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1. Introduction

The Hadamard product of two m-by-n matricesA = [a;;] and B = [b;;] is de-

fined and denoted by

Ao B =la;jbij].
The Hadamard product plays a substantial role within matrix analysis and in its ap-
plications (see, for example, [12, Chapter 5]). A matrix is calt#dlly positive, TP
(totally nonnegative, TN) if each of its minors is positive (nonnegative), see also
[1,7,14]. This class arises in a long history of applications [10], and it has enjoyed
increasing recent attention.

Some classes of matrices, such as the positive definite matrices, are closed
under Hadamard multiplication (see [11, p. 458]), and given such closure, inequal-
ities involving the Hadamard product, usual product, determinants and eigenvalues,
etc. may be considered. For example, Oppenheim’s inequality states that

n
detA o B) > Ha,'i detB
i=1
for any two n-by-n positive definite matricest = [a;;] andB (see [11, p. 480]).
Since Hadamard's inequality
n
detA < l_[a,','
i=1
also holds for positive definite matricéls= [q;;], it follows from Oppenheim that
det(A o B) > det(AB),

i.e., the Hadamard product dominates the usual product in determinant.
Unfortunately, it has long been known (see also [13,16]) that TN matrices are not
closed under Hadamard multiplication; e.g., for

11 0 1 1 1
w=|1 1 1|, w'=|1 1 1f, (1)
1 1 1 0 1 1
Wis TN, but
110
WoW' =|1 1 1
0 1 1

is not. Similarly, TP is not Hadamard closed. Not surprisingly then inequalities such
as Oppenheim’s do not generally hold for TP or TN matrices. However, there has
been interest in significant subclasses of the TP or TN matrices that are Hadamard
closed, i.e., are such that arbitrary Hadamard products from them are TP or TN. Some
of these subclasses include tridiagonal TN matrices, inverses of tridiagonal M-matri-
ces, nonsingular totally nonnegative Routh—Hurwitz matrices, certain Vandermonde
matrices, etc.; discussion of such classes may be found in [8,9,15-17,19].



A.S Cranset al. / Linear Algebra and its Applications 328 (2001) 203—-222 205

Our interest here is similar but in a different direction: what may be said about
those special TN matrices whose Hadamard product aithTN matrix is TN?
Thus, we define theladamard core of them-by-n TN matrices, CTH, ,, as follows:

CTNp,={A€TN: BTN = Ao B e TN}.

When the dimensions are clear from the context we may delete the dependence on
andn. Itis a simple exercise that for mim, n} < 2, CTN= TN, but as indicated by

the nonclosure, CTN is properly contained in TN otherwise {mim} > 2). The
Hadamard core of TP may be similarly defined, but, as its theory is not substantially
different (because TN is the closure of TP), we do not discuss it here.

We first begin to describe CTN and are able to give a complete description when
min{m, n} < 4. Interestingly, perhaps the simplest description is via two test ma-
trices, and we raise the question as to whether there is a finite set of test matrices
in general. Surprisingly the core seems rather large. We also characterize the zero—
nonzero patterns for which every TN matrix lies in the core. This gives insight into
the core in general, as, for example, any tridiagonal TN matrix lies in the core. One
motivation for considering the core is that we are able to show that Oppenheim’s
inequality does hold when, in addition Bbeing TN,A lies in the core. The proof
requires noting facts about certain “retractibility” properties of TN matrices (see [5]),
that are of independent interests. This work naturally raises further questions, some
of which we mention at the conclusion.

2. Preliminariesand background

The set of allm-by-n matrices with real entries will be denoted b, ,, and if
m = n, M, , will be abbreviated td/,,. ForA € M,, , the notatiord = [a;;] will in-
dicate that the entries dfareq;; ¢ R,fori =1,2,...,mandj =1,2,...,n. The
transpose of a givem-by-n matrix A will be denoted byAT. ForA € M,, ,, a C
{1,2,...,m},andB C {1, 2, ..., n}, the submatrix of lying in rows indexed by
and the columns indexed tg/will be denoted byA[«|B]. Similarly, A(«|B) is the
submatrix obtained from by deleting the rows indexed layand columns indexed
by 8. If A € M,, ande = 8, then the principal submatrit[«|«] is abbreviated to
Ala], and the complementary principal submatrixdigx). If x = [x;] € R", then
we let diagx;) denote ther-by-n diagonal matrix with main diagonal entries We
begin with some simple yet useful properties concerning matrices in CTN.

Proposition 2.1. Suppose A and B are two m-by-n matrices in the Hadamard core.
Then A o B, the Hadamard product of A and B, isin the Hadamard core.

Proof. LetCbe anym-by-n TN matrix. ThenB o C is TN sinceBis in CTN. Hence
Ao(BoC)iSsTN.ButAo(BoC)=(AoB)oC.ThusA o Bisin CTN, sinceC
was arbitrary. O
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Note thatifD = [d;;] is a diagonal matrix, then d&tA[«|8] = detD[x]detAl«|
B]l. Hence ifAiis TN, thenDA is TN, for every entry-wise nonnegative (and hence
totally nonnegative) diagonal matriX. Moreover, observe thdd(A o B) = DA o
B = A o DB, from which it follows thatDA is in CTN wheneveb is a TN diagonal
matrix andAis in CTN. The above facts aid in the proof of the following proposition.

