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Abstract

In this paper, a class of generalized set-valued variational inclusions in Banach spaces are intro-
duced and studied, which include many variational inclusions studied by others in recent years. By
using some new and innovative techniques, several existence theorems for the generalized set-valued
variational inclusions ig-uniformly smooth Banach spaces are established, and some perturbed iter-
ative algorithms for solving this kind of set-valued variational inclusions are suggested and analyzed.
Our results improve and generalize many known algorithms and results.
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1. Introduction

In recent years, variational inequalities have been extended and generalized in different
directions, using novel and innovative techniques, both for their own sake and for the ap-
plications. Useful and important generalizations of variational inequalities are set-valued
variational inclusions, which have been studied by [1-9].
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Recently, in [1], S.S. Chang introduced anddied the following class of set-valued
variational inclusion problems in a Banach spdteFor a givenm-accretive mapping
A:D(A) C E — 2F, a nonlinear mappingV(-,-): E x E — E, set-valued mappings
T, F:E — CB(E), single-valued mapping: H — H, any givenf € E andA > 0, find
g€ E, weT(q),ve F(q)such that

feNw,v)+21A(g(q)), (1.1)

whereCB(E) denotes the family of all nonempty closed and bounded subseis Oh-
der the setting of uniformly smooth Banach space, S.S. Chang [1] gave the existence and
convergence theorem for the solution of variational inclusion (1.1).

For a suitable choice of the mappingsF, N, g, A and f € E, a number of known
and new variational inequalities, variational inclusions, and related optimization problems
introduced and studied by Noor et al. [2,3] can be obtained from (1.1).

Inspired and motivated by the results in S.S. Chang [1] and Noor et al. [2,3], the purpose
of this paper is to introduce and study a classofre general set-valued variational inclu-
sions. By using some new techniques, someterie theorems and approximate theorems
for solving the set-valued variational inclusionsgiruniformly smooth Banach spaces are
established and suggested. The results presented in this paper generalize, improve and
unify the corresponding results of S.S. Chang [1], Noor et al. [2,3], Ding [4], Huang [5,6],
Zeng [7], Kazmi [8], Jung and Morales [9], Agarwal et al. [10], Liu [11,12] and Osilike
[13,14].

2. Preliminaries

Definition 2.1. Let E be a real Banach spaca, B, C,G : E — CB(E) be set-valued
mappingsW : D(W) ¢ E — 2F be a set-valued mapping; E — E be a single-valued
mapping, andV(-,-), M(-,-): E x E — E be two nonlinear mappings, for any giv¢ne
E andx > 0, we consider the following problem of findimge £, x € Au,y € Bu,z € Cu,

v € Gu such that

fENE,Y) — Mz, v) +AW(gw)). (2.1)

This problem is called the generalized set-valued variational inclusion problem in Banach
space.

Next we consider some special cases of problem (2.1).

(1) f M =0,W = A:D(A) — 2F is anm-accretive mappingd =T, B = F andC =
G =0, then problem (2.1) is equivalent to findipge E, w € Tq, v € Fg such that
feNw,v)+rA(g(q)). (2.2)
This problem was introduced and studied by S.S. Chang [1].
(2) If E=H is a Hilbert spaceM =0 andW = A: D(A) — 2F is anm-accretive map-
ping, then problem (2.1) is equivalent to findipg: H, w € Tq, v € Fq such that
feNw,v)+rA(g(q)). (2.3)
This problem was introduced and studied by Noor et al. [2,3].
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For a suitable choice for the mappingsB, C, G, W, N, M, g, f and the spac&, we
can obtain a lot of known and new variational inequalities, variational inclusions and the re-
lated optimization problems. Furthermore, they can make us be able to study mathematics,
physics and engineering science problems in a general and unified frame, see [1-9].

Definition 2.2 [10]. Let E be a real Banach space. The module of smoothnegs isf
defined by

1
PE(1) =SUD{§(||X+yII +llx=yl) =L Ixl <1, [yl <t}-

The spacé is said to be uniformly smooth if lim, o(p£ () /t) = 0. MoreoverE is called
g-uniformly smooth if there exists a constant 0 such thajpg (7) < 9.

Remark 2.1 [10]. All Hilbert spaces,L,, (ori,) spaces g > 2) and the Sobolev spaces,
Wk (p > 2) are 2-uniformly smooth, while, for & p < 2, L, (ori,)and W) spaces are
p-uniformly smooth.

