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Existence and uniqueness of weak solutions are shown for different models of
the dynamic behavior of elastomers. The models are based on a nonlinear stress-
strain relationship (satisfying a locally Lipschitz and affine domination property) and
incorporate hysteretic effects as well. The results provide alternatives to previous
theories that required monotonicity assumptions on the nonlinearities. Results with
a nonlinear constitutive law and nonlinear internal dynamics are presented for the
first time.  2002 Elsevier Science (USA)

1. INTRODUCTION

In this paper we examine the theoretical foundations of a series of mod-
els for the dynamic behavior of elastomers (filled rubber-like materials). As
outlined in previous papers [6, 7], the basic model describing the longitudi-
nal motion of a viscoelastic bar with the upper end �x = 0� fixed and a tip
mass on the lower end �x = �� is given by

ρAcutt − �Acσ�x = 0 for 0 < x < � (1.1)

Mutt�t� �� + Acσ�t� �� = Mg + f �t� (1.2)

u�t� 0� = 0 (1.3)
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u�0� x� = u0 (1.4)

ut�0� x� = u1� (1.5)

where ρ is the mass density, Ac is cross-sectional area, M is tip mass, g
is gravitational acceleration, f is external force, and σ denotes the stress.
If there is no tip mass and Ac = ρ = 1� then we can write the system in
variational formulation as

utt − σx = F�t� in V ∗ (1.6)

u�0� x� = u0 ∈ V (1.7)

ut�0� x� = u1 ∈ H� (1.8)

where we let V = H1
L�0� ��� H = L2�0� �� and F�t� = f �t�δ��x�� The

crucial modeling question is what type of stress strain relationship best
describes the material. In our earlier experimentally based investiga-
tions of elastomers we found that a nonlinear constitutive law is needed
[4, 5], i.e.,

σ�ux� = Eux + ge�ux� + CDutx� (1.9)

where the third term on the right side is a first approximation to a
damping that these materials exhibit. (For simplicity of presentation
here we will later make the assumption that E = 1�) Comparing the
actual experimental data with this model, we demonstrated good agree-
ment for unfilled and lightly filled rubber bars. However, the model is
not adequate to describe medium or highly filled elastomers that ex-
hibit significant hysteretic behavior. To account for this property of
the material we included a Boltzmann integral term in the constitutive
relationship

σ�ux� = Eux + ge�ux� + CDutx +
∫ t

−∞
e−c1�t−s� d

ds
gv�ux� utx�ds� (1.10)

As described in [5] under specific assumptions on the prehistory of the
motion this relationship can be expressed in an equivalent internal variable
formulation

σ�ux� = Eux + ge�ux� + CDutx + ε1 (1.11)

ε1t + c1ε1 = d

dt
gv�ux� utx� (1.12)

ε1�0� x� = 0� (1.13)

We can think of ε1 as an internal strain variable whose dynamics is
described by (1.12)–(1.13). We also note that although these constitu-
tive relationships are expressed in terms of the infinitesimal strain ux,
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the formulation is equivalent to considering finite strains ε = ux + 1
2 u2

x,
with different nonlinear functions ge and gv� The internal variable system
(1.11)–(1.13) can be further generalized by considering nonlinear internal
dynamics, i.e., (1.11) with

ε1t + c1ε1 = d

dt
gv�ux� utx� + gin�ε1� (1.14)

ε1�0� x� = 0� (1.15)

We note that the resulting constitutive law is no longer equivalent to
a Boltzmann integral formulation. A further generalization that has
proved important for highly filled elastomers involves multiple internal
variables. That is, one replaces ε1 in (1.11) by a finite sum

∑
εj of in-

ternal variables εj which satisfy systems of the form (1.12)–(1.13) or
(1.14)–(1.15).

