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Abstract

In this paper, a general hybrid fixed point theorem for the strict monotone increasing multi-valued mappings in ordered Banach
spaces is proved via measure of noncompactness and it is further applied to perturbed functional nonconvex differential inclusions
for proving the existence results for the extremal solutions under mixed Lipschitz, compactness and strict monotonic conditions.
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1. Introduction

Throughout this paper, unless otherwise mentioned, let X denote a Banach space with norm ‖ · ‖ and let Pp(X)
denote the class of all nonempty subsets of X with property p. Here, p may be p = closed (in short cl) or p = convex
(in short cv) or p = bounded (in short bd) or p = compact (in short cp). Thus Pcl(X),Pcv(X),Pbd(X) and Pcp(X)
denote, respectively, the classes of all closed, convex, bounded and compact subsets of X . Similarly, Pcl,bd(X) and
Pcp,cv(X) denote, respectively, the classes of closed–bounded and compact–convex subsets of X .

For x ∈ X and Y, Z ∈ Pbd,cl(X) we denote by D(x, Y ) = inf{‖x − y‖ | y ∈ Y }, and ρ(Y, Z) = supa∈Y D(a, Z).
Define a function dH : Pcl(X)× Pcl(X) → R+ by

dH (Y, Z) = max{ρ(Y, Z), ρ(Z , Y )}. (1.1)

The function dH is called a Hausdorff metric on X . Note that ‖Y‖P = dH (Y, {0}).
A correspondence T : X → Pp(X) is called a multi-valued operator or mapping on X . A point x0 ∈ X is called a

fixed point of the multi-valued operator T : X → Pp(X) if x0 ∈ T (x0). The fixed points set of T in X will be denoted
by FT .

Definition 1.1 (Dhage [1]). A multi-valued operator T : X → Pcl(X) is called D-Lipschitz if there exists a
continuous and nondecreasing function ψ : R+

→ R+ such that

dH (T x, T y) ≤ ψ(‖x − y‖) (1.2)
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for all x, y ∈ X , whereψ(0) = 0. The functionψ is called aD-function of T on X . Ifψ(r) = kr for some k > 0, then
T is called a Lipschitz on X with the Lipschitz constant k. Further if k < 1, then T is called a multi-valued contraction
on X with contraction constant k. Finally, if ψ(r) < r for r > 0, then T is called a nonlinear D-contraction on X .

Let X be a metric space. A multi-valued mapping T : X → Pcl(X) is called lower semi-continuous (resp. upper
semi-continuous) if G is any open subset of X then {x ∈ X | T x ∩ G 6= ∅} (resp. {x ∈ X | T x ⊂ G}) is an open
subset of X . The multi-valued mapping T is called totally compact if T (S), the closure of T (S), is a compact subset
of X for any S ⊂ X . T is called compact if T (S) is a compact subset of X for all bounded subsets S of X . Again
T is called totally bounded if for any bounded subset S of X, T (S) is a totally bounded subset of X . A multi-valued
mapping T : X → Pcp(X) is called completely continuous if it is upper semi-continuous and compact on X . Every
compact multi-valued mapping is totally bounded but the converse may not be true. However, these two notions are
equivalent on bounded subsets of a complete metric space X . The exhaustive treatment of these notions appears in
Granas and Dugundji [2].

Let X be an ordered metric space with an order relation ≤. Let a, b ∈ X be such that a ≤ b. Then an order interval
[a, b] is a set in X defined by

[a, b] = {x ∈ X | a ≤ x ≤ b}.

When X is an ordered Banach space, the order relation “≤” in X is defined by the cone K , which is a nonempty closed
set in X satisfying (i) K + K ⊂ K , (ii) λK ⊂ K for all λ ∈ R+, and (iii) {−K }

⋂
K = 0, where 0 is the zero element

of X . A cone K in a Banach space X is called normal, if the norm ‖ · ‖ is semi-monotone on K . It is known that if the
cone K is normal, then every order-bounded set is bounded in norm. The details of cones and their properties appear
in Guo and Lakshmikantham [3] and Heikkilä and Lakshmikantham [4]. In the following, we define an order relation
in Pp(X) which is useful in the sequel.

Let A, B ∈ Pp(X). Then we define

A ± B = {a ± b | a ∈ A and b ∈ B}

λA = {λa | a ∈ A}

for λ ∈ R. Define an order relation ≤ in Pp(X) by

A ≤ B ⇔ a ≤ b for all a ∈ A and b ∈ B. (1.3)

The order relation (1.3) defined in Pp(X) has been used in Dhage [5,14,7], Dhage and O’Regan [8] and Agarwal
et al. [9] in the study of extremal solutions for differential and integral inclusions.

Definition 1.2. A single-valued mapping Q : X → X is called monotone increasing or nondecreasing if x ≤ y, then
Qx ≤ Qy for all x, y ∈ X .

Definition 1.3. A multi-valued mapping Q : X → Pp(X) is called strictly monotone increasing if x < y, that is,
x ≤ y and x 6= y, then Qx ≤ Qy for all x, y ∈ X .

Notice that if Qx = { f x}, f a single-valued mapping, then the notion of strictly monotone increasing multi-valued
mappings is equivalent to the monotone increasing mappings on X .

The Hausdorff measure of noncompactness of a bounded subset S of X is a nonnegative real number β(S) defined
by

β(S) = inf

{
r > 0 : S ⊂

n⋃
i=1

Bi (xi , r), for some xi ∈ X

}
, (1.4)

where Bi (xi , r) = {x ∈ X | d(x, xi ) < r}.
The measure of noncompactness β enjoys the following properties:

(β1) β(A) = 0 ⇐⇒ A is compact.
(β2) β(A) = β(−A) = β(coA), where coA is the closed convex hull of A.
(β3) A ⊂ B ⇒ β(A) ≤ β(B).
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(β4) β(A ∪ B) = max{β(A), β(B)}.
(β5) β(λA) = |λ|β(A),∀λ ∈ R.
(β6) β(A + B) ≤ β(A)+ β(B).

The details of Hausdorff measure of noncompactness and its properties appear in Deimling [10], Zeidler [11] and
the references therein.

Definition 1.4. A multi-valued mapping T : X → Pcp(X) is called condensing (resp. countably condensing) if for
any bounded (resp. bounded and countable) subset S of X, T (S) is bounded and β(T (S)) < β(S) for β(S) > 0.

Note that every condensing multi-valued mapping is countably condensing, but the converse may not be true. It
is known that multi-valued contraction mappings and completely continuous multi-valued mappings are condensing.
See Dhage [6], Petruşel [12] and the references therein. Some details of condensing multi-valued mappings and fixed
points may be found in Gorniewicz [13] and the references cited therein.

A fixed point theorem for strictly monotone increasing multi-valued countably condensing mapping is

Theorem 1.1 (Dhage [7]). Let [x, y] be norm-bounded order interval in the ordered normed linear space X and let
T : [x, y] → Pcl([x, y]) be upper semi-continuous and countably condensing. Further if T is strictly monotone
increasing, then T has the least and the greatest fixed point in [x, y].

An improvement in the multi-valued analogue of Tarski’s fixed point theorem of Dhage and O’Regan [8] is
embodied in the following fixed point theorem in ordered metric spaces.

Theorem 1.2 (Dhage [8]). Let [a, b] be an order interval in a subset Y of the ordered Banach space X and let
Q : [a, b] → Pcp([a, b]) be a strictly monotone increasing multi-valued mapping. If every monotone sequence
{yn} ⊂

⋃
Q([a, b]) defined by yn ∈ Qxn, n ∈ N converges in Y , whenever {xn} is a monotone sequence in [a, b],

then Q has the least and the greatest fixed point.

In the following section, we combine Theorems 1.1 and 1.2 to obtain a general hybrid fixed point theorem for
multi-valued mappings on ordered Banach spaces.

2. Hybrid fixed point theory

Our main multi-valued hybrid fixed point theorem of this paper is

Theorem 2.1. Let [a, b] be a norm-bounded order interval in the ordered Banach space X and let T : [a, b] ×

[a, b] → Pcp([a, b]) be a multi-valued mapping satisfying the following conditions.

(a) A multi-valued mapping x 7→ T (x, y) is upper semi-continuous, condensing and strictly monotone increasing
uniformly for y ∈ [a, b],

(b) A multi-valued mapping y 7→ T (x, y) is strictly monotone increasing for each x ∈ [a, b], and
(c) every monotone sequence {zn} ⊂

⋃
T ([a, b] × [a, b]) defined by zn ∈ T (x, yn), n ∈ N converges for each

x ∈ [a, b], whenever {yn} is a monotone sequence in [a, b].

Then the inclusion x ∈ T (x, x) has the least and the greatest solution in [a, b].