Proposition 2.2. Any rank one totally nonnegative matrix lies in the Hadamard
core.

Proof. Let A be a rank one TN matrix, say = xy', in which x = [x;] € R"
andy = [y;] € R" are entry-wise nonnegative vectors. Let= diagx;) andE =
diag(y;). Then it is easy to show that = DJE. (Observe thayl = ee', in which
eis a vector of ones of appropriate size. THBUE = D(ee')E = (De)(e"E) =
xy' = A.) Sinced is in CTN, we have thaDJE is in CTN, in other wordsA is in
CTN. 0O

Note that the example given in (1) implies that not all rank two TN matrices are
in CTN, and in fact by direct summing the matixin (1) with an identity matrix
follows that there exist TN matrices of all ranks greater than one that are notin CTN.
We now note a very useful fact concerning an inheritance property for matrices in
CTN.

Proposition 2.3. If an m-by-n totally nonnegative matrix A lies in the Hadamard
core, then every submatrix of A isin the corresponding Hadamard core.

Proof. Suppose there exists a submatrix, séy|g], that is not in CTN. Then
there exists a TN matriB such thatA[«|8] o B is not TN. Embed into annm-by-n
matrix C = [¢;;] such thatC[«|8] = B, andc;; = 0 otherwise. It is not difficult to
show thatC is TN, since any minor that does not lie in rows contained iand
columns contained i is necessarily zero. Now considéro C. SinceA[x|8] o B
is a submatrix ofA o C and A[«|B] o B is not TN, we have thall o C is not TN.
This completes the proof. O

The next result deals with the set of column vectors that can be inserted into a
given matrix in CTN in such a way so that the resulting matrix remains in CTN. We

say that a colummtvectorv isinserted incolumn k (k =1, 2,...,n,n + 1) of an
m-by-n matrix A = [b1, bo, ..., b,], with columnsb, bo, ..., b,, if we obtain the
newmby-(n + 1) matrix of the form[ba, ..., bxk—1, v, bk, ... by].

Proposition 2.4. The set of columns (or rows) that can be inserted into an m-by-n
TN matrix in the Hadamard core so that the resulting matrix remainsin the Hadam-
ard core is a nonempty convex set.
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Proof. Supposeéis anm-by-n TN matrix in CTN. LetSdenote the set of columns
that can be inserted in#®so that the new matrix remains in CTN. It is easy to verify
that Oe S, henceS # @. We verify the second claim only in the case of inserting
column vectors in position + 1, i.e., borderingA. The argument is similar for all
otherinsertion positions. Let y € S. Then the augmented matridesx] and[A|y]
are both in CTN. Suppogec [0, 1] and consider the matripd |rx + (1 — 1) y]. Let
[B|z] be anym-by-(n 4+ 1) TN matrix. Then

[Altx + (A —=1)ylo[Blz] =[Ao Blt(x0oz) + (1 —1)(y 0 2)].

SinceA is in CTN any submatrix ofA o B is TN. Therefore we only need to con-
sider the submatrices ¢fA|tx + (1 — ¢)y] o [B]z] that involve columm + 1. Let
[A'|tx” + (1 — t)y'] o [B’|Z'] denote any such square submatrixdftx + (1 — ¢)y]

o [B]|z]. Then

det[A'|tx" + (1 —1)y'] o [B'IZ'])
= det([A" o B'|t(x" 0 2)]) + det[A" o B'|(1—1)(y' 0 2")])
=tdet([A" o B'|x" 0 Z']) + (1 — t)det[A" o B'|y 0 Z'])
= rdef([A'|x"] o [B'|z']) + (1 — n)det[A'|y'] o [B'|Z']) > O,

since botHA|x] and[A]y] are in CTN. This completes the proof.[]

An n-by-nmatrix A = [g;;] is said to be @ridiagonal matrixif a;; = 0 whenever
li — j| > 1. A nonobvious, but well-known fact is the next proposition which can be
found in [7], where tridiagonal matrices are referred to as Jacobi matrices (see also
[4] for a new proof of this fact).

Proposition 2.5 [7, p. 143]. Let T be an n-by-n tridiagonal matrix. Then T istotally
nonnegative if and only if T is an entry-wise nonnegative matrix with nonnegative
principal minors.

An n-by-n matrix A with nonpositive off-diagonal entries is called a (possibly
singular) M-matrix if the principal minors oA are nonnegative (see [2, p. 149] or
[6, p. 391]). Ann-by-n matrix C = [¢;;] is said to berow diagonally dominant if
lcii| = Z#i lc;jl fori =1,2,...,n. Observe that if an M-matrix has nonnegative
row sums, then it is row diagonally dominant. Keeping this observation in mind,
Fiedler and Ptak essentially proved tifats an irreducible (possibly singular) M-
matrix if and only if there exists a positive diagonal matBixsuch thatDAD~1
is row diagonally dominant (see [6, (5.8), (6.8)]). We are now in a position to ex-
tend a result of Markham [16] (see also [9]) concerning the Hadamard product of
tridiagonal matrices.