In this note we consider the well-posedness of the basic model with the
three different constitutive laws. Thus we first show that the nonlinear prob-
lem with no hysteresis ((1.6)–(1.8) with (1.9)) is well posed under rather
general assumptions on the nonlinear function ge� Our first result guaran-
tees the existence of a unique local weak solution under a local Lipschitz
condition on the nonlinear function. If we impose an additional growth as-
sumption on the nonlinearity, then the weak solution is global (i.e., exists
for any time interval 	0� T 
�� We then show that similar results can be ob-
tained for the nonlinear problem (i.e., nonlinear ge� gv� with linear internal
strain dynamics ((1.6)–(1.8) with (1.11)–(1.13)) and for the nonlinear prob-
lem with nonlinear internal strain dynamics ((1.6)–(1.8) with (1.11),(1.14)–
(1.15)). The first two problems were previously studied under certain mono-
tonicity and growth assumptions on the nonlinearities �ge and gv� in [2, 6],
respectively. The results in this paper demonstrate that well-posedness can
be achieved under relaxed assumptions and can be extended to the prob-
lem with nonlinear internal dynamics. The techniques we use were suc-
cessfully employed to establish existence-uniqueness of weak solutions for
linear evolution equations of second order in t in [8] and for semilinear
second order evolution equations where the nonlinear forcing term satis-
fies a global Lipschitz condition in [9]. In [1] such techniques were extended
to study a nonlinear beam equation where the nonlinearity satisfies only a
local Lipschitz condition. Arguments for our results concerning the nonlin-
ear problem with no hysteresis are very similar to the ones used in [1]. We
give a fairly detailed exposition here in order to be able to easily refer to
these as we extend the well-posedness result to the systems with internal
variables.
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2. THE NONLINEAR PROBLEM WITH NO HYSTERESIS

In this section we investigate the system

utt − CDutxx − uxx − �ge�ux��x = F�t� in V ∗ (2.16)

u�0� x� = u0 ∈ V (2.17)

ut�0� x� = u1 ∈ H� (2.18)

where V = H1
L�0� �� ↪→ H = L2�0� �� ↪→ V ∗� CD > 0, and E has been

normalized only for the sake of convenience. We make the following as-
sumptions:

�Age
� The nonlinear function ge satisfies the following local Lipschitz

condition: let Br�0� denote the ball of radius r centered at 0 in H and for
some positive constant LBr

we have

�ge�w� − ge�v�� ≤ LBr
�w − v�

for all w� v ∈ Br�0��
�Abe

� There exist constants C1� C2 such that

�ge�v�� ≤ C1�v� + C2�

for every v ∈ H.
�Af � The forcing term F satisfies

F ∈ L2�0� T �V ∗��
We define the space of weak solutions to be

��0� T � = �u ∈ L2�0� T �V � � ut ∈ L2�0� T �V �� utt ∈ L2�0� T �V ∗���
with norm given by

�u���0�T � =
(
�u�2

L2�0�T �V � + �ut�2
L2�0�T �V � + �utt�2

L2�0�T �V ∗�
) 1

2
�

Definition 2.1. We define u ∈ ��0� T � to be a weak solution of (2.16)–
(2.18) if it satisfies

�utt� ϕ�V ∗�V + CD�utx� ϕx� + �ux� ϕx�
+ �ge�ux�� ϕx� = �F� ϕ�V ∗�V for every ϕ ∈ V (2.19)

and

u�0� x� = u0 ∈ V (2.20)

ut�0� x� = u1 ∈ H� (2.21)
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Here �·� ·� denotes the inner product in H while �·� ·�V ∗�V represents the
usual duality product. We first prove the following local existence theorem:

Theorem 2.1. Under assumptions �Age
� and �Af � and for any u0 ∈

V� u1 ∈ H� the system (2.19)–(2.21) has a unique weak solution on some
interval 	0� t∗
�
Proof. Let P denote the Hilbert space radial retraction onto the ball in

H centered at u0x with radius 1, and let

ĝe�v� = ge�Pv��
Thus ĝe satisfies a global Lipschitz condition

�ĝe�w� − ĝe�v�� ≤ LB�1+�u0x��
�Pw − Pv� ≤ L̃�w − v� (2.22)

for every w� v ∈ H and also

�ĝe�w�� ≤ L̃�w� + C� (2.23)

where C = �ge�0�� ≥ 0�
Now we consider the problem

utt − CDutxx − uxx − �ĝe�ux��x = F�t� in V ∗ (2.24)

u�0� x� = u0 ∈ V (2.25)

ut�0� x� = u1 ∈ H� (2.26)