Proof. Define a multi-valued operator Q : [a, b] → Pp([a, b]) by

Qy = {x ∈ [a, b] | x ∈ T (x, y)}. (2.1)

Let y ∈ [a, b] be fixed and define the mapping Ty(x) : [a, b] → Pcp([a, b]) by Ty(x) = T (x, y). Then Ty is a
countably condensing, upper semi-continuous and strictly monotone increasing multi-valued mapping which maps a
closed convex and bounded subset [a, b] of the Banach space X into itself. Therefore, an application of Theorem 1.1
yields that Ty has the least and the greatest fixed point in [a, b] and consequently the set Qy is nonempty for each
y ∈ [a, b].
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We assume that Qy is compact for each y ∈ [a, b]. It will be shown that Q satisfies all the conditions of
Theorem 1.2. First, we show that Q is a strict monotone increasing multi-valued operator on [a, b]. Let y1, y2 ∈ [a, b]

be any two elements such that y1 < y2, that is, y1 ≤ y2 and y1 6= y2. Then, we have

Qy1 = {z ∈ [a, b] | z ∈ T (z, y1) = Ty1(z)}

and

Qy2 = {z ∈ [a, b] | z ∈ T (z, y2) = Ty2(z)}.

From the strict monotonicity of T (x, y) in y, it follows that

Ty1(x) = T (x, y1) ≤ T (x, y2) = Ty2(x)

for all x ∈ [a, b]. Note also that the multi-valued mappings Ty1 and Ty2 are strict monotone increasing on [a, b].
If z ∈ Qy1 = Ty1(z) be arbitrary, then we have z ≤ Ty2(z). Since Ty1 : [a, b] → Pcp([a, b]) is upper

semi-continuous and countably condensing multi-valued mapping, by Theorem 1.1, the fixed point set of Ty1 is
nonempty and has the least and the greatest elements. Let z∗(y1) be the greatest fixed point of of Ty1 in [a, b].
Then we have z∗(y1) ∈ Ty1(z

∗(y1)) ≤ Ty2(z
∗(y1)). Now consider the order interval [z∗(y1), b] in [a, b]. Then

Ty2 defines an upper semi-continuous, countably condensing and strict monotone increasing multi-valued mapping
Ty2 : [z∗(y1), b] → Pcp([a, b]) and hence by Theorem 1.1, has the least fixed point z∗(y2) and the greatest fixed point
z∗(y2) in [z∗(y1), b]. Thus z∗(y1) ≤ z∗(y2) and so Qy1 ≤ Qy2. Hence Q is defined as a strict monotone increasing
multi-valued operator Q : [a, b] → Pcp([a, b]) (see also Dhage [5,13] and the references therein).

Next, let {yn} be a monotone sequence in [a, b]. We will show that the sequence {Qyn} converges. By definition
of Q, there is a monotone increasing sequence {zn} in [a, b] such that zn ∈ T (zn, yn), n ∈ N. Let S = {zn}. Then
S is a bounded and countable subset of [a, b] such that S ⊆

⋃
n∈N T (S, yn). Since the multi-valued x 7→ T (x, y) is

countably condensing for each y ∈ [a, b], one has

β(S) ≤ β(∪n∈N T (S, yn)) = sup
n∈N

β(T (S, yn)) < β(S)

for each n ∈ N. If β(S) 6= 0, then we get a contradiction. As a result, β(S) = 0 and that S is compact. Hence the
sequence {zn} converges to a point, say z in [a, b]. By upper semi-continuity of T (x, y) in x uniformly for y, there
exists an n0 ∈ N such that zn ∈ T (z, yn) for all n ≥ n0. Now, by hypothesis (c), every sequence {zn} in {T (z, yn)}

converges. As a result, the sequence {zn} ⊆
⋃

Q([a, b]) defined by zn ∈ Qyn for each n ∈ N converges, whenever
{yn} is a monotone increasing sequence in [a, b].

Thus the multi-valued operator Q satisfies all the conditions of Theorem 1.2 on [a, b] and hence on application it
yields that Q has the least and the greatest fixed point. Next, we define the operator Q̂ on [a, b] by

Q̂y = {z}

where, z ∈ T (z, y) and z is the greatest element in [a, b]. Clearly, the above operator is well defined in view of
Theorem 1.1 applied to the multi-valued mapping Ty on [a, b]. Then following the above arguments it is proved that
Q̂ has the least and the greatest fixed point and the greatest fixed point of Q̂ is the greatest solution of the inclusion
x ∈ T (x, x) in [a, b]. Similarly, define the operator P̂ : [a, b] → Pcp([a, b]) by

P̂ y = {z ∈ [a, b] | z ∈ T (z, y) and z is the least element}. (2.2)

Clearly the operator P̂ is well defined. It can be shown by using similar arguments that P̂ has the least fixed point in
[a, b] which is also the least solution of the inclusion x ∈ T (x, x). As a result, the inclusion x ∈ T (x, x) has the least
and the greatest solution in [a, b]. This completes the proof. �

As a consequence of Theorem 2.1 we obtain

Corollary 2.2. Let [a, b] be an order interval in a subset Y of an ordered Banach space X and let T : [a, b]×[a, b] →

Pcp([a, b]) be a multi-valued mapping satisfying

(a) x 7→ T (x, y) is an upper semi-continuous, countably condensing and strictly monotone increasing uniformly for
y ∈ [a, b], and

(b) y 7→ T (x, y) is strictly monotone increasing for each x ∈ [a, b].
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Then the inclusion x ∈ T (x, x) has the least and the greatest solution if any one of the following conditions is satisfied.

(a) [a, b] is norm-bounded and T is compact.
(b) The cone K in X is normal and y 7→ T (x, y) is compact for each x ∈ [a, b].
(c) The cone K is regular.

The origin of hybrid fixed point theorems involving the sum of two operators in a Banach space lies in the works
of the Russian mathematician Krasnoselskii [15]. The multi-valued versions of Krasnoselskii fixed point appear in
Dhage [6] and Petruşel [12]. In this case, one operator happens to be a contraction and another one happens to be a
completely continuous on the domains of their definitions. Since every contraction is continuous, both the operators in
such theorems are continuous. Below we prove a hybrid fixed point theorem involving the sum of three multi-valued
operators in Banach spaces and relax the continuity of one of the operators in such hybrid fixed point theorems, instead
we assume the monotonicity and prove a fixed point theorem on ordered Banach spaces.

To prove the main results in this direction, we need the following useful lemma.

Lemma 2.1. Let A, B : X → Pcp(X) be two multi-valued operators satisfying

(a) A is a multi-valued nonlinear D-contraction, and
(b) B is completely continuous.

Then the multi-valued operator T : X → Pcp(X) defined by T x = Ax + Bx is an upper semi-continuous and
condensing on X.

Proof. The proof appears in Dhage [6]. See also Petruşel [12] for the details. �

Theorem 2.3. Let [a, b] be an order interval in the ordered Banach space X. Let A, B,C : [a, b] → Pcp(X) be three
strictly monotone increasing multi-valued operators satisfying

(a) A is a multi-valued nonlinear D-contraction,
(b) B is completely continuous
(c) every monotone sequence {zn} ⊂

⋃
C([a, b]) defined by zn ∈ C(yn), n ∈ N converges, whenever {yn} is a

monotone sequence in [a, b], and
(d) Ax + By + Cz ⊂ [a, b] for all x, y, z ∈ [a, b].

Further if the cone K in X is normal, then the operator inclusion x ∈ Ax + Bx + Cx has the least and the greatest
solution in [a, b].

Proof. Define a mapping T on [a, b] × [a, b] by T (x, y) = Ax + Bx + Cy. From hypothesis (d) it follows that T
defines a multi-valued mapping T : [a, b] × [a, b] → Pcp([a, b]). From Lemma 3.1, it follows that the multi-valued
x 7→ T (x, y) is condensing, upper semi-continuous and strictly monotone increasing on [a, b]. Now the desired
conclusion follows by an application of Theorem 2.1. �

Remark 2.1. Note that hypothesis (d) above holds if the elements a and b in X satisfy a ≤ Aa + Ba + Ca and
Ab + Bb + Cb ≤ b. Note also that the hypothesis (c) above holds if the multi-valued operator C is a compact on
[a, b].

The Kuratowskii measure α of noncompactness in a Banach space is a nonnegative real number α(S) defined by

α(S) = inf

{
r > 0 : S ⊂

n⋃
i=1

Si , and diam(Si ) ≤ r,∀i

}
(2.3)

for all bounded subsets S of X .
It is known that the Kuratowskii measure α of noncompactness has all the properties (β1) through (β6) of the

Hausdorff measure of noncompactness on X . The following result appears in Akhmerov et al. [16].

Lemma 2.2 ([16, page 7]). Let α and β be respectively the Kuratowskii and Hausdorff measure of noncompactness
in a Banach space X, then for any bounded set S in X we have

α(S) ≤ 2β(S).
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Lemma 2.3. If A : X → X is a single-valued Lipschitz operator with the Lipschitz constant k, that is,

‖Ax − Ay‖ ≤ k‖x − y‖

for all x, y ∈ X, where the real number k > 0, then we have α(A(S)) ≤ kα(S) for any bounded subset S of X.

