 3.6 there exist matrices with the above sign patterns that are not
in CTN. Thus, supposeS is a 3-by-3 sign pattern different from the three patterns
above. Then,S is either reducible or a tridiagonal pattern (with possibly more zeros),
and henceS requires Hadamard coreness of a TN matrix (the latter following from
Theorem 2.6).

Lemma 4.4. Suppose A is an m-by-n totally nonnegative matrix with no zero rows
or columns, and let X be any 1-by-n sign pattern. Then [A

X] allows TN if and only if
[A

X] is in double echelon form.

Proof. The above condition is obviously necessary. Suppose[A

X] is in double eche-
lon form. Assume thatX is in following form:X = [0 · · · 0, + · · · +, 0 · · · 0],
in which the plus signs span columnsj to j + k � n. Observe that ifj + k < n,

then columnsj + k + 1, . . . , n of A must be all zero columns since[A

X] is in dou-
ble echelon form. Thus, since removal of zero columns does not change total non-
negativity, it is enough to prove this lemma for the casej + k = n. Hence,X =
[0 · · · 0, + · · · +], in which the first plus sign occurs in thejth column. Letx =
[xi] be a realization ofX to be determined, and letC = [A

x
]. We will choose values

for xi, i � j sequentially. It is not difficult to see that we may choosexj positive so
that

C
[{1, 2, . . . , m + 1}|{1, . . . , j }] =

[
A

[{1, 2, . . . , m}|{1, . . . , j }]
0 · · · 0, xj

]

is TN. Applying similar arguments (sincexj+1 is in the bottom right entry of the cor-
responding matrix), we may choosexj+1 large enough so thatC[{1, 2, . . . , m + 1}|
{1, . . . , j + 1}] is TN. Continuing in this manner until we choosexn such thatC =
[A

x
] is TN. Observe that at each stage,xi (i � j) enters positively into each minor

that includesxi, and there is no upper bound for the choice ofxi . This completes the
proof. �

It is well known (see [1]) that ifA is TN, thenAT and the matrix obtained from
A by reversing (i → n − i + 1) the rows and the columns are both TN. This simple
observation along with Lemma 4.4 implies the next result.

Corollary 4.5. Suppose A is an m-by-n totally nonnegative matrix with no zero rows
or columns, and let X be any 1-by-n sign pattern. Then [A|XT], [XT|A] or [X

A
]

allows TN if and only if each is in double echelon form.
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Theorem 4.6. Let S be an n-by-n (0, +)-pattern with no zero rows or columns.
Then, S requires Hadamard coreness of a TN matrix if and only if S is in double
echelon form and does not contain any one of the sign patterns F, W or WT as a
subpattern.

Proof. SupposeS is in double echelon form withW as a subpattern. The analysis
is similar for the other two patterns. First, observe that we may assume this subpat-
tern occurs as a contiguous pattern (i.e., based on consecutive rows and columns),
sinceS is in double echelon form. Suppose this 3-by-3 subpattern is indexed by rows
j, j + 1, j + 2 of S. Let B be a 3-by-3 totally nonnegative matrix with sign pattern
W that is not in CTN (recall the example in (1)). By Lemma 4.4 and Corollary 4.5,
extendB to a 3-by-n TN matrix B̄ such that the sign pattern of̄B equals the sign
pattern in rowsj, j + 1, j + 2 of S. Now, apply Lemma 4.4 and Corollary 4.5 to
construct ann-by-n TN matrix B̃, from B̄, with sign patternS. However,B̃ is not in
CTN sinceB̃ contains a submatrix that is not in CTN (see Proposition 2.3).

On the other hand supposeS is in double echelon form and does not containF, W

or WT as a subpattern. We proceed by using induction onn. This claim has already
been verified forn � 3 (see Example 4.3), so assume the result is true for all such
patterns of size less than or equal ton − 1. Let S be as assumed above. Observe that,
by induction, any TN realization ofS has all of its proper submatrices in CTN. Thus,
we only need to verify that det(A ◦ B) � 0, whereA is any realization ofS andB is
TN. We consider three cases:

Case 1. Suppose theith diagonal entry ofS is zero for somei = 1, 2, . . . , n. Then,
S contains a zero block of sizen − i + 1 + i = n + 1. Hence,A ◦ B has a zero block
of sizen + 1 for any realizationA of S. But, in this case, det(A ◦ B) = 0 (see [18]).
Thus,A is in CTN.

Case 2. SupposeS has positive main diagonal entries, but that some entry on the
superdiagonal is zero (similar arguments hold if an entry on the subdiagonal is zero).
Assume the(i, i + 1)st entry ofS is zero for somei = 1, 2, . . . , n − 1. SinceS has
positive main diagonal entries in addition to being in double echelon form, it follows
thatS contains a block of zeros of sizen − i + i = n. Hence,S is block triangular,
and by induction, we have det(A ◦ B) � 0, for any realizationA of S andB is TN.