Theorem 2.6. Let T be an n-by-n totally nonnegative tridiagonal matrix. Then T is
in the Hadamard core.
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Proof. It is enough to prove this result for the case in whicks irreducible, oth-
erwise apply the following argument to each irreducible block and use the simple
structure of a tridiagonal matrix. L& be an arbitraryn-by-n TN matrix. Simi-

larly we may assume is irreducible, which implie$;; > 0 for all i, j such that

li — j| <1, i.e.,B has positive “tri-diagonal part” (see [7, p. 139] and [4]). Since
pre- and post-multiplication by positive diagonal matrices does not affect the prop-
erty of being TN or whether or not a matrix is in CTN, we may assumeithat
lfori=12...,n and thath;; = bj; for all i, j with |i — j| = 1. Notice that

if §=diag1, -1,1,-1,...,+1), thenSTS has nonpositive off-diagonal entries,
and sinceT is TN, it follows thatSTS is a (possibly singular) M-matrix. More-
over, there exists a positive diagonal maisuch thatDS7TSD~1 = S(DTD~1)S

is a row diagonally dominant matrix (see remarks preceding Theorem 2.6). £et

[cijl = S(DTD™Y)S o B = S(DT D~ o B)S. SinceBis TN withb;; = 1 andb;; =

b;; whenever |i — j|=1, it follows that O<b;; <1 for all i,; with

li — j| = 1. HenceDT D~ o B is row diagonally dominant. SincB7T D~ o B is
tridiagonal, S(DT D1 o B)S has nonpositive off-diagonal entries, which im-
plies S(DT D=1 B)S is a (possibly singular) M-matrix. Therefo®®T D=1 o B

is an entry-wise nonnegative tridiagonal matrix with nonnegative principal minors.
Hence, by Proposition 2.3)T D=1 o B is a TN matrix, and henc& o B is a TN
matrix. ThusT isin CTN. O

We obtain a result of Markham [16] (see also [9]) as a special case.

Corollary 2.7. The Hadamard product of any two n-by-n tridiagonal totally non-
negative matrices is again totally nonnegative.

3. Description of the corefor min{m, n} < 4

The analysis of CTN in the 3-by-3 case differs significantly from the 2-by-2 case,
and, unfortunately, unlike the 2-by-2 case, not all 3-by-3 totally nonnegative matrices
are in the Hadamard core. Recall from (1) that the matrix

1 1 0
w=|1 1 1
1 1 1
is not a member of CTN. We will see the plays an important role in describing
CTN. We begin our analysis of CTN with a preliminary lemma concerning a special

class of 3-by-3 totally nonnegative matrices in CTN, that will aid the proof of the
main result to follow.
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Lemma3.1l. Let

1 1 a
A=|1 1 a
a a 1

Then A isin the Hadamard core if and only if A istotally nonnegative.

Proof. The necessity follows since CTN is always contained in TN. To verify suf-
ficiency supposé is TN. Let B = [b;;] be any 3-by-3 TN matrix. By virtue of the
2-by-2 case it is enough to show that @ebt B) > 0. We make use of Sylvester’s
identity for determinants (see [11, p. 22]). Note that we may assumeihat O,
otherwiseB is reducible in which case verification of ddto B) > 0Qis trivial. Using
Sylvester’s identity we see that d@t> 0 is equivalent to

(b11b22 — b12b21) (b22b33 — b23b3)2) S (b12b23 — b22b13)(b21b32 — b31b2)2)
b2 - b2 ’
SinceAis TN, 0< a < 1. Observe that

(b11b22 — b12b21) (b22b33 — basbzoa?)

b2
b11b22 — b12b boob33 — bosb .
> (b11b22 — b12b21) (b22b33 — b23 32)’ since 0< a < 1
b
b12b23 — boob bo1b32 — b31b .
> (b12b23 — b22b13)(b21b32 — b31 22)’ since de > 0
b
b12bo3 — boob bo1b32 — b31b .
>a2( 12b23 — b22b13) (b21b32 — b31 22)’ since 0< a < 1.
b
Therefore
(b11b22 — b12b21) (b22b33 — basbzoa?)
b2
S 42 (b12b23 — b22b13)(b21b32 — b31b22)
- b2 ’

which implies detA o B) > 0, and henc@is in CTN. O

A similar conclusion holds (as in Lemma 3.1) for TN matrices of the form

1 a a

a 1 1

a 1 1

The next two lemmas are verified separately from the main result to reduce the num-

ber of cases needed to prove the main result. The first is concerned with verifying a
necessary condition for singular TN matrices to belong in the Core, while the second
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lemma reduces the analysis of describing elements in the Core to entry-wise positive
TN matrices.

Lemma3.2. Let A be a 3-by-3 singular totally nonnegative matrix. If Ao W and
A o WT areboth totally nonnegative, then A isin the Hadamard core.