When A is a single-valued mapping, we obtain

Corollary 2.4. Let [a, b] be an order interval in the ordered Banach space X. Let B,C : [a, b] → Pcp(X) be two
strictly monotone increasing and A : [a, b] → X be a nondecreasing operator satisfying
(a) A is a single-valued contraction with contraction k < 1/2,
(b) B is completely continuous,
(c) C is compact, and
(d) Ax + By + Cz ⊂ [a, b] for all x, y, z ∈ [a, b].
Furthermore, if the cone K in X is normal, then the operator inclusion x ∈ Ax + Bx + Cx has the least and the
greatest solution in [a, b].

Proof. Define a mapping T : [a, b] × [a, b] → Pcp([a, b]) by

T (x, y) = Ax + Bx + Cy.

We shall show that the mapping Ty(·) = T (·, y) is a condensing on [a, b]. Since the order cone K in X is normal, the
order interval [a, b] is a norm-bounded set in X . Now for any subset S in [a, b] one has

Ty(S) ⊂ A(S)+ B(S)+ Cy.

Hence from Lemmas 2.2 and 2.3, it follows that

β(Ty(S)) = β(A(S)+ B(S)+ Cy)

≤ β(A(S))+ β(B(S))+ β(Cy)

≤ α(A(S))

≤ kα(S)

≤ 2kβ(S)

< β(S)

provided β(S) > 0. The rest of the proof is similar to Theorem 2.3. �

When A, B and C are single-valued operators, Theorem 2.3 reduces to

Corollary 2.5. Let [a, b] be an order interval in an ordered Banach space X. Let A, B,C : [a, b] → X be three
nondecreasing single-valued operators satisfying
(a) A is contraction with a contraction constant k < 1/2,
(b) B is completely continuous,
(c) C is compact, and
(d) Ax + By + Cz ∈ [a, b] for all x, y, z ∈ [a, b].
Furthermore, if the cone K in X is normal, then the operator inclusion Ax + Bx + Cx = x has the least and the
greatest solution in [a, b].

Remark 2.2. Note that hypothesis (d) above holds if the elements a and b in X satisfy a ≤ Aa + Ba + Ca and
Ab + Bb + Cb ≤ b.

The hybrid fixed point theory involving the product of two multi-valued operators in a Banach algebra is initiated by
the present author in [5] and developed further in the various directions in due course of time. See Dhage [17,6,14] and
the references therein. The main feature of these fixed point theorems is again that both the operators are continuous
on their domains of definition. Below we remove the continuity of one of the operators and prove a fixed point theorem
involving the product of two operators in a Banach algebra. We need the following preliminaries in the sequel.

A cone K in a Banach algebra X is called positive if
(iv) K ◦ K ⊆ K , where “◦” is a multiplicative composition in X .
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Let X be an ordered Banach algebra. Then for any A, B ∈ Pp(X), we denote

AB = {ab ∈ X | a ∈ A and b ∈ B}.

We need the following results in the sequel.

Lemma 2.4 (Dhage [14]). Let K be a positive cone in the Banach algebra X. If u1, u2, v1, v2 ∈ K are such that
u1 ≤ v1 and u2 ≤ v2, then u1u2 ≤ v1v2.

Lemma 2.5 (Dhage [6]). For any A, B,C ∈ Pp(X),

dH (AC, BC) ≤ dH (C, 0)dH (A, B) = ‖C‖PdH (A, B).

Lemma 2.6 (Banas and Lecko [18]). If A, B ∈ Pbd(X), then

β(AB) ≤ ‖A‖Pβ(B)+ ‖B‖Pβ(A).

Lemma 2.7. Let S be a closed convex and bounded subset of a Banach algebra X and let A, B : X → Pcp(X) be
two multi-valued operators such that

(a) A is a D-Lipschitz with the D-function ψ ,
(b) B is completely continuous, and
(c) Mψ(r) < r for r > 0, where M = ‖B(S)‖P = sup{‖Bx‖ | x ∈ S}.

Then the multi-valued operator T : X → Pcp(X) defined by T x = Ax Bx is upper semi-continuous and condensing
on X.

Proof. The proof appears in Dhage [17,6]. �

Theorem 2.6. Let [a, b] be an order interval in the ordered Banach algebra X and let A, B : [a, b] → Pcp(K ) and
C : [a, b] → Pcp(X) be three strictly monotone increasing multi-valued operators satisfying

(a) A is a D-Lipschitz with the D-function ψ ,
(b) B is completely continuous,
(c) every monotone sequence {zn} ⊂

⋃
C([a, b]) defined by zn ∈ C(yn), n ∈ N converges, whenever {yn} is a

monotone sequence in [a, b], and
(d) Ax By + Cz ∈ Pcp([a, b]) for all x, y, z ∈ [a, b].

Furthermore, if the cone K in X is positive and normal, then the operator inclusion x ∈ Ax Bx +Cx has the least and
the greatest solution in [a, b] whenever Mψ(r) < r for r > 0, where M = ‖B([a, b])‖P = sup{‖Bx‖P : x ∈ [a, b]}.

Proof. Define a mapping T on [a, b]×[a, b] by T (x, y) = Ax Bx +Cy. From hypothesis (d), it follows that T defines
a multi-valued mapping T : [a, b] × [a, b] → Pcp([a, b]). We show that the multi-valued map x 7→ T (x, y) = Ty(x)
is upper semi-continuous, condensing and strictly monotone increasing on [a, b]. First we show that it is condensing
on [a, b]. Let S be a subset of [x, y]. Since the cone K in X is normal, the order interval [x, y] and consequently the
set S is norm-bounded in X . Then by property (β6),

β(Ty(S)) ≤ β(A(S)B(S))+ β(C(y))

≤ ‖B(S)‖Pβ(A(S))+ ‖B(S)‖Pβ(B(S))+ β(C(y)).

As B is completely continuous and C is compact-valued, we have that β(B(S)) = 0 and β(C(y)) = 0. Again from
Lemma 2.3, it follows that β(A(S)) ≤ ψ(β(S)). Hence we have

β(Ty(S)) = ‖B(S)‖Pβ(A(S))+ β(C(S)) ≤ Mψ(β(S)) < β(S)

for all sets S in [x, y] with β(S) > 0. This shows that the map x 7→ T (x, y) is condensing on [a, b].
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To show that the multi-valued x 7→ T (x, y) is upper semi-continuous, let {xn} be a sequence in [a, b] converging
to a point x∗. Let {yn} be a sequence in Axn Bxn +Cy such that yn → y∗. It suffices to show that y∗

∈ Ax∗ Bx∗
+Cy.

Now,

D(y∗, Ax∗ Bx∗
+ Cy) = lim

n→∞
D(yn, Ax∗ Bx∗

+ Cy)

≤ lim
n→∞

dH (Axn Bxn + Cy, Ax∗ Bx∗
+ Cy)

≤ lim
n→∞

dH (Axn Bxn, Ax∗ Bx∗)

≤ lim
n→∞

dH (Axn Bxn, Ax∗ Bxn)+ lim
n→∞

dH (Ax∗ Bxn, Ax∗ Bx∗)

≤ lim
n→∞

[dH (Axn, Ax∗)dH (0, Bxn)] + lim
n→∞

[dH (0, Ax∗)dH (Bxn, Bx∗)]

≤ Mψ( lim
n→∞

‖xn − x∗
‖)+ ‖Ax∗

‖P lim
n→∞

dH (Bxn, Bx∗)

→ 0 as n → ∞.

This shows that y∗
∈ Ax∗ Bx∗

+Cy, and therefore, the multi-valued map x 7→ Ax Bx +Cy is upper semi-continuous
on [a, b]. Now the desired conclusion follows by an application of Theorem 2.1. �

Remark 2.3. Note that hypothesis (d) above holds if the elements a and b in X satisfy a ≤ AaBa + Ca and
AbBb + Cb ≤ b. Again, the hypothesis (c) above holds if the multi-valued operator C is a compact on [a, b].

Theorem 2.7. Let [a, b] be an order interval in an ordered Banach algebra X. Let A : [a, b] → K ,C : [a, b] → X
be two nondecreasing single-valued operators and B : [a, b] → Pcp(K ), a strictly monotone increasing multi-valued
operator satisfying

(a) A is Lipschitz with the Lipschitz constant k,
(b) B is completely continuous,
(c) C is compact, and
(d) Ax By + Cz ∈ Pcp([a, b]) for all x, y, z ∈ [a, b].

Furthermore, if the cone K in X is positive and normal, then the operator inclusion x ∈ Ax Bx + Cx has the least
and the greatest solution in [a, b] whenever 2Mk < 1, where M = ‖B([a, b])‖P = sup{‖Bx‖ : x ∈ [a, b]}.

Proof. Define a mapping T : [a, b] × [a, b] → Pcp([a, b]) by

T (x, y) = Ax Bx + Cy.