Case 3. Finally, supposeS has positive main, super, and subdiagonal entries. Since
S does not contain any of the three subpatterns (by assumption), it follows that the
(i, i + 2) and(i + 2, i) entries ofS must be zero fori = 1, . . . , n − 2. SinceS is in
double echelon form, it follows thatS is a tridiagonal pattern. Thus, any realization
A of S is in CTN by Theorem 2.6. �

Note that if A is m-by-n with n � m (without loss of generality), thenA is in
CTN if and only if everym-by-m submatrix ofA is in CTN. This follows from
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Proposition 2.3. The above remark combined with Theorem 4.6 gives rise to the
following corollary.

Corollary 4.7. Let S be any rectangular m-by-n (0, +)-pattern with no zero rows or
columns. Then, S requires Hadamard coreness of a TN matrix if and only if S is in
double echelon form and does not contain F, W or WT as a subpattern.

5. Oppenheim’s inequality

SupposeA andB are twon-by-n positive semidefinite matrices. Then by a classi-
cal result of Schur (see [11, p. 458]),A ◦ B is again positive semidefinite. Therefore,
in particular, det(A ◦ B) � 0 in this case. However, even more is true. Oppenheim
proved that ifA andB are positive semidefinite, then det(A ◦ B) � detB

∏n
i=1 aii

(see [11, p. 480]).
For the case in whichA andB aren-by-n totally nonnegative matrices it is cer-

tainly not true that det(A ◦ B) � 0 (see the example in (1)). Markham [16], however,
showed that Oppenheim’s inequality holds for the special class of tridiagonal TN
matrices. We generalize this result by making use of matrices in CTN. IfA is in
CTN, thenA ◦ B is totally nonnegative (wheneverB is TN) and det(A ◦ B) � 0.
Furthermore, Oppenheim’s inequality holds in this case, which is much more general
than that of [16].

Theorem 5.1. Let A be an n-by-n totally nonnegative matrix in the Hadamard core,

and suppose B is any n-by-n totally nonnegative matrix. Then

det(A ◦ B) � detB
n∏

i=1

aii .

Proof. If B is singular, then there is nothing to show, since det(A ◦ B) � 0, asA is
in CTN. AssumeB is nonsingular. Ifn = 1, then the inequality is trivial. Suppose, by
induction, that Oppenheim’s inequality holds for all(n − 1)-by-(n − 1) TN matrices
A andB with A in CTN. SupposeA andB aren-by-n TN matrices and assume that
A is in CTN. LetA11 (B11) denote the principal submatrix obtained fromA (B) by
deleting row and column 1. Then by induction det(A11 ◦ B11) � detB11

∏n
i=2 aii .

SinceB is nonsingular, by Fischer’s inequality (see [7, p. 129])B11 is nonsingular.
Consider the matrix̃B = B − xE11, wherex = detB/detB11 andE11 is the stan-
dard basis matrix with a 1 in the(1, 1) position and zeros otherwise. Then detB̃ = 0,
and B̃ is TN (see [5]). ThereforeA ◦ B̃ is TN and det(A ◦ B̃) � 0. Observe that
det(A ◦ B̃) = det(A ◦ B) − xa11det(A11 ◦ B11) � 0. Thus
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det(A ◦ B) � xa11det(A11 ◦ B11)

� xa11detB11

n∏
i=2

aii

= detB
n∏

i=1

aii,

as desired. �

Since any TN matrixA = [aij ] satisfies Hadamard’s inequality (detA �
∏n

i=1 aii ,
see [7, p. 129]) the next result follows from Hadamard’s inequality and Theorem 5.1.

Corollary 5.2. Let A be an n-by-n totally nonnegative matrix in the Hadamard core,

and suppose B is any n-by-n totally nonnegative matrix. Then

det(A ◦ B) � det(AB).

We close this section with some further remarks concerning Oppenheim’s in-
equality. In the case in whichA = [aij ] and B = [bij ] are n-by-n positive semi-
definite matrices it is clear from Oppenheim’s inequality that

det(A ◦ B) � max

{
detB

n∏
i=1

aii, detA
n∏

i=1

bii

}
.

However, in the case in whichA is in the Hadamard core andB is ann-by-n TN ma-
trix it is not true in general that det(A ◦ B) � detA

∏n
i=1 bii . Consider the following

example.

Example 5.3. Let A be any 3-by-3 totally positive matrix in CTN, and letB = W ,
the 3-by-3 totally nonnegative matrix equal to

1 1 0
1 1 1
1 1 1


 .

Then since the (1,3) entry ofA enters positively into detA it follows that
det(A ◦ B) < detA = detA

∏3
i=1 bii .