Proof. In light of the 2-by-2 case we may assume tAds irreducible. Moreover,
up to positive diagonal equivalence we may also ass@iisen the following form:

1 a ¢
A=l|a 1 b
d b 1

SinceA s singular, de#t = 1+ abc + abd — a? — b?> — ¢d = 0 or 14 abc + abd

= a? + b? + cd. By hypothesisA o W and A o WT are both totally nonnegative,
hence deiA o W) = 1+ abd —a® — b > 0, and detd o W') = 1 4 abc — a® —

b? > 0. Since M+ abc + abd — a® — b?> —cd =0 andab > ¢, d >0 (Ais TN) it
follows that equality must hold in & abd — a® — b > 0. Similarly, equality holds
for 14 abc — a? — b% > 0. This gives rise to one of the following four cases: (1)
¢c=0,andab=c; (2)¢c=0,andd =0; (3)d =0, andab = d; (4) ab = d, and
ab = c. Suppose is an arbitrary 3-by-3 TN matrix, as with, we may assume that
B has the following form:

1 o vy
B=|a 1 8
s p 1

Observe that cases (1) and (3) cannot occur sinags assumed to be irreducible.
In case (2)Ais tridiagonal, and hence is in CTN by Theorem 2.6. Finally, consider
case (4). Then det = 1+ (ab)?2 — a? — b%2 = (1 — a® (1 — b?) = 0. Therefore ei-
thera = 1 orb = 1. In either cas@ is of the form in Lemma 3.1 (or the remark after
Lemma 3.1) and hence is in CTN.OJ

Lemma3.3. Let A be a 3-by-3 totally nonnegative matrix with at least one zero
entry. If A o W and A o WT are both totally nonnegative, then A isin the Hadamard
core.

Proof. Itis enough to show that det o B) > 0, for any TN matrixB. If a;; =0

for somei, j with |i — j| < 1, thenAis reducible and the result follows. So assume
eithera;3 = 0 orazy = 0. If they are both zero, thef is a tridiagonal TN matrix

and hence is in CTN, by Theorem 2.6. Thus assume, without loss of generality, that
az1 = 0. In this case observe thdto W' = A, andAo W =T, in whichTis a
tridiagonal matrix. By hypothesig; is TN, and thereford is in CTN (Theorem

2.6). Moreover, d€# o B) > det(T o B) > 0 (the first inequality follows sincé

andB are TN, and the second inequality follows sificis in CTN). This completes

the proof. O
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We are now in a position to characterize all 3-by-3 TN matrices in the Hadamard
core.

Theorem 3.4. Let A be a 3-by-3 totally nonnegative matrix. Then A isin the Had-
amard coreif and onlyif A o W and A o WT are both totally nonnegative.

Proof. The necessity is clear sind# (and hence¥ ") is TN. Assume tha# o W

andA o WT are both TN. By Lemmas 3.2 and 3.3 it suffices to assumeAHat
nonsingular and entry-wise positive. As was the case with the previous lemmas to
showA is in CTN it is enough to verify that déA o B) > 0, for any TN matrixB.
Before we proceed with the argument presented here we need the following simple
and handy fact concerning TN matrices: increasing(thd) or (m, n) entry of an
m-by-n TN matrix yields a TN matrix. Using this fact and (possibly) diagonal scaling

it follows that any entry-wise positive nonsingular TN matrix can be written in the
following form:

1 1 1
A=|1 1+p 1+p+gqg|,
1 14+p+r 1+s

with p, s > 0 andg, r > 0 chosen accordingly, and up to transposition we may as-
sume thay > r. Then, using this form foA, we have that

deAoW) >0 = ps—p>—pr—pg—qr>r,
and
defAo W) >0 < ps—p>—pr—pq—qr>q.
The above two conditions are equivalent to
ps— PP+ pr+pg+qr)=ps—(p+q(p+r) = qCr).

Hences > ((p + q)(p +r) + q)/ p. Sincesenters positively into det and detA o
B), for any TN matrixB we can assume that equality holds, ises ((p + ¢)(p +r)
+q)/p. Now assume thd is any 3-by-3 TP matrix that is of the form (similar£9

1 1 1
B=|1 1+t 1+t+ul,

1 1+4+t+vw 1+w
in which O < ¢, u, v, w are suitably chosen. Sinegenters positively into d&® and
det(A o B) itis enough to prove dét o B) > 0 whenw is chosen as small as pos-
sible, namelyw = ((t + v)(t + 1))/t (in which case deB = 0). Now consider the
matrix A o B with the specified choices agfand w above. A routine computation
reveals that

deftAo B) =u(g —r)

1
+ E(qpuv + tquv + tquu + tzqru + tquv
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+ pzruv + pzquv +tgp + pzuv + 2qpt2 + qrt2

+ t3qp + t3qr + tzqv + tzqv + tzqu

+ p3uv + qt2 + t3q + tgpuv + tqruv + pqruv)
>0, sinceq > r, by assumption

HenceA o B is TN for all TP matricesB (the 2-by-2 submatrices are necessarily
TN). The fact thatA o B is TN for all 3-by-3 TN matrice® follows by a routine
continuity argument since any TN matrix is the limit of TP matrices (see [1])

We now present some useful variations upon and consequences of Theorem 3.4.

Corollary 3.5. Let A = [a;;] be a 3-by-3 totally nonnegative matrix. Then Aisin
the Hadamard coreif and only if

a11a22a33 + a31a12a23 = A11423a32 + a21a12a33,
2

a11a22a33 + az1a13a3

VoWV

a11a23a32 + a21a12a33.