We shall show that the mapping Ty(·) = T (·, y) is a condensing on [a, b]. Since the order cone K in X is normal, the
order interval [a, b] is a norm-bounded set in X . Now for any subset S in [a, b] one has

Ty(S) ⊂ A(S)B(S)+ Cy.

Hence, from Lemmas 3.1 and 3.2, it follows that

β(Ty(S)) = β(A(S)B(S)+ Cy)

≤ ‖B(S)‖Pβ(A(S))+ ‖A(S)‖Pβ(B(S))+ β(Cy)

≤ ‖B(S)‖Pα(A(S))

≤ Mkα(S)

≤ 2Mkβ(S)

< β(S)

provided β(S) > 0. The rest of the proof is similar to Theorem 2.6. �

When A, B and C are single-valued operators, Theorem 2.6 reduces to
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Corollary 2.8. Let [a, b] be an order interval in an ordered Banach algebra X. Let A, B : [a, b] → K and
C : [a, b] → X be three nondecreasing single-valued operators satisfying
(a) A is Lipschitz with the Lipschitz constant k,
(b) B is completely continuous,
(c) C is compact, and
(d) Ax By + Cz ∈ [a, b] for all x, y, z ∈ [a, b].
Furthermore, if the cone K in X is positive and normal, then the operator inclusion Ax Bx + Cx = x has the least
and the greatest solution in [a, b], whenever 2Mk < 1, where M = ‖B([a, b])‖P = sup{‖Bx‖ : x ∈ [a, b]}.

Theorem 2.9. Let [a, b] be an order interval in an ordered Banach algebra X. Let A, B : [a, b] → Pcp(K ) and
C : [a, b] → Pcp(X) be three strictly monotone increasing multi-valued operators satisfying
(a) A is Lipschitz with the Lipschitz constant k,
(b) B is bounded and every monotone sequence {zn} ⊂

⋃
B([a, b]) defined by , zn ∈ B(yn), n ∈ N converges,

whenever {yn} is a monotone sequence in [a, b],
(c) C is completely continuous, and
(d) Ax By + Cz ∈ Pcp([a, b]) for all x, y, z ∈ [a, b].
Furthermore, if the cone K in X is positive and normal, then the operator inclusion x ∈ Ax Bx + Cx has the least
and the greatest solution in [a, b] whenever Mk < 1, where M = ‖B([a, b])‖P = sup{‖Bx‖P : x ∈ [a, b]}.

Proof. Define a mapping T on [a, b] × Pcv(X) by T (x, y) = Ax By + Cx . From hypothesis (d), it follows that T
defines a multi-valued mapping T : [a, b] × [a, b] → Pcp([a, b]). It can be shown as in the proof of Theorem 2.3
with appropriate modifications that the multi-valued x 7→ T (x, y) is condensing and upper semi-continuous on [a, b].
Now the desired conclusion follows by an application of Theorem 2.1. �

Remark 2.4. Note that hypothesis (d) above holds if the elements a and b in X satisfy a ≤ AaBa + Ca and
AbBb + Cb ≤ b. Again, the hypothesis (b) above holds if the multi-valued operator B is compact on [a, b].

When A, B and C are single-valued operators, Theorem 2.6 reduces to

Corollary 2.10. Let [a, b] be an order interval in a subset Y of an ordered Banach algebra X. Let A, B : [a, b] → K
and C : [a, b] → X be three nondecreasing single-valued operators satisfying
(a) A is Lipschitz with the Lipschitz constant k,
(b) B is compact,
(c) C is completely continuous, and
(d) Ax By + Cz ∈ [a, b] for all x, y, z ∈ [a, b].
Furthermore, if the cone K in X is positive and normal, then the operator equation Ax Bx + Cx = x has the least
and the greatest solution in [a, b] whenever 2Mk < 1, where M = ‖B([a, b])‖P = sup{‖Bx‖ : x ∈ [a, b]}.

Proof. Define a mapping T : [a, b] × [a, b] → [a, b] by

T (x, y) = Ax By + Cx .

We shall show that the mapping Ty(·) = T (·, y) is condensing on [a, b]. Since the order cone K in X is normal, the
order interval [a, b] is a norm-bounded set in X . Now for any subset S in [a, b] one has

Ty(S) ⊂ A(S)By + C(S).

Hence, from Lemmas 2.3 and 2.4, it follows that

β(Ty(S)) = β(A(S)By + Cy)

≤ ‖By‖Pβ(A(S))+ ‖A(S)‖Pβ(By)+ β(C(S))

≤ Mα(A(S))+ α(C(S))

≤ Mkα(S)

≤ 2Mkβ(S)

< β(S)

provided β(S) > 0. The rest of the proof is similar to Theorem 2.7. �
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Remark 2.5. Note that hypothesis (d) above holds if the elements a and b in X satisfy a ≤ AaBa + Ca and
AbBb + Cb ≤ b.

Theorem 2.11. Let [a, b] be an order interval in an ordered Banach algebra X with a cone K . Let A, B : [a, b] →

Pcp(K ) and C : [a, b] → Pcp(X) be three strictly monotone increasing multi-valued operators satisfying

(a) every monotone sequence {zn} ⊂
⋃

A([a, b]) defined by zn ∈ A(yn), n ∈ N converges, whenever {yn} is a
monotone sequence in [a, b],

(b) B is completely continuous,
(c) C is multi-valued contraction, and
(d) Ax By + Cz ∈ Pcp([a, b]) for all x, y, z ∈ [a, b].

Furthermore, if the cone K in X is positive and normal, then the operator inclusion x ∈ Ax Bx + Cx has the least
and the greatest solution in [a, b].

Proof. Define a mapping T on [a, b]×[a, b] by T (x, y) = Ay Bx +Cx . From hypothesis (d), it follows that T defines
a multi-valued mapping T : [a, b] × [a, b] → Pcp([a, b]). Now the desired conclusion follows by an application of
Theorem 2.1. �

Remark 2.6. Note that hypothesis (d) above holds if the elements a and b in X satisfy a ≤ AaBa + Ca and
AbBb + Cb ≤ b. Again, the hypothesis (a) above holds if the multi-valued operator A is compact on [a, b].

When C is single-valued operator, Theorem 2.9 reduces to

Corollary 2.12. Let [a, b] be an order interval in a subset Y of the ordered Banach algebra X. Let A, B : [a, b] →

Pcp(K ) be strictly monotone increasing and let C : [a, b] → X be a nondecreasing single-valued operator satisfying

(a) A is compact,
(b) B is completely continuous,
(c) C is contraction with a contraction constant k < 1/2, and
(d) Ax By + Cz ∈ Pcp([a, b]) for all x, y, z ∈ [a, b].

Furthermore, if the cone K in X is positive and normal, then the operator inclusion x ∈ Ax Bx + Cx has the least
and the greatest solution in [a, b].

Proof. Define a mapping T : [a, b] × [a, b] → Pcp([a, b]) by

T (x, y) = Ay Bx + Cx .

We shall show that the mapping Ty(·) = T (·, y) is condensing on [a, b]. Since the order cone K in X is normal, the
order interval [a, b] is a norm-bounded set in X . Now for any subset S in [a, b] one has

Ty(S) ⊂ Ay B(S)+ C(S).

Hence from Lemmas 3.1 and 3.2, it follows that

β(Ty(S)) = β(Ay B(S)+ C(S))

≤ ‖B(S)‖Pβ(Ay)+ ‖Ay‖Pβ(B(S))+ β(C(S))

≤ α(C(S))

≤ kα(S)

≤ 2kβ(S)

< β(S),

provided β(S) > 0. The rest of the proof is similar to Theorem 2.9. �

Remark 2.7. Note that hypothesis (d) above holds if the elements a and b in X satisfy a ≤ AaBa + Ca and
AbBb + Cb ≤ b.
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Corollary 2.13. Let [a, b] be an order interval in a subset Y of the ordered Banach algebra X. Let A : [a, b] →

K ,C : [a, b] → X be two nondecreasing and B : [a, b] → Pcp(K ) be a strictly monotone increasing multi-valued
operator satisfying

(a) A is compact,
(b) B is completely continuous,
(c) C is a contraction with the contraction constant k < 1/2, and
(d) Ax By + Cz ∈ Pcp([a, b]) for all x, y, z ∈ [a, b].

Furthermore, if the cone K in X is positive and normal, then the operator inclusion x ∈ Ax Bx + Cx has the least
and the greatest solution in [a, b].

Corollary 2.14. Let [a, b] be an order interval in a subset Y of the ordered Banach algebra X. Let A, B : [a, b] → K
and C : [a, b] → X be three nondecreasing single-valued mappings satisfying

(a) A is compact,
(b) B is completely continuous,
(c) C is a contraction with the contraction constant k < 1/2, and
(d) Ax By + Cz ∈ [a, b] for all x, y, z ∈ [a, b].

Furthermore, if the cone K in X is positive and normal, then the operator equation x = Ax Bx + Cx has the least
and the greatest solution in [a, b].