Let �ψi�∞i=1 be any linearly independent total subset of V� For each m let

V m = span�ψ1� ψ2� � � � � ψm��
and choose um

0 � um
1 ∈ V m such that um

0 → u0 in V and um
1 → u1 in H as

m → ∞� We develop the standard Galerkin approximations for the prob-
lem (2.24)–(2.26). Let um�t� = ∑m

i=1 Cm
i �t�ψi be the unique solution of the

m-dimensional ordinary differential equation system

�um
tt � ψj�V ∗�V + CD�um

tx� ψjx� + �um
x � ψjx�

+ �ĝe�um
x �� ψjx� = �F� ψj�V ∗�V (2.27)

um�0� x� = um
0 (2.28)

um
t �0� x� = um

1 � (2.29)

To obtain an a priori estimate we multiply (2.27) by d
dt

Cm
j �t� and sum over

j to arrive at

�um
tt � um

t �V ∗�V + CD�um
tx� um

tx� + �um
x � um

tx�
+ �ĝe�um

x �� um
tx� = �F� um

t �V ∗�V � (2.30)
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Thus

1
2

d

dt

{
�um

t �t��2 + �um
x �t��2

}
+ CD�um

tx�2 =

− �ĝe�um
x �� um

tx� + �F� um
t �V ∗�V � (2.31)

Integrating from 0 to t we obtain

�um
t �t��2 + �um

x �t��2 + 2CD

∫ t

0
�um

τx�τ��2dτ = �um
1 �2

+ �um
0x�2 − 2

∫ t

0
�ĝe�um

x �� um
τx�dτ + 2

∫ t

0
�F� um

τ �V ∗�V dτ� (2.32)

Using assumption �Af �, the boundedness property (2.23) and standard in-
equalities, we obtain

�um
t �t��2 + �um

x �t��2 + ν
∫ t

0
�um

τx�τ��2dτ ≤ �um
1 �2 + �um

0x�2

+ L̃2

δ

∫ t

0
�um

x �τ��2dτ + 1
δ

∫ t

0
�F�τ��2

V ∗dτ + C2T

δ
� (2.33)

where δ is chosen such that ν = 2CD − 3δ > 0� By applying the Gronwall
inequality we can conclude that the sequence ��um

x �2� is bounded. Hence
there exists a positive constant C̃ = C̃�u1� u0� ge� F� T � independent of m
such that

�um
t �t��2 + �um

x �t��2 + ν
∫ t

0
�um

τx�τ��2dτ ≤ C̃� (2.34)

Now we can argue as in [1, 2, 3, 8] that there exists a subsequence,
again denoted by �um�� and limit functions u ∈ W 1�2�0� T �V � and
g̃ ∈ L2�0� T �H�� such that

um → u weakly in W 1�2�0� T �V � (2.35)

ĝe�um
x � → g̃ weakly in L2�0� T �H�� (2.36)

Using these convergences we obtain that u satisfies

�utt� ϕ�V ∗�V + CD�utx� ϕx� + �ux� ϕx�
+ �g̃� ϕx� = �F� ϕ�V ∗�V for every ϕ ∈ V (2.37)

and

u�0� x� = u0 ∈ V (2.38)

ut�0� x� = u1 ∈ H� (2.39)
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We note that as in [1] we have that

φ →
∫ T

0
�utt� φ�V ∗�V dτ

is continuous over ��0� T �V � equipped with the topology of L2�0� T �V �
and thus by density over L2�0� T �V �� So utt ∈ �L2�0� T �V ��∗ =L2�0� T �V ∗�
and since we already established that u ∈ W 1�2�0� T �V � we can conclude
that u ∈ ��0� T �� By [8, Remark 1, p. 555] this also provides the additional
regularity:

u ∈ C�	0� T 
�V �� ut ∈ C�	0� T 
�H��

To conclude that u is indeed a weak solution of (2.24)–(2.26) we need to
show that

�g̃� ϕx� = �ĝe�ux�� ϕx� for every ϕ ∈ V� (2.40)