Example 3.6 [Polya matrix]. Letg € (0, 1). Define then-by-n Polya matrixQ whose

(i, ))th entry is equal tg =%/ . Then it is well known (see [20]) th& is totally pos-
itive for all n (in fact Q is diagonally equivalent to a TP Vandermonde matrix). Sup-
poseQ represents the 3-by-3 Polya matrix. We wish to determine when (if €visr)

in CTN. By Corollary 3.5 and the fact th@is symmetricQis in CTN if and only if

g 284+ ¢722> ¢=26 4 4726 which is equivalent tg =28(1 — g2 — ¢2(1 — ¢%) >

0. This inequality holds if and only if & ¢ > ¢%(1 — ¢*) = ¢°(1 — ¢®)(1 + ¢?).
Thusq must satisfyy* + g2 — 1 < 0. Itis easy to check that the inequality holds for
g% € (0,1/), wherep = (1+ +/5)/2 (the golden mean). Hene@is in CTN for
allg € (0, V1/w).

Corollary 3.7. Let A = [a;;] be a 3-by-3 totally nonnegative matrix. Suppose B =
[bi;] isthe unsigned classical adjoint matrix. Then Aisin the Hadamard core if and
only if aj1b11 — a12b12 > 0, and a11b11 — az1b21 > 0; or, equivalently,

ar1det A[{2, 3})] — a1odet A[{2, 3}|{1,3}]1 > 0O,

and
ar1det A[{2, 3})] — ar1det A[{1, 3}|{2,3}] > 0.

Even though Corollary 3.7 is simply a recapitulation of Corollary 3.5, the condi-
tions rewritten in the above form aid in the proof of the next fact. Recall thatsfa
nonsingular TN matrix, theSA 1S is a TN matrix, in whichS = diag(1, —1, 1, —1,

..., x1) (see, e.qg., [7, p. 109]).
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Theorem 3.8. Suppose Aisa 3-by-3 nonsingular TN matrix in the Hadamard core.
Then SA~1S isin the Hadamard core.

Proof. Observe thaSA—1S is TN and, furthermor&§A—1S = (1/detA)B, where

B = [b;;] is the unsigned classical adjoint Af HenceSA~1S is in CTN if and
only if B is a member of CTN. Observe that the inequalities in Corollary 3.7 are
symmetric in the corresponding entriesfodindB. ThusB is in CTN. This completes
the proof. O

Corollary 3.9. Let A be a 3-by-3 totally nonnegative matrix whose inverse is tridi-
agonal. Then Aisin the Hadamard core.

Proof. Proof follows from Theorems 2.6 and 3.8.0

Gantmacher and Krein [7] proved that the set of all inverse tridiagonal totally
nonnegative matrices is closed under Hadamard multiplication. (In the symmetric
case, which can be assumed without loss of generality, an inverse tridiagonal matrix
is often called a Green’s matrix as was the case in [7,8].) The above result strengthens
this fact in the 3-by-3 case. However, it is not true in general that inverse tridiagonal
totally nonnegative matrices are contained in CTN.#ar 4 , CTN does not enjoy
the “inverse closure” property as in Theorem 3.8. Consider the following example.

Example 3.10. Let

1 a ab abc
a 1 b bc
A= ab b 1 c |’

abc bc ¢ 1

wherea, b, ¢ > 0 are chosen so thatis positive definite. Then it is easy to check
thatAis TN, and the inverse oA is tridiagonal. Consider the upper right 3-by-3
submatrix ofA, namely

a ab abc
M=1|1 b bc ,
b 1 c

which is TN. By Proposition 2.3, iA is in CTN, thenM is in CTN. However,
detM o W) = abc(b®> — 1) < 0, sinceb < 1. ThusAiis notin CTN.

For3<k<n,let wh = (wi(]'.‘)) be the 3-byn totally nonnegative matrix con-

sisting of entries:

@& |0 ifi=1, j >k,
ij 711 otherwise
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Forl<k<n-—2letu® = (ux.‘)) be the 3-byn totally nonnegative matrix con-
sisting of entries:

& _JO ifi=3 1<j<k,

ij 7 |1 otherwise

For example, iz = 5 andk = 3, then
1 1 0 0 O
w=11 1 1 1 1],
1 1 1 1 1
and

1 1 1 1 1
1 1 1 1f.
0O 0 0 1 1

U® —

[

Theorem 3.11. Let Abea 3-by-n (n > 3) totally nonnegative matrix. Then Aisin
the Hadamard core if and only if A o W® istotally nonnegativefor 3 < k < n and
Ao U istotally nonnegativefor 1 < j <n — 2.

Proof. The necessity is obvious, sint&®andU /) are both TN. Observe that it is
enough to show that every 3-by-3 submatrixAat in CTN, by Proposition 2.3. Let
B be any 3-by-3 submatrix ok. Consider the matriceg o W and A o U for
3<k<nand1< j < n — 2.Byhypothesist o W% andA o UY) are TN. Hence
by considering appropriate submatrices, it follows that W andB o W' are both
TN. ThereforeB is in CTN by Theorem 3.4. Thusisin CTN. O

Of course by transposition, we may obtain a similar characterization of CTN in
the n-by-3 case. At present no characterization of the Hadamard core for 4-by-4
totally nonnegative matrices is known, but we offer some ideas and conjectures on
this issue in Section 6.

4, Patternsfor which all TN matricesliein the core

In this section we consider zero—nonzero patterns (which in our case will always
be zero-positive (or (0+))-patterns) of totally nonnegative matrices in the Hadam-
ard core. Recall that am-by-n (0, +)-sign pattern is anm-by-n array of symbols
chosen from{+, 0}, and arealization of a sign pattern, S, is a realm-by-n matrix A
such that:

a;; >0 whens;; =4, and a;; =0 whens;; =0.