Proof. The proof is similar to Corollary 2.13 and so, we omit the details. �

Remark 2.8. Note that Remark 2.7 also remains true in case of Corollaries 2.13 and 2.14.

Note that Theorems 2.3 and 2.6 include the hybrid fixed point theorems proved in Dhage [19,20] for single as
well as for multi-valued mappings in ordered Banach spaces and algebras as special cases. In the following section
we prove the existence theorems for extremal solutions for perturbed discontinuous functional differential inclusions
under the mixed Lipschitz, compactness and monotonic conditions of multi-valued functions involved in the multi-
valued problems in question.

3. Discontinuous functional differential inclusions

The method of upper and lower solutions has been successfully applied to the problems of nonlinear differential
equations and inclusions. For the first direction, we refer to Heikkilä and Lakshmikantham [4] and for the second
direction we refer to Halidias and Papageorgiou [21]. In this section we apply the results of previous sections to the
first order initial value problem of ordinary discontinuous differential inclusions for proving the existence of solutions
between the given upper and lower solutions under monotonicity conditions.

3.1. Perturbed initial value problems

Let R denote the real line. Let I0 = [−δ, 0] and I = [0, T ] be two closed and bounded intervals in R for some real
numbers δ > 0 and T > 0 and let J = I0 ∪ I . Let C = C(I0,R) denote the Banach space of all continuous R-valued
functions on I0 with the usual supremum norm ‖ · ‖C given by

‖φ‖C = sup{|φ(θ)| : −δ ≤ θ ≤ 0}.

For any continuous function x defined on the interval J , where J = [−δ, T ] = I0
⋃

I , and for any t ∈ I we denote
by xt the element of C defined by

xt (θ) = x(t + θ), −δ ≤ θ ≤ 0.

Given a function φ ∈ C, consider the perturbed functional differential inclusion (in short, FDI)

x ′(t) ∈ F(t, xt )+ G(t, xt )+ H(t, xt ) a.e. t ∈ J,
x0 = φ,

}
(3.1)

where F,G, H : I × C → Pp(R).
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By a solution for the PDI (3.1) we mean a function x ∈ C(J,R) ∩ AC(I,R) whose first derivative x ′

exists and is a member of L1(I,R) in F(t, xt ) + G(t, xt ) + H(t, xt ), i.e. there exists a v ∈ L1(I,R) such that
v(t) ∈ F(t, xt )+ G(t, xt )+ H(t, xt ) a.e t ∈ I , and x ′(t) = v(t), t ∈ I and x0 = φ ∈ C, where AC(I,R) is the space
of all absolutely continuous real-valued functions on I and C(J,R) is the space of continuous real-valued functions
on J .

The special cases of PDI (3.1) have been discussed in the literature very extensively for different aspects of the
solutions under different continuity conditions. See Deimling [10], Hale [23] and the references therein. But the study
of PDI (3.1) or its special cases with discontinuous multi-valued functions have not been made so far in the literature
for the existence results. In this section we shall prove the existence theorems for PDI (3.1) via functional theoretic
approach embodied in Theorem 2.3 under the mixed Lipschitz, compactness and strict monotonic conditions.

We shall seek the solutions for the PDI (3.1) in the space C(J,R) of continuous and real-valued functions on J .
Define a norm ‖ · ‖ and an order relation “≤” in C(J,R) by

‖x‖ = sup
t∈J

|x(t)| (3.2)

and

x ≤ y ⇐⇒ x(t) ≤ y(t) for all t ∈ J. (3.3)

Here the cone K in C(J,R) is defined by

K = {x ∈ C(J,R) | x(t) ≥ 0},

which is obviously positive and normal. See Guo and Lakshmikantham [3] and Heikkilä and Lakshmikantham [4].
For any multi-valued mapping β : I × C → Pcp(R), we denote

S1
β(x) = {v ∈ L1(I,R) | v(t) ∈ F(t, xt ) a.e. t ∈ I }

for some x ∈ C(J,R). The integral of the multi-valued mapping β is defined as∫ t

0
β(s, xs)ds =

{∫ t

0
v(s)ds : v ∈ S1

β(x)
}
.

Definition 3.1. A multi-valued function β : I → Pcp(R) is said to be measurable if for every y ∈ R, the function
t → d(y, β(t)) = inf{|y − x | : x ∈ β(t)} is measurable.

Definition 3.2. A measurable multi-valued function β : I → Pcp(R) is said to be integrably bounded if there exists a
function h ∈ L1(I,R) such that a|v| ≤ h(t) a.e. t ∈ I for all v ∈ β(t).

Remark 3.1. It is known that if β : I → Pcp(R) is an integrably bounded multi-valued function, then the set S1
β

of all Lebesgue integrable selections of β is closed and nonempty. See Hu and Papageorgiou [22] and the references
therein.

Definition 3.3. A multi-valued mapping β : I × C → Pcp(R) is said to be L1-Carathéodory if

(i) t 7→ β(t, x) is measurable for each x ∈ C(J,R),
(ii) x 7→ β(t, x) is upper semi-continuous for almost all t ∈ I , and

(iii) for each real number k > 0, there exists a function hk ∈ L1(I,R) such that

‖β(t, x)‖P = sup{|u| : u ∈ β(t, x)} ≤ hk(t), a.e. t ∈ I

for all x ∈ C with ‖x‖C ≤ k.

Then we have the following lemmas due to Lasota and Opial [24].

Lemma 3.1. Let E be a Banach space. If dim(E) < ∞ and β : J × E → Pcp(E) is L1-Carathéodory, then
S1

G(x) 6= ∅ for each x ∈ E.
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Lemma 3.2. Let E be a Banach space, β an L1-Carathéodory multi-valued mapping with S1
β 6= ∅ and let

K : L1(I,R) → C(I, E) be a linear continuous mapping. Then the operator

K ◦ S1
β : C(I, E) −→ Pcp(C(I, E))

is a closed graph operator in C(I, E)× C(I, E).

Remark 3.2. It is known that a compact multi-valued map T : E → Pcp(E) is upper semi-continuous if and only
if it has a closed graph in E , that is, if {xn} and {yn} are sequences in E such that yn ∈ T xn for n = 0, 1, . . . ; and
xn → x∗, yn → y∗, then y∗

∈ T x∗.

We need the following definitions in the sequel.

Definition 3.4. A multi-valued mapping β(t, x) is called strictly monotone increasing in x almost everywhere for
t ∈ I if β(t, x) ≤ β(t, y), a.e. t ∈ I , for all x, y ∈ C, whenever x < y.

Definition 3.5. A multi-valued mapping β : I × C → Pcp(R) is called L1-Chandrabhan if

(i) t 7→ β(t, xt ) is measurable for each x ∈ C(J,R),
(ii) x 7→ β(t, x) is strictly monotone increasing almost everywhere for t ∈ I , and

(iii) for each real number r > 0 there exists a function hr ∈ L1(I,R) such that

‖β(t, x)‖P = sup{|u| : u ∈ β(t, x)} ≤ hr (t) a.e. t ∈ I

for all x ∈ C with ‖x‖C ≤ r .

Remark 3.3. Note that every L1-Chandrabhan multi-valued mapping β on I × C is integrably bounded and so, the
set of all Lebesgue integrable selectors S1

β(x) of β is nonempty closed subset of L1(I,R).

Definition 3.6. A function a ∈ C(J,R) is called a strict lower solution of PDI (3.1) if for all v1 ∈ S1
F (a) with

v2 ∈ S1
G(a) and v3 ∈ S1

H (a) we have that a′(t) ≤ v1(t) + v2(t) + v3(t) a.e. t ∈ I and a0 ≤ φ. Similarly a function
b ∈ C(J,R) is called a strict upper solution of PDI (3.1) if for all v1 ∈ S1

F (b) with v2 ∈ S1
G(b) and v3 ∈ S1

H (b) we
have that b′(t) ≥ v1(t)+ v2(t)+ v3(t) a.e. t ∈ I and b0 ≥ φ.

We now introduce the following hypotheses in the sequel.

(F1) F(t, x) is compact subset of R for each t ∈ I and x ∈ C.
(F2) The multi-valued t 7→ F(t, x) is integrally bounded for all x ∈ C.
(F3) There exists a function ` ∈ L1(I,R) such that

dH (F(t, x), F(t, y)) ≤ `(t)‖x − y‖C a.e. t ∈ I,

for all x, y ∈ C.
(F4) F(t, x) is strictly monotone increasing in x for almost everywhere t ∈ I .
(G1) G(t, x) is compact subset of R for each t ∈ I and x ∈ C.
(G2) G is L1-Carathéodory.
(G3) G(t, x) is strictly monotone increasing in x for almost everywhere t ∈ I .
(H1) H(t, x) is a compact subset of R for each t ∈ I and x ∈ C.
(H2) S1

H (x) 6= ∅ for all x ∈ C(J,R).
(H3) H is L1-Chandrabhan.
(H4) PDI (3.1) has a strict lower solution a and a strict upper solution b with a ≤ b.