This is achieved by establishing the strong convergence um
x �t� → ux�t� in

H as m → ∞� Let zm�t� = um�t� − u�t�� Using um
t and ut as test functions

in (2.27) and (2.37), respectively, and integrating, we find

�zm
t �t��2 + �zm

x �t��2 + 2CD

∫ t

0
�zm

τx�τ��2dτ = �um
1 − u1�2 + �um

0x − u0x�2

−2
∫ t

0
�ĝe�um

x �τ��− g̃�τ�� zm
τx�τ��dτ+2

∫ t

0
�F�τ�� zm

τ �τ��V ∗�V dτ+Xm�t�� (2.41)

where

Xm�t� = 2
[
− �ut�t�� um

t �t�� − �ux�t�� um
x �t�� − 2CD

∫ t

0
�uτx�τ�� um

τx�τ��dτ

+ �u1� um
1 � + �u0x� um

0x� −
∫ t

0
�ĝe�um

x �τ��� uτx�τ��dτ

−
∫ t

0
�g̃�τ�� um

τx�τ��dτ + 2
∫ t

0
�F�τ�� uτ�τ��dτ

]
� (2.42)

Now

2
∫ t

0
�ĝe�um

x �τ�� − g̃�τ�� zm
τx�τ��dτ

= 2
∫ t

0
�ĝe�um

x �τ�� − ĝe�ux�τ��� zm
τx�τ��dτ

+2
∫ t

0
�ĝe�ux�τ�� − g̃�τ�� zm

τx�τ��dτ� (2.43)
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and

�2
∫ t

0
�ĝe�um

x �τ�� − ĝe�ux�τ��� zm
τx�τ��dτ�

≤ 2
∫ t

0
L̃�um

x �τ� − ux�τ���zm
τx�τ��dτ

≤ L̃2

δ

∫ t

0
�zm

x �τ��2dτ + δ
∫ t

0
�zm

τx�τ��2dτ� (2.44)

Substituting (2.44) into (2.41), we obtain

�zm
t �t��2 + �zm

x �t��2 + �2CD − δ�
∫ t

0
�zm

τx�τ��2dτ ≤ �um
1 − u1�2

+ �um
0x − u0x�2 + L̃2

δ

∫ t

0
�zm

x �τ��2dτ + �Xm�t�� + �Ym�t��� (2.45)

where

Ym�t� = 2
∫ t

0
�ĝe�ux�τ�� − g̃�τ�� zm

τx�τ��dτ + 2
∫ t

0
�F�τ�� zm

τ �τ��V ∗�V dτ�

Choosing the same subsequence as before we have �um
1 − u1� → 0� �um

0x −
u0x� → 0� Since zm

t → 0 weakly in L2�0� T �V � we also have that �Ym�t�� →
0� We can argue that �Xm�t�� → 0 as m → ∞ for a.e. t in the following way:
using the convergences (2.35) and (2.36) in (2.42) we obtain the integrated
form of (2.37) with ϕ = ut� The fact that u satisfies this equation gives
the required result. Now by applying the generalized Gronwall inequality
to (2.45) we can see that

�zm
x �t��2 → 0 for a.e. t ∈ 	0� T 
�

and we can conclude that

ĝe�um
x � → ĝe�ux� strongly in L2�0� T �H��

This guarantees (2.40) and thus u is a weak solution of (2.24)–(2.26).
Uniqueness of the weak solution of (2.24)–(2.26) can be shown in the

standard way (e.g., see [2, 3, 6, 8]).
We now prove that (2.16)–(2.18) has a unique weak solution on some

interval 	0� t∗
� By the above remarks we know that the weak solution of
(2.24)–(2.26) has the property that ux is continuous in t� Thus, there exists
t∗ with 0 < t∗ ≤ T such that

�ux�t� − u0x� ≤ 1 for all t ∈ 	0� t∗
�
and therefore

ĝe�ux�t�� = ge�ux�t�� for all t ∈ 	0� t∗
�
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Hence u is a weak solution of (2.16)–(2.18) on 	0� t∗
� Uniqueness of the
weak solution can again be shown in the standard way. This completes the
proof of Theorem 2.1.

Now we use the additional assumption �Abe
� to guarantee the existence

of a global weak solution.

Theorem 2.2. Under assumptions �Age
�� �Abe

�� �Af � the system (2.16)–
(2.18) admits a unique global weak solution.