There are two natural mathematical notions associated with various sign-pattern
problems. They are the notionsrefjuire andallow. We say anm-by-n sign patterrs
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requires property P if every realization oShas property. On the other hand we say

a sign patterrs allows property P if there exists a realization & with propertyP.

We begin our analysis here by completely characterizing all the sign paB¢hnas
require a TN matrix to be in the Hadamard core of the totally nonnegative matrices.

Definition 4.1. Given anm-by-n sign patterrs, that allows TN, we say th& re-
quires Hadamard coreness of a TN matrix if any totally nonnegative realization &
is in the Hadamard core.

Observe that in order for a given sign pattesno require Hadamard coreness, it
is necessary th&be in double echelon form described below. In the following def-
inition and throughout this paper the symbdh a matrix means the corresponding
entry is nonzero.

Definition 4.2. An m-by-n matrix A with no zero rows or columns is said to bre
double echelon formiif:
(i) Each row ofA has one of the following forms:
1. (%, %,...,%),
2. (k,...,%,0,...,0),
3.(00,...,0,%,...,%)0r
4.0,...,0,%,...,%,0,...,0).
(i) The first and last nonzero entries in raw- 1 are not to the left of the first and
last nonzero entries in rowrespectively{ =1, 2, ..., m — 1).

Thus, a matrix in double echelon form appears as follows:
* % o ... 0
ol . .0
0o --- 0 * ok
It is not difficult to see that any TN matrix with no zero rows or columns must be
in double echelon form (see also [7]). We say thaDa+)-patternSis in double

echelon form if every realization d& is in double echelon form (i.eS requires
matrices to be in double echelon form).

Example4.3. Itis an easy exercise to show that any 1-by-1 or 2-by-2 sign pattern
in double echelon form requires Hadamard coreness of a TN matrix. We denote the
following 3-by-3 sign patterns as:

+ o+ +
F=|+ + +|. W=

0
+| or WT=
+ o+ o+ +

+ + +
+ + +
o+ +
++ +
+ + +
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Then any 3-by-3 double echelon sign pattern other tiam/ or W' requires
Hadamard coreness of a TN matrix. To verify this, first observe that by the example
in (1) and Example 3.6 there exist matrices with the above sign patterns that are not
in CTN. Thus, suppos8is a 3-by-3 sign pattern different from the three patterns
above. ThenSis either reducible or a tridiagonal pattern (with possibly more zeros),
and hencé&requires Hadamard coreness of a TN matrix (the latter following from
Theorem 2.6).

Lemma4.4. Suppose A is an m-by-n totally nonnegative matrix with no zero rows
or columns, and let " be any 1-by-n sign pattern. Then [%] allows TN if and only if
[4] isin double echelon form.

Proof. The above condition is obviously necessary. Sup@}sis in double eche-

lon form. Assume tha¥' is in following form: # =[0 --- 0, + --- +, 0 --- 0],

in which the plus signs span columpso j + k < n. Observe that ifj + k < n,

then columnsj +k +1,...,n of Amust be all zero columns singg] is in dou-

ble echelon form. Thus, since removal of zero columns does not change total non-
negativity, it is enough to prove this lemma for the cgse k = n. Hence, % =
[0---0, + --- 4], in which the first plus sign occurs in th#ih column. Letx =

[x;] be a realization oft” to be determined, and lét = [g]. We will choose values
forx;, i > j sequentially. Itis not difficult to see that we may chosggositive so

that

ClL 2. m+ DL J1] = [A [(L, 26'.'.'.’13}|{)1{,'”’j}]}

is TN. Applying similar arguments (sinag.1 is in the bottom right entry of the cor-
responding matrix), we may choosg, 1 large enough so that[{1, 2, ..., m + 1}
{1,...,j +1}]is TN. Continuing in this manner until we choaggsuch thatC =
[%] is TN. Observe that at each stage,(i > j) enters positively into each minor

that includes:;, and there is no upper bound for the choice0fThis completes the
proof. O

It is well known (see [1]) that iA is TN, thenAT and the matrix obtained from
A by reversing{ — n — i + 1) the rows and the columns are both TN. This simple
observation along with Lemma 4.4 implies the next result.

Corollary 4.5. SupposeAisan m-by-ntotally nonnegative matrix with no zero rows
or columns, and let Z° be any 1-by-n sign pattern. Then [A|2 ], [2T|A] or [}]
allows TN if and only if each isin double echelon form.
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Theorem 4.6. Let S be an n-by-n (0, +)-pattern with no zero rows or columns.
Then, Srequires Hadamard coreness of a TN matrix if and only if Sis in double
echelon form and does not contain any one of the sign patterns F, W or W' as a
subpattern.