Theorem 3.1. Assume that the hypotheses (F1)–(F4), (G1)–(G3) and (H1)–(H4) hold. Then the PDI (3.1) has the
least and the greatest solution in [a, b].
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Proof. Let X = C(J,R) and define an order interval [a, b] in C(J,R) which does exist in view of hypothesis (H4).
Note that the cone K is normal in X , and therefore, the order interval [a, b] is norm bounded in X . As a result there is
a constant r > 0 such that ‖x‖ ≤ r for all x ∈ [a, b].

Now PDI (3.1) is equivalent to the integral inclusion

x(t) ∈ φ(0)+

∫ t

0
F(s, xs)ds +

∫ t

0
G(t, xs)ds +

∫ t

0
H(t, xs)ds, if t ∈ I, (3.4)

satisfying

x(t) = φ(t), if t ∈ I0. (3.5)

Define three multi-valued operators A, B,C : [a, b] → Pp(X) by

Ax(t) =


∫ t

0
F(s, xs)ds, if t ∈ I,

0, if t ∈ I0,

(3.6)

Bx(t) =

φ(0)+

∫ t

0
G(s, xs)ds, if t ∈ I,

φ(t), if t ∈ I0,

(3.7)

and

Cx(t) =


∫ t

0
H(s, xs)ds, if t ∈ I,

0, if t ∈ I0.

(3.8)

Clearly the multi-valued operators A, B and C are well defined on [a, b] in view of the hypotheses (F2), (G2) and
(H2) respectively. Now the FDI (3.1) is transformed into an operator inclusion as

x(t) ∈ Ax(t)+ Bx(t)+ Cx(t), t ∈ J.

We shall show that A, B and C satisfy all the conditions of Theorem 2.3 on [a, b].
Step I : First, we show that A has compact and convex values on [a, b]. Observe that the operator A is equivalent to

Ax(t) =

{
(L ◦ S1

F )(x)(t) if t ∈ I,
0, if t ∈ I0,

(3.9)

where L : L1(I,R) → X is a continuous operator defined by

Lv(t) =

∫ t

0
v(s)ds, if t ∈ I.

To show that A has compact values, it then suffices to prove that the composition operatorL◦S1
F has compact values on

[a, b]. Let x ∈ [a, b] be arbitrary and let {vn} be a sequence in S1
F (x). Then, by the definition of S1

F , vn(t) ∈ F(t, xt )

a.e. for t ∈ J . Since F(t, xt ) is compact, there is a convergent subsequence of vn(t) (for simplicity call it vn(t) itself)
that converges in measure to some v(t), where v(t) ∈ F(t, xt ) a.e. for t ∈ J . From the continuity of L, it follows
that Lvn(t) → Lv(t) pointwise on I as n → ∞. In order to show that the convergence is uniform, we first show that
{Lvn} is an equi-continuous sequence. Let t , τ ∈ I ; then

|Lvn(t)− Lvn(τ )| ≤

∣∣∣∣∫ t

0
vn(s)ds −

∫ τ

0
vn(s)ds

∣∣∣∣
≤

∣∣∣∣∫ t

τ

|vn(s)|ds
∣∣∣∣ . (3.10)

Now, vn ∈ L1(I,R), so the right-hand side of (3.10) tends to 0 as t → τ . Hence, {Lvn} is equi-continuous,
and an application of the Ascoli theorem implies that it has a uniformly convergent subsequence. We then have
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Lvn j → Lv ∈ (L◦ S1
F )(x) as j → ∞, and so (L◦ S1

F )(x) is compact. Therefore, A is a compact-valued multi-valued
operator on [a, b].

Next, we show that A is a multi-valued contraction on [a, b]. Let x, y ∈ [a, b] and let u1 ∈ A(x). Then u1 ∈ X
and u1(t) =

∫ t
0 v1(s)ds for some v1 ∈ S1

F (x). From (H2), it follows that

dH (F(t, xt ), F(t, yt )) ≤ `(t)‖xt − yt‖C,

so we obtain the existence of w ∈ F(t, yt ) such that

|v1(t)− w| ≤ `(t)‖xt − yt‖C .

Thus, the multi-valued operator U defined by U (t) = S1
F (y)(t) ∩ K (t), t ∈ I , where

K (t) = {w : |v1(t)− w| ≤ `(t)‖xt − yt‖C},

has nonempty values and is measurable. Let v2 be a measurable selection for U which exists by the
Kuratowski–Ryll–Nardzewski’s selection theorem (see Deimling [10]). Then v2 ∈ F(t, yt ) and

|v1(t)− v2(t)| ≤ `(t)‖xt − yt‖C a.e. t ∈ I.

Let

u2(t) =


∫ t

0
v2(s)ds, if t ∈ I

0, if t ∈ I0.

It follows that u2 ∈ A(y) and

|u1(t)− u2(t)| ≤

∣∣∣∣∫ t

0
v1(s)ds −

∫ t

0
v2(s)ds

∣∣∣∣
≤

∫ t

0
|v1(s)− v2(s)|ds

≤

∫ t

0
`(s)‖xs − ys‖Cds

≤ ‖`‖L1‖x − y‖.

Taking the supremum over t , we obtain

‖u1 − u2‖ ≤ ‖`‖L1‖x − y‖.

From this, and the analogous inequality obtained by interchanging the roles of x and y, we obtain

dH (Ax, Ay) ≤ ‖`‖L1‖x − y‖,

for all x, y ∈ X . This shows that A is a multi-valued contraction since ‖`‖L1 < 1. Hence, condition (i) of Theorem 2.3
holds.

Next we show that A is a strictly monotone increasing multi-valued operator on [a, b]. Let x, y ∈ [a, b] be such
that x < y. Since x 7→ F(t, x) is strictly monotone increasing, one has F(t, x) ≤ F(t, y). As a result we have
S1

F (x) ≤ S1
F (y). Hence Ax ≤ Ay and consequently A is strictly monotone increasing on [a, b].

Step II: Secondly we show that the multi-valued operator B satisfies all the conditions of Theorem 2.3. It can be
proved as in the Step I that B is a compact-valued strictly monotone increasing operator on [a, b]. We only prove
that it is completely continuous on [a, b]. First, we show that B maps bounded sets into bounded sets in X . If S is
a bounded set in X , then there exists r > 0 such that ‖x‖ ≤ r for all x ∈ S. Now for each u ∈ Bx , there exists a
v ∈ S1

G(x) such that

u(t) =

φ(0)+

∫ t

0
v(s)ds, if t ∈ I,

φ(t), if t ∈ I0.
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Then, for each t ∈ J ,

|u(t)| ≤ ‖φ‖C +

∫ t

0
|v(s)|ds

≤ ‖φ‖C +

∫ t

0
hr (s)ds

≤ ‖φ‖C + ‖hr‖L1 .

This further implies that

‖u‖ ≤ ‖φ‖C + ‖hr‖L1

for all u ∈ Bx ⊂
⋃

B(S). Hence,
⋃

B(S) is bounded.
Next we show that B maps bounded sets into equicontinuous sets. Let S be, as above, a bounded set and u ∈ Bx

for some x ∈ S. Then there exists v ∈ S1
G(x) such that

u(t) =

φ(0)+

∫ t

0
v(s)ds, if t ∈ I,

φ(t), if t ∈ I0.

Then for any t1, t2 ∈ I with t1 ≤ t2, we have

|u(t1)− u(t2)| ≤

∣∣∣∣∫ t1

0
v(s)ds −

∫ t2

0
v(s)ds

∣∣∣∣
=

∫ t2

t1
|v(s)|ds

≤

∫ t2

t1
hr (s)ds.

If t1, t2 ∈ I0 then |u(t1)− u(t2)| = |φ(t1)− φ(t2)|. For the case where t1 ≤ 0 ≤ t2 we have that

|u(t1)− u(t2)| ≤

∣∣∣∣φ(t1)− φ(0)−

∫ t2

0
v(s)ds

∣∣∣∣
≤ |φ(t1)− φ(0)| +

∫ t2

0
|v(s)|ds

≤ |φ(t1)− φ(0)| +

∫ t2

0
hr (s)ds.

Hence, in all cases, we have

|u(t1)− u(t2)| → 0 as t1 → t2.

As a result
⋃

B(S) is an equicontinuous set in X . Now an application of Arzelá–Ascoli theorem yields that the multi
B is totally bounded on X .

Step IV. Next we prove that B has a closed graph in X . Let {xn} ⊂ X be a sequence such that xn → x∗ and let {yn}

be a sequence defined by yn ∈ Bxn for each n ∈ N such that yn → y∗. We will show that y∗ ∈ Bx∗. Since yn ∈ Bxn ,
there exists a vn ∈ S1

G(xn) such that

yn(t) =

φ(0)+

∫ t

0
vn(s)ds, if t ∈ I,

φ(t), if t ∈ I.