Definition 2.3. Let S: E — CB(E) be a set-valued mapping. is said to be quasi-
contractive, if there exists a constant (0, 1) such that for any € Sx, ¢ € Sy,

Ip —qll <rmax{llx —yl, Ilx = pll, Ilx =gl Iy = pll. Iy —qll}-

To prove the main result, we need the following lemmas.

Lemma 2.1 [15]. Let E be ag-uniformly smooth Banach space wigh> 1. Then there
exists a constant > 0 such that

[tx+@ =0y —z|? <[1—1t(qg — D]lly — zll7 +tellx — 2|7
—t(Q =11 lx — y|

forall x, y,z € E andr € [0, 1].

Lemma 2.2 [16]. Suppose thate,}, { f»}, {gn} and {y,} are nonnegative real sequences
such that

enr1 <A— fen+ fugn+va, n=0,
with {£,,} €10,1], >°% 4 f = 00, liM, 00 g» =0and >, y, < co. Then

lim e, =0.

n— oo

For the remainder of this paperandc denote the constants appearing in Definition 2.3
and Lemma 2.1. We assume tHat- , -) is the Hausdorff metric o€B(E) defined by

H(A,B) = max{sufd(x, B), supd(. A)}, A, B € CB(E).
x€ ye
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Lemma 2.3[17]. Let E be a complete metric spacE, E — CB(E) be a set-valued map-
ping. Then for any givea > 0 and any giverx, y € E, u € Tx, there exist® € Ty such
that

du,v) < 1+¢e)H(Tx,Ty).
Lemma2.4[18]. Let X andY be two Banach spaces,: X — 2" be a lower semi-conti-
nuous mapping with nonempty closed and convex values. Thadmits a continuous

selection, i.e., there exist a continuous mappink — Y such thatz(x) € Tx for each
x € X.

Using Lemmas 2.3 and 2.4, we suggest the following algorithms for the generalized
set-valued variational inclusion (2.1).

Algorithm 2.1. For any giverxo € E, x; € Axo, g € Bxo, 25 € Cxo, vy € Gxo, cOmpute
the sequences,} and{y,} by the iterative schemes such that

D xpp1€e€@—an)xn+oy (f + yn — N(n, Yn) + M(zp, vn) — )\W(g()’n)))a

@ yne@=B)xn+Bu(f +x0— N(xp,. yp) + M(z),, v)) — AW (g(xn))),

B 7z €Cyp, llzn —zp1all < (1+

Q) Xn€Ayp, |Xn —Xpqall < |14 —)H(Ayn, Aynt1),

1+

(4 Yn €Byn, ¥n = Ynt1ll < )H(Byn,BynH)’

)H(C)’nv Cynt1),

6) vi€Gyn, |vn—vptall < (1+ 1>H(Gyn, Gynt1),
(M) x,€Axy, lxy, — x40l < (1+ P 1>H(Axn, Axny1),
®) ypeBxu, Ny, =yl < (l+ "y 1)H(an, Bx,41),
(9 z,€Cxn, |z, — Zpyqll < <1+ s 1>H(an, Cxn+1),

1
(10) v, € Gxy, vy, — vy, 41l < (1+ ?)H(Gxn, Gxny1), n=0,1,2,....
n
(2.4)

The sequencgr,} defined by (2.4), in the sequel, is called Ishikawa iterative sequence.

In Algorithm 2.1, if 8, = 0 for alln > 0, theny,, = x,,. Takex, =x},, y» =y, 2n = 2,,
andv, = v, for all » > 0, and we obtain the following
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Algorithm 2.2. For any giverxg € E, Xo € Axo, Yo € Bxg, zo0 € Cxo, vp € Gxg, cOmpute
the sequences,}, {x,}, {¥x}, {z»} @and{v,} by the iterative schemes such that

Xnt1 € (L= o) xpn + ot (f + X0 — N(Fn, In) + M (20, va) — AW (g(xn))),

Xp € Axp,  ||Xn — in—i—l” < ( nt1 >H(Axna Axn-{-l),

_ 1

Yn € Bxy, |¥n — )’n—i-l” nt1 H(Bxp, an-i—l)a
1

Zn €Cxpy Nzn — zZn+all < 1+ — |H(Cxy, Cxpy1),

vp € Gxp,  |lvp — Uyl < (1+ —1)H(Gx,,, Gxp+1), n=0,1,2,.... (2.5
n+

The sequencgy, } defined by (2.5), in the sequel, is called Mann iterative sequence.