Proof. SupposeSis in double echelon form withV as a subpattern. The analysis
is similar for the other two patterns. First, observe that we may assume this subpat-
tern occurs as a contiguous pattern (i.e., based on consecutive rows and columns),
sinceSis in double echelon form. Suppose this 3-by-3 subpattern is indexed by rows
j,j+1 j+2o0ofS. Let B be a 3-by-3 totally nonnegative matrix with sign pattern
W that is not in CTN (recall the example in (1)). By Lemma 4.4 and Corollary 4.5,
extendB to a 3-byn TN matrix B such that the sign pattern & equals the sign
pattern in rowsj, j +1, j + 2 of S Now, apply Lemma 4.4 and Corollary 4.5 to
construct am-by-n TN matrix B, from B, with sign patterrs. However,B is not in
CTN sinceB contains a submatrix that is not in CTN (see Proposition 2.3).

On the other hand suppoSés in double echelon form and does not cont&jriv
or WT as a subpattern. We proceed by using induction 6Fhis claim has already
been verified fom < 3 (see Example 4.3), so assume the result is true for all such
patterns of size less than or equakte- 1. Let Sbe as assumed above. Observe that,
by induction, any TN realization &has all of its proper submatrices in CTN. Thus,
we only need to verify that dés o B) > 0, whereA is any realization o6andB is
TN. We consider three cases:

Casel. Suppose thé&h diagonal entry oSis zero forsomeé =1, 2, ..., n. Then,
Scontains a zero block of size— i + 1+ i = n + 1. Hence, A o B has a zero block
of sizen 4 1 for any realizatiorA of S. But, in this case, déa o B) = 0 (see [18]).
Thus,Ais in CTN.

Case2. SupposeS has positive main diagonal entries, but that some entry on the
superdiagonal is zero (similar arguments hold if an entry on the subdiagonal is zero).
Assume thei, i + 1)st entry ofSis zero for somé = 1,2, ...,n — 1. SinceShas
positive main diagonal entries in addition to being in double echelon form, it follows
thatS contains a block of zeros of size— i + i = n. Hence,Sis block triangular,

and by induction, we have det o B) > 0, for any realizatiorA of SandB is TN.

Case 3. Finally, supposé& has positive main, super, and subdiagonal entries. Since
Sdoes not contain any of the three subpatterns (by assumption), it follows that the
(i,i +2) and(i + 2,i) entries ofSmust be zero foif =1, ...,n — 2. SinceSis in
double echelon form, it follows th&is a tridiagonal pattern. Thus, any realization
Aof Sisin CTN by Theorem 2.6. [

Note that if A is mby-n with n > m (without loss of generality), theA is in
CTN if and only if everym-by-m submatrix ofA is in CTN. This follows from
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Proposition 2.3. The above remark combined with Theorem 4.6 gives rise to the
following corollary.

Corollary 4.7. Let Sbe any rectangular m-by-n (0, +)-pattern with no zero rows or
columns. Then, Sreguires Hadamard coreness of a TN matrix if and only if Sisin
double echelon form and does not contain F, W or WT asa subpattern.

5. Oppenheim’sinequality

SupposeéA andB are twon-by-n positive semidefinite matrices. Then by a classi-
cal result of Schur (see [11, p. 4580 0 B is again positive semidefinite. Therefore,
in particular, detA o B) > 0 in this case. However, even more is true. Oppenheim
proved that ifA and B are positive semidefinite, then ddto B) > detB []\_; ai;

(see [11, p. 480]).

For the case in whicl\ andB aren-by-n totally nonnegative matrices it is cer-
tainly not true that dé#d o B) > 0 (see the example in (1)). Markham [16], however,
showed that Oppenheim’s inequality holds for the special class of tridiagonal TN
matrices. We generalize this result by making use of matrices in CTH.idfin
CTN, thenA o B is totally nonnegative (whenev@& is TN) and detA o B) > 0.
Furthermore, Oppenheim’s inequality holds in this case, which is much more general
than that of [16].

Theorem 5.1. Let A be an n-by-n totally nonnegative matrix in the Hadamard core,
and suppose B is any n-by-n totally nonnegative matrix. Then

n
det(A o B) > detB Haii.
i=1

Proof. If Bis singular, then there is nothing to show, sincg det B) > 0, asAis

in CTN. AssumeB is honsingular. If: = 1, then the inequality is trivial. Suppose, by
induction, that Oppenheim’s inequality holds for @l— 1)-by-(n — 1) TN matrices
A andB with Ain CTN. Supposé andB aren-by-n TN matrices and assume that
Ais in CTN. LetAj1 (B11) denote the principal submatrix obtained fréu{B) by
deleting row and column 1. Then by induction @&t1 o B11) > detB11[[/_, aii.
SinceB is nonsingular, by Fischer’s inequality (see [7, p. 128]) is nonsingular.
Consider the matri3 = B — x E11, wherex = detB/detBy1 and E1; is the stan-
dard basis matrix with a 1 in th@, 1) position and zeros otherwise. Then det 0,
and B is TN (see [5]). Therefored o B is TN and detA o B) > 0. Observe that
det(A o B) = det(A o B) — xa11det(A11 0 B11) > 0. Thus
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det(A o B) > xaj1det(A11 0 B11)

n
> xapidetByy l_[ a;;
i=2

n
= detB Ha,',',
i=1
as desired. O

Since any TN matrid = [q;;] satisfies Hadamard's inequality (det< []/_; aii,
see [7, p. 129]) the next result follows from Hadamard'’s inequality and Theorem 5.1.

Corollary 5.2. Let Abean n-by-ntotally nonnegative matrix in the Hadamard core,
and suppose B is any n-by-n totally nonnegative matrix. Then

detA o B) > det(AB).