Consider the linear and continuous operator K : L1(I,R) → C(I,R) defined by

Kv(t) =

∫ t

0
vn(s)ds.
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Now

|yn(t)− φ(0)− (y∗(t)− φ(0))| ≤ |yn(t)− y∗(t)|

≤ ‖yn − y∗‖ → 0 as n → ∞.

From Lemma 2.2 it follows that (K ◦ S1
G) is a closed graph operator and from the definition of K one has

yn(t)− φ(0) ∈ (K ◦ S1
F (xn)).

As xn → x∗ and yn → y∗, there is a v ∈ S1
G(x∗) such that

y∗(t) =

φ(0)+

∫ t

0
v∗(s)ds, if t ∈ I

φ(t), if t ∈ I0.

Hence, B is an upper semi-continuous multi-valued operator on [a, b].
Step V: Finally, we show that the multi-valued operator C satisfies all the conditions of Theorem 2.3. It can be

proved as in the Step I that C is a compact-valued strictly monotone increasing map on [a, b]. We only prove that it is
compact on [a, b]. First, we show that C maps bounded sets into bounded sets in X . If S is a set in [a, b], then there
exists r > 0 such that ‖x‖ ≤ r for all x ∈ S, because the cone K is normal in X . Now for each u ∈ Cx , there exists a
v ∈ S1

H (x) such that

u(t) =


∫ t

0
v(s)ds, if t ∈ I,

0, if t ∈ I0.

Since (H3) holds, we have

|u(t)| ≤

∫ t

0
|v(s)|ds

≤

∫ t

0
hr (s)ds

≤ ‖hr‖L1

for all t ∈ J . This implies that

‖u‖ ≤ ‖hr‖L1

for all u ∈ Cx ⊂
⋃

C(S). Hence,
⋃

C(S) is bounded.
Next we show that C maps bounded sets into equicontinuous sets. Let S be, as above, a bounded set and u ∈ Bx

for some x ∈ S. Then there exists a v ∈ S1
H (x) such that

u(t) =


∫ t

0
v(s)ds, if t ∈ I,

0, if t ∈ I0.

Then for any t1, t2 ∈ I with t1 ≤ t2 we have

|u(t1)− u(t2)| ≤

∣∣∣∣∫ t1

0
v(s)ds −

∫ t2

0
v(s)ds

∣∣∣∣
=

∫ t2

t1
|v(s)|ds

≤

∫ t2

t1
hr (s)ds.

If t1, t2 ∈ I0 then |u(t1)− u(t2)| = 0. For the case, where t1 ≤ 0 ≤ t2 we have that

|u(t1)− u(t2)| ≤

∣∣∣∣∫ t2

0
v(s)ds

∣∣∣∣ ≤ |p(t2)− p(0)|,

where p(t) =
∫ t

0 hr (s)ds.
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Hence, in all cases, we have

|u(t1)− u(t2)| → 0 as t1 → t2.

As a result
⋃

C(S) is an equicontinuous set in X . Now an application of Arzelá–Ascoli theorem yields that C is
totally bounded on [a, b].

Thus all the conditions of Theorem 2.3 are satisfied and hence the operator inclusion x ∈ Ax + Bx + Cx has the
least and the greatest solution in [a, b]. This further implies that the differential inclusion (3.1) has a minimal and a
maximal solution on J . �

3.2. Differential inclusions in Banach algebras

Given a function φ ∈ C , consider the perturbed functional differential inclusion (in short FDI)

d
dt

[
x(t)− h(t, x(t))

f (t, x(t))

]
∈ G(t, xt ) a.e. t ∈ I,

x0 = φ

 (3.11)

where f : I × R → R \ {0}, h : I × R → R and G : I × C → Pp(R).
By a solution of the FDI (3.11) we mean a function x ∈ AC(J,R) such that

(i) the function t 7→
x(t)−h(t,x(t))

f (t,x(t)) is differentiable and
(ii) there exists a v ∈ L1(I,R) with v(t) ∈ G(t, xt ) a.e. t ∈ I such that(

x(t)− h(t, x(t))
f (t, x(t))

)′

= v(t) for all t ∈ I satisfying x(t) = φ(t) for t ∈ I0.

The special case of (3.11) in the form of differential equation (DE)

d
dt

[
x(t)− h(t, x(t))

f (t, x(t))

]
= g(t, xt ) a.e. t ∈ I

x0 = φ

 (3.12)

is also new to the theory of functional differential equations and includes the functional differential equation,

d
dt

[
x(t)

f (t, x(t))

]
= g(t, xt ) a.e. t ∈ I

x0 = φ

 (3.13)

which has been studied in Dhage et al. [25] for the existence results under the mixed conditions. Thus the study of
FDI (3.11) or DE (3.12) has got importance in recent years in the field of nonlinear differential analysis. In this section
we prove the existence results for the FDI (3.11) under the mixed Lipschitz, monotonic and a weaker Carathéodory
condition of the multi-valued mapping G. Note that here we do not require any type of continuity condition on the
multi-valued functions G.

We need the following definition in the sequel.

Definition 3.7. A function a ∈ C(J,R) is called a strict lower solution of FDI (3.11) if x(t)−h(t,x(t))
f (t,x(t)) is absolutely

continuous, and for all v ∈ S1
G(a), we have

(
a(t)−h(t,a(t))

f (t,a(t))

)′

≤ v(t) for all t ∈ I and a0 ≤ φ. Similarly, a function
b ∈ C(J,R) is called a strict upper solution of the FDI (3.11) if the above inequalities hold with reverse sign.

We consider the following set of assumptions :

(f1) f defines a continuous mapping f : I × R → R+
\ {0} with f (0, x) = 1 for all x ∈ R.

(f2) f defines a continuous mapping f : I ×R → R+ such that f (0, x) = 1 for all x ∈ R, and there exists a bounded
function `1 : I → R with bound ‖`1‖ such that

| f (t, x)− f (t, y)| ≤ `1(t)|x − y| t ∈ I

for all x, y ∈ R.
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(f3) f (t, x) is monotone increasing in x almost everywhere for t ∈ I .
(h1) h defines a continuous mapping h : I × R → R+ with h(0, x) = 0 for all x ∈ R.
(h2) h defines a continuous mapping h : I × R → R+ such that h(0, x) = 0 for all x ∈ R, and there exists a bounded

function `2 : I → R with bound ‖`2‖ such that

|h(t, x)− h(t, y)| ≤ `2(t)|x − y| t ∈ I

for all x, y ∈ R.
(h3) h(t, x) is monotone increasing in x almost everywhere for t ∈ I .
(G4) G defines a multi-valued mapping G : I × C → Pcp(R+).
(G5) G is L1-Chandrabhan.
(G6) The FDI (3.11) has a strict lower solution a and a strict upper solution b on J with a ≤ b.

Theorem 3.2. Assume that the hypotheses (f1), (f3), (h2)–(h3) and (G4)–(G6) hold. Further, if ‖`2‖ < 1/2 and
φ ≥ 0 on I0, then the FDI (3.11) has a minimal and a maximal solution on J .

Proof. Let X = C(J,R) and define a norm ‖ · ‖ and an order relation ≤ in X by Eqs. (3.2) and (3.3), respectively.
Then X is an ordered Banach algebra with respect to the multiplication “·” defined by (x .y)(t) = x(t)y(t) for
t ∈ J . Consider the order interval [a, b] in X which does exist in view of hypothesis (B4). Define three operators
A : [a, b] → K , B : [a, b] → Pcp(K ) and C : [a, b] → X by

Ax(t) =

{
f (t, x(t)), if t ∈ I,
1 if t ∈ I0,

(3.14)

Bx(t) =


{

u(t) : u(t) = φ(0)+

∫ t

0
v(s)ds, v ∈ S1

G(x)
}
, if t ∈ I

φ(t), if t ∈ I0

(3.15)

and

Cx(t) =

{
h(t, x(t)), if t ∈ I,
0, if t ∈ I0.

(3.16)

Then the FDI (3.11) is transformed into the operator inclusion

x(t) ∈ Ax(t)Bx(t)+ Cx(t), t ∈ J.

We shall show that the operators A, B and C satisfy all the conditions of Theorem 2.6 on [a, b].
Step I: It follows from hypothesis (B1) that A, B and C define the operators A : [a, b] → K , B : [a, b] → Pcp(K )

and C : [a, b] → X . Let x, y ∈ [a, b] be such that x ≤ y. Next we show that A and C are monotone increasing and
and B is strictly monotone increasing on [a, b]. By (B3),

Ax(t) =

{
f (t, x(t)) if t ∈ I
1, if t ∈ I0

≤

{
f (t, y(t)) if t ∈ I
1, if t ∈ I0

= Ay(t)

for all t ∈ J . Hence Ax ≤ Ay. Similarly, Cx ≤ Cy. Next let x, y ∈ [a, b] be such that x ≤ y with x 6= y. Since
G(t, x) is L1-Chandrabhan, we have S1

G(x) ≤ S1
G(y). As a result we obtain Bx ≤ By. Thus B is strictly monotone

increasing on [a, b]. By (G6), a ≤ AaBa + Ca and AbBb + Cb ≤ b.
Step II: Next we show that A is completely continuous on [a, b]. Now the cone K in X is normal, so the order

interval [a, b] is norm-bounded. Hence there exists a constant r > 0 such that ‖x‖ ≤ r for all x ∈ [a, b]. As f is
continuous on compact J × [−r, r ], it attains its maximum, say M . Therefore, for any subset S of [a, b] we have

‖A(S)‖P = max{1, sup {‖Ax‖ : x ∈ S}}

= sup
{

sup
t∈J

| f (t, x(t))| : x ∈ S
}

+ 1
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≤ sup
{

sup
t∈J

| f (t, x)| : x ∈ [−r, r ]

}
+ 1

≤ M + 1.