3. An existencetheorem for solutions of the generalized set-valued
variational inclusions

In this section, we shall establish an existence theorem for solutions of the set-valued
variational inclusion (2.1). We have the following results.

Theorem 3.1. Let E be ag-uniformly smooth Banach spacg, B, C, G, W: E — CB(E)
be five set-valued mappingt(-,-), M(-,-):E x E — E, g: E — E be three single-
valued mappings. If — N(A(-), B(:)) + M(C(-), G(-)) — AW(g(-)) is quasi-contractive,
then there exist € E, x € Au, y € Bu, v € Cu, z € Gu Which is a solution of the general-
ized set-valued variational inclusid@.1).

Proof. Let
Su)=u— N(A(u), B(u)) + M(C(u), G(u)) — AW(g(u)),

S1(u) = f + S(u).

Sinces is set-valued quasi-contractivi, is also set-valued quasi-contractive.
It follows from Naddler [17] thatS; has a unique fixed point e E, that is

ueSiu)=f+u—N(Aw), Bw))+M(Cu),Gu)) —rW(gw)).
Thus, there exist € Au, y € Bu, z € Cu, v € Gu such that
[ ENE,3) = M(z,v) +2W(gw)),

thatis,u € E is a solution of the generalized set-valued variational inclusion (2 ).
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4. Approximate problem of solutionsfor generalized set-valued variational inclusion

In Theorem 3.1, under some conditions, we have proved that there iexisE,
X € Au, y € Bu, z € Cu, v € Gu which is a solution of generalized set-valued vari-
ational inclusion (2.1). In this section, we shall study the approximate problem of so-
lutions for generalized set-valued variational inclusion (2.1). We have the following re-
sult.

Theorem 4.1. Let E be ag-uniformly smooth Banach spac#, B, C, G, W: E — CB(E)
be five set-valued continuous mappinys;, -), M(-,-): E x E — E, g: E — E be three
single-valued continuous mappings, afg }, {8.} be two sequences i, 1] satisfying
the following conditions

(i) I —N(ACG), B()+M(C(-),G()) — AW (g(-)) is quasi-contractive,

(i) A, B, C, G are M-Lipschitz continuous with the constants, w2, 13 and 4,
(i) 0O <h<a,,n=200<pu; <1/2,i=1,2,3,4,
(iv) an(g—1—crt)y<1,cr? <q -1, ,8,‘,171 <1/c(1—cr?),

cad ™t eriBu(eri — g+ 1) <1—cr.
Then for any giveno € E, x; € Axo, ¥ € Bxo, zg € Cxo, vy € Gxo, the sequencels,},
{xn}, {7u}, {zn} and{v,} defined by Algorithn2.1 strongly converge to the solutione E,

X € Au, y € Bu, z € Cu, v € Gu of the generalized set-valued variational inclusi@nil)
which is given in Theorer®.1, respectively.

Proof. In (1) and (2) of (2.4), choode, € W(g(x,)), kn € W(g(y,)), such that
Xnt1=(1—op)xy + Oln(f + yn — N(Xn, Yn) + M (2n, vn) — )\kn)a
yu =A== B)xy +,3n(f +Xn — N(x;,v y;,) + M(Z;,s U;;) - )\hn)o
Let
Pn=Ff+yu— NQG&pn, yn) + M2y, vy) — Aky,
rn=f+xu— N(xy/p y,/q) + M(Z;p U;,) — Ahy.
Then
Xn+1l= A —op)xn + ®n Pn,
Y= Q= Bn)xn + Burn. (4-1)
Sincel — N(A(-), B()) + M(C(-), G(-)) — AW (g(-)) is quasi-contractive,
lpn —ull < rmax{”)’n —ull, llpn — Yn”}’
which implies that

”pn_””qgrq(”)’n_”||q+||pn_)’n||q)~ (4.2)
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Note that

lpn —rall <rd(xn, yu), n=0.