Proof. As before we can define Galerkin approximations um�t� =∑m
i=1 Cj�t�ψj to solve (2.27)–(2.29) with the nonlinear function ge instead

of ĝe� By assumption �Abe
� we can develop a similar a priori bound:

�um
t �t��2 +�um

x �t��2 +ν
∫ t

0
�um

τx�τ��2dτ ≤ C̃ = C̃�u0� u1� F� T� C1� C2�� (2.46)

Thus we can again obtain convergences (2.35)–(2.36). Additionally, as in
[2, Lemma 5.1] we can show that

um
x �t� → ux�t� weakly in H�

(The arguments to obtain this convergence in [2] depend only on the a
priori bound and the general Arzela–Ascoli Theorem and are independent
of the specific assumptions on the nonlinear function.) Thus by the weak
lower semicontinuity of the norm in H we obtain that

�ux�t��2 ≤ C̃�

So the proof can be completed exactly as before using the local Lipschitz
property of ge in the ball B√

C̃
�0� in H�

3. THE NONLINEAR PROBLEM WITH LINEAR INTERNAL
DYNAMICS

In this section we consider the system

utt − CDutxx − uxx − �ge�ux��x − ε1x = F�t� in V ∗ (3.47)

ε1t + c1ε1 = d

dt
gv�ux� utx� (3.48)

ε1�0� = 0 (3.49)

u�0� x� = u0 ∈ V (3.50)

ut�0� x� = u1 ∈ H� (3.51)
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where

gv�ux� utx� =
{

gvi�ux� if utx > 0
gvd�ux� if utx < 0�

i.e., the viscoelastic response function is different when the strain is increas-
ing and when it is decreasing. The internal dynamics is interpreted in the
sense that

ε1�t� =
∫ t

0
e−c1�t−s� d

ds
gv�ux� usx�ds� (3.52)

Integrating (3.52) by parts we obtain

ε1�t� = gv�ux� utx� −
∫ t

0
c1e

−c1�t−s�gv�ux� usx�ds

+
K∑

k=0

h�t − tk�e−c1�t−tk��−1�k+1 	gvi�ux�tk�� − gvd�ux�tk��
 � (3.53)

where h is the Heaviside function and tk� k ≥ 1� are the points where,
roughly speaking, utx�tk� = 0 with t0 = 0 (e.g., see [6]). More precisely, as
explained in detail in [5, 6], the definition of gv is based on the a priori given
set of points �tk� where the value of gv takes alternate values gvi and gvd

on successive intervals �tk� tk+1
� That is, in the system formulation (based
on experimental data) one is given functions gvi and gvd and a sequence of
points �tk� so that gv is defined by the alternating values gvi� gvd on intervals
�tk� tk+1
� Thus in essence gv depends on ux and t and not on utx� In what
follows we will therefore use the notation gv�ux��

Definition 3.1. We define �u� ε1� ∈ ��0� T � × L2�0� T �H� to be a weak
solution of (3.47)–(3.51) if it satisfies

�utt� ϕ�V ∗�V + CD�utx� ϕx� + �ux� ϕx� + �ge�ux�� ϕx� + �ε1� ϕx�
= �F� ϕ�V ∗�V in L2�0� T � for every ϕ ∈ V (3.54)

u�0� x� = u0 ∈ V (3.55)

ut�0� x� = u1 ∈ H (3.56)

and

ε1�t� = gv�ux�t�� −
∫ t

0
c1e

−c1�t−s�gv�ux�ds

+
K∑

k=0

h�t − tk�e−c1�t−tk��−1�k+1 	gvi�ux�tk�� − gvd�ux�tk��
 � (3.57)

We make similar assumptions on gvi� gvd as on ge, namely,
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�Agv
� The nonlinear functions gvi� gvd satisfy the following local Lip-

schitz condition: let Br�0� denote the ball of radius r centered at 0 in H
and for some positive constants Li

Br
and Ld

Br
we have

�gvi�w� − gvi�v�� ≤ Li
Br
�w − v�

�gvd�w� − gvd�v�� ≤ Ld
Br
�w − v�

for all w� v ∈ Br�0��
�Abv

� There exist constants Ci
1� Cd

1 � Ci
2, and Cd

2 such that

�gvi�v�� ≤ Ci
1�v� + Ci

2�

�gvd�v�� ≤ Cd
1 �v� + Cd

2 �

for every v ∈ H.