This shows that A(S) is a uniformly bounded subset of X .
Next we note that the mapping f (t, x) is uniformly continuous on [0, T ] × [−r, r ]. Therefore for any t, τ ∈ [0, T ]

we have

| f (t, x)− f (τ, x)| → 0 as t → τ

for all x ∈ [−r, r ]. Similarly for any x, y ∈ [−r, r ]

| f (t, x)− f (t, y)| → 0 as x → y

for all t ∈ [0, T ]. Hence for any t, τ ∈ [0, T ] and for any x ∈ S one has

|Ax(t)− Ax(τ )| = | f (t, x(t))− f (τ, x(τ ))|

≤ | f (t, x(t))− f (τ, x(t))| + | f (τ, x(t))− f (τ, x(τ ))|

→ 0 as t → τ.

Again if t, τ ∈ I0, then we have

|Ax(t)− Ax(τ )| = 0 ≤ |t − τ | → 0

for all x ∈ A(S). Finally if t ∈ I and τ ∈ I0, then

|Ax(t)− Ax(τ )| ≤ |Ax(τ )− Ax(0)| + |Ax(t)− Ax(0)| ≤ | f (t, x(t))− f (0, x(0))|

for all x ∈ A(S). Now if τ → t , then τ → 0 and t → 0. Therefore, from the uniform continuity of f , it follows that

| f (t, x(t))− f (0, x(0))| ≤ | f (t, x(t))− f (0, x(t))| + | f (0, x(t))− f (0, x(0))|
→ 0 as τ → t.

Thus in all three cases, we have

|Ax(t)− Ax(τ )| → 0 as τ → t.

This shows that A(S) is an equi-continuous set in X . Now an application of Arzela–Ascoli theorem yields that A is a
completely continuous operator on [a, b].

Step III: Step I: Next, we show that B has compact values on [a, b]. Now the multi-valued operator B is equivalent
to

Bx(t) =

{
(K ◦ S1

G)(x)(t), if t ∈ I
φ(t), if t ∈ I0

(3.17)

where, K : L1(I,R) → C(I,R) is a continuous operator defined by

Kv(t) = φ(0)+

∫ t

0
v(s)ds, t ∈ I. (3.18)

To show that B has compact values, it then suffices to prove that the composition operator K ◦ S1
G has compact

values on [a, b]. Let x ∈ [a, b] be arbitrary and let {vn} be a sequence in S1
G(x). Then, by the definition of S1

G ,
vn(t) ∈ G(t, xt ) a.e. for t ∈ J . Since G(t, xt ) is compact, there is a convergent subsequence of vn(t) (for simplicity
call it vn(t) itself) that converges in measure to some v(t), where v(t) ∈ G(t, xt ) a.e. for t ∈ J . From the continuity
of L, it follows that Kvn(t) → Kv(t) pointwise on I as n → ∞. In order to show that the convergence is uniform,
we first show that {Kvn} is an equi-continuous sequence. Let t, τ ∈ I ; then

|Kvn(t)−Kvn(τ )| ≤

∣∣∣∣∫ t

0
vn(s)ds −

∫ τ

0
vn(s)ds

∣∣∣∣
≤

∣∣∣∣∫ t

τ

|vn(s)|ds
∣∣∣∣ . (3.19)
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Now, vn ∈ L1(I,R), so the right-hand side of (3.10) tends to 0 as t → τ . Hence, {Kvn} is equi-continuous,
and an application of the Ascoli theorem implies that it has a uniformly convergent subsequence. We then have
Kvn j → Kv ∈ (K ◦ S1

G)(x) as j → ∞, and so (K ◦ S1
G)(x) is compact. Therefore, A is a compact-valued multi-

valued operator on [a, b].
Step IV: Finally, we show that the operator C is a contraction on [a, b]. Let x, y ∈ [a, b]. Then by hypothesis (h1),

‖Cx − Cy‖ = sup
t∈J

|Cx(t)− Cy(t)|

≤ sup
t∈J

|h(t, x(t))− h(t, y(t))|

≤ sup
t∈J

`(t)|x(t)− y(t)|

≤ ‖`‖‖x − y‖

where ‖`‖ < 1/2. This shows that C is a contraction on [a, b] with a contraction constant ‖`‖ < 1/2.
Now an application of Corollary 2.13 yields that the operator inclusion x ∈ Ax Bx + Cx and consequently the FDI

(3.11) has a minimal and a maximal solution on J . This completes the proof. �

Theorem 3.3. Assume that the hypotheses (f2), (f3), (h1), (h3) and (G4)–(G6) hold. Further, if ‖`1‖(‖φ‖C +

‖hr‖L1) < 1/2 and φ ≥ 0 on I0, then the FDI (3.11) has a minimal and a maximal solution on J .

Proof. The proof is similar to Theorem 3.2 and now the conclusion follows by an application of Theorem 2.7. �

Note that we do not need any of the multi-valued functions involved in the functional differential inclusions (3.1) and
(3.11) to have convex values on their domain of definitions. All the functions are also not required to be continuous,
but are required to satisfy certain monotonicity conditions.

4. Remarks and conclusion

The method of upper and lower solutions has been in practice for a long time in the theory of nonlinear differential
and integral equations. The monotonicity together with the upper and lower solutions yields the existence results for
extremal solutions of nonlinear differential and integral equations. The exhaustive treatment of the subject appears in
Heikkilä and Lakshmikantham [4]. The upper and lower solutions method for the differential and integral inclusions
is relatively new and may be found in the works of Halidias and Papageorgiou [21]. Monotone theory for differential
and integral inclusions is a most active area of research at present, but the study was initiated by Dhage [5] more
than a decade ago. There are different types of monotonic conditions for the multi-valued functions. The strict upper
and lower solutions together with the mild monotonic conditions of the multi-valued functions yield the existence
results for differential and integral inclusions. The work along this direction appears in Dhage [1]. The hybrid fixed
point theorems for the multi-valued mappings involving the mixed hypotheses from algebra, geometry and topology
have been discussed in Dhage [19] under the mild monotonic conditions along with their applications to differential
inclusions for the existence results. In that case the multi-valued operators need to have convex values on the domain
of their definition and the solutions are obtained under mild monotonic conditions. In this paper, we used the strict
upper and lower solutions together with the strict monotonic conditions of the multi-valued functions to yield the
existence results for extremal solutions for the first order functional differential inclusions under the mixed Lipschitz,
compactness and monotonic conditions, but without assuming the convexness of the multi-valued functions. Other
existence results involving strict upper and lower solutions together with the strict monotonic conditions of multi-
valued functions may be found in Dhage [7,19], Dhage and O’Regan [8], Agarwal et al. [9]. Again, our results of
this paper generalize and extend the fixed point results given in Dhage [5,14,7] and some of the results are also new
even to the single-valued case functional differential equations. Finally, the abstract fixed point results of this paper
have some nice applications to a variety of perturbed differential and integral inclusions and some of the results in this
direction will be reported elsewhere.
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[4] S. Heikkilä, V. Lakshmikantham, Monotone Iterative Technique for Nonlinear Discontinues Differential Equations, Marcel Dekker Inc., New

York, 1994.
[5] B.C. Dhage, A lattice fixed point theorem for multi-valued mappings and applications, Chinese J. Math. 19 (1991) 11–22.
[6] B.C. Dhage, Multi-valued mappings and fixed points I, Nonlinear Funct. Anal. Appl. 10 (3) (2005) 359–378.
[7] B.C. Dhage, A fixed point theorem for multivalued mappings on ordered Banach spaces with applications II, Panamer. Math. J. 15 (2005)

15–34.
[8] B.C. Dhage, D. O’Regan, A lattice fixed point theorem and multi-valued differential equations, Funct. Differ. Equ. 9 (2002) 109–115.
[9] R.P. Agarwal, B.C. Dhage, D. O’Regan, The method of upper and lower solution for differential inclusions via a lattice fixed point theorem,

Dynam. Systems Appl. 12 (2003) 1–7.
[10] K. Deimling, Multi-valued Differential Equations, De Gruyter, Berlin, 1998.
[11] E. Zeidler, Nonlinear Functional Analysis and its Applications: Part I, Springer Verlag, 1985.
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