If, however, bothA andB are in CTN, then we have the next result, which is a
direct consequence of Theorem 5.1.

Corollary 5.4. Let A = [aij ] and B = [bij ] be two n-by-n matrices in CTN. Then

det(A ◦ B) � max

{
detB

n∏
i=1

aii, detA
n∏

i=1

bii

}
.
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The following example sheds some light on the necessity thatA be in CTN in
order for Oppenheim’s inequality to hold. In particular, we show that ifA andB are
TN andA ◦ B is TN, then Oppenheim’s inequality need not hold.

Example 5.5. Let

A =

 1 0.84 0.7

0.84 1 0.84
0 0.84 1


 ,

andB = AT. ThenA (and henceB) is TN, and detA = detB = 0.08272. Now

A ◦ B =

 1 0.7056 0

0.7056 1 0.7056
0 0.7056 1


 ,

and it is not difficult to verify thatA ◦ B is TN with det(A ◦ B) ≈ 0.00426. However,
in this case

det(A ◦ B) ≈ 0.00426< 0.08272=
{

det A
∏3

i=1 bii

det B
∏3

i=1 aii .

The next remark settles the issue of the possibility that Oppenheim’s inequality
offers a characterization of all TN matrices in CTN, namely, if a given TN matrix
A satisfies Oppenheim’s inequality (i.e., det(A ◦ B) � detB

∏n
i=1 aii for every TN

matrix B), thenA is in CTN. If n � 3 andA satisfies Oppenheim’s inequality for
every TN matrixB, then det(A ◦ B) � 0, and all the 2-by-2 submatrices ofA ◦ B

will be TN, for any TN matrixB. In particular,A is in CTN. Forn = 4 consider the
following matrix. Let

A =




1 1 1 0
1 1 1 1
1 1 1 1
1 1 1 1


 .

SupposeB is any 4-by-4 TN matrix. Then since the(1, 4) entry enters negative-
ly into detB it follows that det(A ◦ B) � detB = detB

∏4
i=1 aii . HenceA satis-

fies Oppenheim’s inequality, butA is not in CTN sinceA contains a submatrix
(A[{1, 2, 3}|{2, 3, 4}]) that is not in CTN. We also note here that, we can get by
with less thanA in CTN in the proof of Theorem 5.1. We simply need that the prin-
cipal submatrices ofA, of the formA[{k, k + 1, . . . , n}] (k = 1, 2, . . . , n), satisfy
det(A[{k, k + 1, . . . , n}] ◦ B ′) � 0, for all appropriately sized TN matricesB ′.
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6. Further discussion

At present no characterization of CTN for 4-by-4 totally nonnegative matrices
is known. One reason for the complications regarding a characterization of CTN
in the 4-by-4 case is that we do not have a solid conceptual understanding for the
description of CTN in the 3-by-3 case. The proof offered here for Theorem 3.4 (and
in fact all known proofs of which there are few) are computational in nature. We
believe there is more to learn about CTN in the 3-by-3 case, and that these difficulties
have impeded our progress in the 4-by-4 case.

In any event the question here is: Is there a finite collection of (test) matrices that
are needed to determine membership in CTN? If so, must they have some special
structure? For example, in the 3-by-3 case (and the proposed test matrices in the 4-
by-4 case below) all of the entries of the test matrices are either zero or one. After
examination of the 3-by-3 and 3-by-n test matrices, a list of potential 4-by-4 test
matrices was proposed. This list includes the following six matrices as well as their
transposes:


1 1 0 0
1 1 1 1
1 1 1 1
1 1 1 1


 ,




1 1 1 0
1 1 1 1
1 1 1 1
1 1 1 1


 ,




1 1 1 0
1 1 1 0
1 1 1 1
1 1 1 1







1 1 0 0
1 1 1 0
1 1 1 1
1 1 1 1


 ,




1 1 0 0
1 1 1 1
1 1 1 1
0 0 1 1


 ,




1 1 0 0
1 1 0 0
1 1 1 1
1 1 1 1


 .

We refer to these matrices asV1–V6, respectively. In the 4-by-4 case we propose the
following conjecture.

Conjecture 6.1. Let A be a 4-by-4 totally nonnegative matrix. ThenA is in the
Hadamard core if and only ifA ◦ Vi, A ◦ V T

i , are totally nonnegative matrices, for
i = 1, 2, . . . , 6.

Unfortunately, we have been unable to determine relevant determinantal inequal-
ities relating these matrices to each other or toA.

Finally, it would be an interesting and worthy exercise to determine exact condi-
tions on a totally nonnegative matrix (or a subclass of TN) which ensure that Oppen-
heim’s inequality holds among the class TN for that matrix (or that subclass of TN).
The final remark in Section 5 demonstrates that it is not necessary to belong to CTN
in order to guarantee that Oppenheim’s inequality holds.
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