We consider the following cases.
Casel. Suppose that(x,, y,) = |lx, — y»| for somen > 0. It follows from (4.1) that

IPn = rall < 7llxn = yall = r|| BaCen = ra) | < Bl —rall. (4.3)
Case2. Suppose that(x,, y,) = ||x, — r,|| for somen > 0. Then we have
lpn —rall < rllxn —rall. (4.4)
Case3. Suppose that(x,, y,) = ||lyn — rn|| for somen > 0. Using (4.1), we have
Ipn =7l <7llyn = rall =7 (L= B)(xn — 1) |
=r(1—Bullxn —rall <rllxn —ral- (4.5)
Cased. Suppose that(x,, y,) = [|lx» — px| for somen > 0. Then we have
lpn —rall < rllxn — pall- (4.6)
Caseb. Suppose that(x,, y,) = |ly» — pxll for somen > 0. It follows from (4.1) that
Ipn = rall <rllyn = pull =r || (L= B) (X0 — Pu) + Bu(ra — pn) |
<r(X=Bw)llxn — pall +rBullpn — rall,
which implies that

r(1—Bn)
1—rBy
It follows from (4.3)—(4.7) that

lpn —rnll < lxn — pull < rllxn — pall. (4.7)

lpn — ”n”q < rq||xn — Dull +rq||x,, - rn”q: n>0. (4-8)
It follows from Lemma 2.1 that
lyn = ull? = | (L= Bu)xn + Bura —u|* = | (L= Bu) (xn — u) + Bu(rn — w) |
< [1— Bn(g — 1)]||xn —ull? 4 Buclrn —ull?
— (L= B ) —rall?, n>0. (4.9)
Similarly, we have
lyn — pall? < [1— Bn(g — 1)]||xn — pull? + Bucllpn — rall?
—Bu(1= B lxn —rall9, n >0, (4.10)
and
xXp+1 —ull¥ < [1— an(q — 1)]||xn —ull? +ancllpp —ull?
— (L=l )y — pall, n>0. (4.12)
By virtue of the condition (iii) and (iv), (4.2) and (4.8)—(4.11), we have
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01— ull? <[1=0n(g = D]llxn — ull? +aner?[llyn —ull? + Ilyn = pall?]

—an(L—ad 7)1, — pall?
<[L—an(g =D+ crfay (1 — Bulg — D)l — ull?

2 2
+ crlonBullrn — ull? + cria,Bullpn — rall?

+ [erfan (1= Ba(g — 1) — an(L— o~ ) ]Il — pall?

-1
—2cr9a Bn (L= B c)llxn — rall?

<[1—anlg =D +crfan(l—Bulg — D)+ 2r®a, ] Ilxn — ull?

+2cr9ay By (cr® + (B e — 1)) lxa — ral?

+ oy [czrz",Bn +crf(l—Balg—D) — (1- Olzilc)]ﬂxn —pall?

<[1—anlg —1=cr) @+ crfBa)|llxn — ul?
< [1— an(g —1— er)]”xn —ull?.
Sete, = llxp —ull?, fo =0nlg —1—cr?),
gn=yn=0 n=0.
It follows from the conditions (iii), (iv) and Lemma 2.2 that
lim e, =0,
n—00
that is,
nleoo X, —ul| =0.
Note that
7 — ull < rmax{ilx, — ull, I — xall},
which implies
rm—>u (n— 00).
Thus, from (4.1), we have
yn = Q= Bp)xn + Burn — u.
From (2.4) and conditions (ii) and (iii), we have

_ _ 1 1
1% — Xp41ll < <1+ —>H(A)’nv Aynt1) < <1+ —>H«l||)7n — Yn+1ll,
n+1 n

+1

which implies thatx, } is a Cauchy sequence .
So, there exist$ € E such thatc, — x. Now we show that € Au.
In fact,

d(x, Au) < ||X — Xl + H (Axp, Au)

- - 1
< IIX—xnII+M1(l+ m)”xn —ull— 0.
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Also, we have

Vn—>y€Bu, z,—>z€Cu, v,—veGu.
From (2.4), we have

uwe f+u—NE, ) +Mzv) —rAW(gw),
that is,

fENE,Y) — Mz, v) +AW(g(w)).
We get the required results.c

Remark 4.1. Theorem 4.1 generalizes Theorem 4.1 in S.S. Chang [1], the corresponding
results in Noor et al. [2,3], Agarwal et al. [10], Liu [11,12], Osilike [13,14] and oth-
ers.

Remark 4.2. Since Algorithm 2.2 is a special case of Algorithm 2.1, from Theo-
rem 4.1, we can obtain the convergence theorem for Algorithm 2.2, the details are omit-
ted.
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