Theorem 3.1. Under assumptions �Age
�� �Agv

�� �Af � the system (3.47)–
(3.51) has a unique local weak solution.

Proof. The proof is essentially the same as the proof of Theorem 2.1,
so we just outline the crucial steps. First, as in [6] we consider the interval
	0� t1
� Let P denote the Hilbert space radial retraction onto the ball in H
centered at u0x with radius 1, and define

ĝe�v� = ge�Pv�� (3.58)

ĝvi�v� = gvi�Pv�� (3.59)

ĝvd�v� = gvd�Pv�� (3.60)

Thus ĝe� ĝvi� ĝvd satisfy the following global Lipschitz and boundedness
properties:

�ĝj�w� − ĝj�v�� ≤ Lj�w − v�� j = e� vi� vd� (3.61)

�ĝj�w�� ≤ C
j
1�w� + C

j
2� (3.62)

Hence we can consider the problem

utt − CDutxx − uxx − �ĝe�ux��x

− ∂

∂x

[
ĝv�ux� − e−c1t ĝv�u0x�

− c1

∫ t

0
e−c1�t−s�ĝv�ux�ds

]
= F�t� in V ∗� (3.63)

u�0� x� = u0� (3.64)

ut�0� x� = u1� (3.65)
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We develop Galerkin approximations �um� to (3.63)–(3.65). The additional
terms in this system as compared to (2.24)–(2.26) cause no difficulties in
obtaining an a priori estimate similar to (2.34) due to the properties (3.62).
Thus the convergences (2.35)–(2.36) can be obtained and the strong con-
vergence

um
x �t� → ux�t� in H

can be established. One can also observe the additional regularity: u ∈
C�	0� t1
�V �� ut ∈ C�	0� t1
�H�� and also that ε1 ∈ C�	0� t1
�H�� By the
continuity property of ux in t there exists t∗ > 0 such that for t ∈ 	0� t∗
�
�ux�t� − u0x� ≤ 1� Hence ĝj�ux� = gj�ux�� j = e� vi� vd on 	0� t∗
� So u is
a weak solution of (3.47)–(3.51) on the interval 	0� t∗
� If t∗ = t1 it makes
sense to consider the next interval 	t1� t2
� where local existence of a weak
solution can be established similarly as before. Uniqueness of the weak
solution is shown in the standard way.

The existence of a global weak solution can be guaranteed under addi-
tional boundedness assumptions.

Theorem 3.2. Under assumptions �Age
�� �Agv

�� �Abe
�� �Abv

�� �Af � the
system (3.47)–(3.51) admits a unique global weak solution.

Proof. First we consider the interval 	0� t1
� We develop Galerkin ap-
proximations �um� for (3.47)–(3.51) as before and by the boundedness
properties �Abe

�� �Abv
� we can obtain an a priori estimate like (2.46). The

crucial step in the proof is that we can establish the convergence

um
x �t� → ux�t� weakly in H�

and thus guarantee that �ux�t��2 ≤ C̃� Now the local Lipschitz property of
ge and gv can be used in the ball B√

C̃
�0� to yield the strong convergence

um
x �t� → ux�t� in H as before. Uniqueness can be shown in the standard

way, and then the weak solution can be extended to the next intervals
	ti� ti+1
� i ≥ 1�

4. THE NONLINEAR PROBLEM WITH NONLINEAR INTERNAL
DYNAMICS

We consider the system

utt − CDutxx − uxx − �ge�ux��x − ε1x = F�t� in V ∗ (4.66)

ε1t + c1ε1 = gin�ε1� +
d

dt
gv�ux� utx� (4.67)

ε1�0� = 0 (4.68)
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u�0� x� = u0 ∈ V (4.69)

ut�0� x� = u1 ∈ H� (4.70)

where the nonlinear functions ge� gv are as in Section 3. We interpret the
internal dynamics in the sense that the internal strain ε1 solves

ε1�t� = gv�ux�t�� +
∫ t

0
e−c1�t−s� 	−c1gv�ux� + gin�ε1�
ds

+
K∑

k=0

h�t − tk�e−c1�t−tk��−1�k+1 	gvi�ux�tk�� − gvd�ux�tk��
 � (4.71)

where again h is the Heaviside function and tk� k ≥ 1 are defined as in
Section 3. We suppose that the nonlinear functions ge� gv� gin satisfy global
Lipschitz properties:

�AL� For some positive constants Le� Lvi� Lvd and Lin we have

�ge�w� − ge�v�� ≤ Le�w − v� (4.72)

�gvi�w� − gvi�v�� ≤ Lvi�w − v� (4.73)

�gvd�w� − gvd�v�� ≤ Lvd�w − v� (4.74)

�gin�w� − gin�v�� ≤ Lin�w − v� (4.75)

for all w� v ∈ H�

We prove the following theorem:

Theorem 4.1. Under assumptions �AL�� �Af � the system (4.66)–(4.70)
has a unique global weak solution .

Proof. Let us first consider the interval 	0� t1
� On this interval gv = gvi

or gv = gvd depending on the initial conditions and the forcing term. We
define the following approximate sequence �uN� εN

1 � � let �uN� εN
1 � be the

unique weak solution of the system

�uN
tt � ϕ�V ∗�V + CD�uN

tx� ϕx� + �uN
x � ϕx� + �ge�uN

x �� ϕx�
+ �εN

1 � ϕx� = �F� ϕ�V ∗�V (4.76)

uN�0� x� = u0 ∈ V (4.77)

uN
t �0� x� = u1 ∈ H (4.78)

and

εN
1 = gv�uN

x �−e−c1tgv�u0x�+
∫ t

0
e−c1�t−s�

[
−c1gv�uN

x �+gin�εN−1
1 �

]
ds� (4.79)
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where ε0
1 = 0� The sequence is well-defined since (4.76)–(4.79) is the same

as (3.54)–(3.57) except for the known term
∫ t

0 e−c1�t−s�gin�εN−1
1 �s��ds� It is

easy to see that Theorem 3.2 extends to this case as well. Also the assump-
tion �AL� for ge and gv guarantees that �Age

�� �Agv
�� �Abe

�� and �Abv
� are

satisfied. Our goal is to show that �uN�t��� �uN
x �t��� �εN

1 �t�� are Cauchy
sequences (uniformly in t < t1).

Let ûN = uN − uN−1 and ε̂N
1 = εN

1 − εN−1
1 � Then we have

�ûN
tt � ϕ� + CD�ûN

tx� ϕx� + �ûN
x � ϕx�

+ �ge�uN
x � − ge�uN−1

x �� ϕx� + �ε̂N
1 � ϕx� = 0� (4.80)

With ϕ = ûN
t this gives

1
2

d

dt
��ûN

t �t��2 + �ûN
x �t��2� + CD�ûN

xt�t��2

≤ �Le + Lv��ûN
x �t���ûN

xt�t��

+c1L
v
∫ t

0
�ûN

x �s��ds�ûN
tx�t��

+Lin
∫ t

0
�εN−1

1 �s� − εN−2
1 �s��ds�ûN

tx�t��� (4.81)

where Lv = max�Lvi� Lvd�� Thus,

�ûN
t �t��2 + �ûN

x �t��2 + 2CD

∫ t

0
�ûN

τx�τ��2dτ

≤ 2�Le + Lv�
∫ t

0
�ûN

x �τ���ûN
τx�τ��dτ

+2c1L
v
∫ t

0

∫ τ

0
�ûN

x �s��ds�ûN
τx�τ��dτ

+2Lin
∫ t

0

∫ τ

0
�εN−1

1 �s� − εN−2
1 �s��ds�ûN

τx�τ��dτ� (4.82)

We estimate the second term on the right side as

2c1L
v
∫ t

0

∫ τ

0
�ûN

x �s��ds�ûN
τx�τ��dτ

≤ 2c1L
v
∫ t

0
�ûN

x �τ��dτ
∫ t

0
�ûN

τx�τ��dτ

≤ c1L
v

δ2
1

(∫ t

0
�ûN

x �τ��dτ

)2

+ c1L
vδ2

1

(∫ t

0
�ûN

τx�τ��dτ

)2

≤ c1L
vt1

δ2
1

∫ t

0
�ûN

x �τ��2dτ + c1L
vδ2

1t1

∫ t

0
�ûN

τx�τ��2dτ� (4.83)
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The third term can be estimated similarly to yield