We close this section with some further remarks concerning Oppenheim’s in-
equality. In the case in whicld = [a;;] and B = [b;;] are n-by-n positive semi-
definite matrices it is clear from Oppenheim’s inequality that

n n
detA o B) > max{ detB l_[a,'i, detA Hb”} )
i=1 i=1
However, in the case in whichis in the Hadamard core amlis ann-by-n TN ma-
trix it is not true in general that det o B) > detA []7_; b;;. Consider the following
example.

Example5.3. Let A be any 3-by-3 totally positive matrix in CTN, and [Bt= W,
the 3-by-3 totally nonnegative matrix equal to

1 1 0
1 1 1).
1 1 1

Then since the (1,3) entry of enters positively into det it follows that
det(A o B) < detA = detA [[>_, bi;.

If, however, bothA andB are in CTN, then we have the next result, which is a
direct consequence of Theorem 5.1.

Corollary 5.4. Let A = [a;;] and B = [b;;] be two n-by-n matricesin CTN. Then

n n
det(A o B) > max/ detB Haii, detA Hbii} )
i=1 i=1
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The following example sheds some light on the necessityAha¢ in CTN in
order for Oppenheim’s inequality to hold. In particular, we show thAtdndB are
TN andA o B is TN, then Oppenheim’s inequality need not hold.

Example5.5. Let

1 084 07
A=(084 1 a84],
0 0.84 1

andB = AT. ThenA (and hencd) is TN, and de#A = detB = 0.08272. Now

1 0.7056 0
Ao B =|0.7056 1 07056| ,
0 0.7056 1

and itis not difficult to verify thatd o B is TN with de{A o B) ~ 0.00426. However,
in this case

detA H?:]_ bii

det(A o B) ~ 0.00426< 0.08272= { A
detB Hi:l aii.

The next remark settles the issue of the possibility that Oppenheim’s inequality
offers a characterization of all TN matrices in CTN, namely, if a given TN matrix
A satisfies Oppenheim’s inequality (i.e., @&t B) > detB [];_; a;; for every TN
matrix B), thenA is in CTN. If n < 3 andA satisfies Oppenheim’s inequality for
every TN matrixB, then detA o B) > 0, and all the 2-by-2 submatrices dfo B
will be TN, for any TN matrixB. In particular,A is in CTN. Forn = 4 consider the
following matrix. Let

N Y
Nl

e
=)

1

SupposeB is any 4-by-4 TN matrix. Then since th@, 4) entry enters negative-
ly into detB it follows that detA o B) > detB = detB Hle a;;. HenceA satis-
fies Oppenheim’s inequality, b is not in CTN sinceA contains a submatrix
(A[{1, 2, 3}|{2, 3, 4}]) that is not in CTN. We also note here that, we can get by
with less tharA in CTN in the proof of Theorem 5.1. We simply need that the prin-
cipal submatrices oA, of the formA[{k,k+1,...,n}] (k=1,2,...,n), satisfy
det(A[{k,k+1,...,n}]o B’) > 0, for all appropriately sized TN matricés.
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6. Further discussion

At present no characterization of CTN for 4-by-4 totally nonnegative matrices
is known. One reason for the complications regarding a characterization of CTN
in the 4-by-4 case is that we do not have a solid conceptual understanding for the
description of CTN in the 3-by-3 case. The proof offered here for Theorem 3.4 (and
in fact all known proofs of which there are few) are computational in nature. We
believe there is more to learn about CTN in the 3-by-3 case, and that these difficulties
have impeded our progress in the 4-by-4 case.

In any event the question here is: Is there a finite collection of (test) matrices that
are needed to determine membership in CTN? If so, must they have some special
structure? For example, in the 3-by-3 case (and the proposed test matrices in the 4-
by-4 case below) all of the entries of the test matrices are either zero or one. After
examination of the 3-by-3 and 3-bytest matrices, a list of potential 4-by-4 test
matrices was proposed. This list includes the following six matrices as well as their
transposes:

1 1 0 O 1 1 1 O] 1 1 1 O]
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1) 1 1 1 1}° 1 1 1 1

1 1 1 1] |1 1 1 1] |1 1 1 1]

1 1 0 O] [1 1 0 0] [1 1 o0 O]
1 1 1 0 1 1 1 1 1 1 0 O
1 1 1 1) 1 1 1 1} 1 1 1 1}°

(1 1 1 1] |0 0 1 1] |1 1 1 1]

We refer to these matrices &s—Ve, respectively. In the 4-by-4 case we propose the

following conjecture.

Conjecture6.1. Let A be a 4-by-4 totally nonnegative matrix. Thénis in the
Hadamard core ifand only il o V;, A o Vl.T, are totally nonnegative matrices, for
i=12...,6.

Unfortunately, we have been unable to determine relevant determinantal inequal-
ities relating these matrices to each other oAto

Finally, it would be an interesting and worthy exercise to determine exact condi-
tions on a totally nonnegative matrix (or a subclass of TN) which ensure that Oppen-
heim’s inequality holds among the class TN for that matrix (or that subclass of TN).
The final remark in Section 5 demonstrates that it is not necessary to belong to CTN
in order to guarantee that Oppenheim’s inequality holds.
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