2Lin
∫ t

0

∫ τ

0
�εN−1

1 �s� − εN−2
1 �s��ds�ûN

τx�τ��dτ

≤ Lint1

δ2
1

∫ t

0
�εN−1

1 �τ� − εN−2
1 �τ��2dτ

+Linδ2
1t1

∫ t

0
�ûN

τx�τ��2dτ� (4.84)

Hence (4.82) gives

�ûN
t �t��2 + �ûN

x �t��2 + µ1

∫ t

0
�ûN

τx�τ��2dτ

≤ µ2

∫ t

0
�ûN

x �τ��2dτ

+µ3

∫ t

0
�εN−1

1 �τ� − εN−2
1 �τ��2dτ� (4.85)

where µ2 = �Le + Lv + c1L
vt1�/δ2

1� µ3 = Lint1/δ
2
1� and δ1 is chosen such

that µ1 = 2CD − �Le + Lv�δ2
1 − c1L

vδ2
1t1 − Linδ2

1t1 > 0� By the Gronwall
inequality we obtain

�ûN
x �t��2 ≤ µ4

∫ t

0
�εN−1

1 �τ� − εN−2
1 �τ��2dτ� (4.86)

with µ4 = µ3e
µ2t1� so

�ûN
t �t��2 + �ûN

x �t��2 ≤ µ2

∫ t

0
µ4

∫ τ

0
�εN−1

1 �s� − εN−2
1 �s��2dsdτ

+µ3

∫ t

0
�εN−1

1 �τ� − εN−2
1 �τ��2dτ

≤ �µ2µ4t1 + µ3�
∫ t

0
�εN−1

1 �τ� − εN−2
1 �τ��2dτ� (4.87)

Similarly,

�ε̂N
1 �t��2 = �gv�uN

x �t�� − gv�uN−1
x �t��� ε̂N

1 �t��

−c1�
∫ t

0
e−c1�t−s��gv�uN

x �s�� − gv�uN−1
x �s���ds� ε̂N

1 �t��

+�
∫ t

0
e−c1�t−s��gin�εN−1

1 �s�� − gin�εN−2
1 �s���ds� ε̂N

1 �t���
Using similar techniques to those above, we obtain that for some con-

stants µ5� µ6� µ7 independent of N

�ε̂N
1 �t��2 ≤ µ5�ûN

x �t��2 + µ6

∫ t

0
�ûN

x �τ��2dτ

+µ7

∫ t

0
�εN−1

1 �τ� − εN−2
1 �τ��2dτ� (4.88)
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Substituting (4.86) into (4.88) we find

�ε̂N
1 �t��2 ≤ µ8

∫ t

0
�εN−1

1 �τ� − εN−2
1 �τ��2dτ� (4.89)

which together with (4.87) yields

�ûN
t �t��2 + �ûN

x �t��2 + �ε̂N
1 �t��2 ≤ µ

∫ t

0
�εN−1

1 �s� − εN−2
1 �s��2ds

≤ µ
�µ8t1�N−2

�N − 2�! �ε
1
1�2

L2�0�t1�H�� (4.90)

where µ = µ2µ4t1 + µ3 + µ8� This guarantees that �uN�t��� �uN
x �t��,

�εN
1 �t�� are Cauchy sequences. Using the strong convergence of these se-

quences we can take a limit in (4.76) and (4.79) to obtain the existence of
a weak solution of (4.76)–(4.79) on the interval 	0� t1
� Uniqueness of the
weak solution can be derived in the usual way. Now the weak solution can
be extended to the intervals 	ti� ti+1
� i ≥ 1, as in [6]. Thus we proved that
(4.76)–(4.79) has a unique global weak solution.

Remark 4.1. It is possible to establish the global existence of a weak so-
lution under local Lipschitz properties and growth conditions on the nonlin-
ear functions ge� gvi� gvd� gin� Taking uN

t as a test function in (4.76) and us-
ing standard inequalities we can show that the iterates �uN�t��� �εN

1 �t�� are
bounded by a constant, independent of N� Thus the computations (4.80)–
(4.90) can be repeated in this ball using the local Lipschitz property of the
nonlinear functions.
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