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Abstract

In this paper, a class of generalized set-valued variational inclusions in Banach spaces a
duced and studied, which include many variational inclusions studied by others in recent ye
using some new and innovative techniques, several existence theorems for the generalized s
variational inclusions inq-uniformly smooth Banach spaces are established, and some perturbe
ative algorithms for solving this kind of set-valued variational inclusions are suggested and an
Our results improve and generalize many known algorithms and results.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, variational inequalities have been extended and generalized in d
directions, using novel and innovative techniques, both for their own sake and for t
plications. Useful and important generalizations of variational inequalities are set-v
variational inclusions, which have been studied by [1–9].
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Recently, in [1], S.S. Chang introduced and studied the following class of set-value
variational inclusion problems in a Banach spaceE. For a givenm-accretive mapping
A :D(A) ⊂ E → 2E , a nonlinear mappingN(· , ·) :E × E → E, set-valued mapping
T ,F :E → CB(E), single-valued mappingg :H → H , any givenf ∈ E andλ > 0, find
q ∈ E, w ∈ T (q), v ∈ F(q) such that

f ∈ N(w,v) + λA
(
g(q)

)
, (1.1)

whereCB(E) denotes the family of all nonempty closed and bounded subsets ofE. Un-
der the setting of uniformly smooth Banach space, S.S. Chang [1] gave the existen
convergence theorem for the solution of variational inclusion (1.1).

For a suitable choice of the mappingsT ,F,N,g,A andf ∈ E, a number of known
and new variational inequalities, variational inclusions, and related optimization pro
introduced and studied by Noor et al. [2,3] can be obtained from (1.1).

Inspired and motivated by the results in S.S. Chang [1] and Noor et al. [2,3], the pu
of this paper is to introduce and study a class ofmore general set-valued variational inc
sions. By using some new techniques, some existence theorems and approximate theore
for solving the set-valued variational inclusions inq-uniformly smooth Banach spaces a
established and suggested. The results presented in this paper generalize, impr
unify the corresponding results of S.S. Chang [1], Noor et al. [2,3], Ding [4], Huang [
Zeng [7], Kazmi [8], Jung and Morales [9], Agarwal et al. [10], Liu [11,12] and Osi
[13,14].

2. Preliminaries

Definition 2.1. Let E be a real Banach space,A,B,C,G : E → CB(E) be set-valued
mappings,W :D(W) ⊂ E → 2E be a set-valued mapping,g :E → E be a single-valued
mapping, andN(· , ·),M(· , ·) :E × E → E be two nonlinear mappings, for any givenf ∈
E andλ > 0, we consider the following problem of findingu ∈ E, x̄ ∈ Au, ȳ ∈ Bu, z ∈ Cu,
v ∈ Gu such that

f ∈ N(x̄, ȳ) − M(z, v) + λW
(
g(u)

)
. (2.1)

This problem is called the generalized set-valued variational inclusion problem in B
space.

Next we consider some special cases of problem (2.1).

(1) If M = 0, W = A :D(A) → 2E is anm-accretive mapping,A = T , B = F andC =
G = 0, then problem (2.1) is equivalent to findingq ∈ E, w ∈ T q , v ∈ Fq such that

f ∈ N(w,v) + λA
(
g(q)

)
. (2.2)

This problem was introduced and studied by S.S. Chang [1].
(2) If E = H is a Hilbert space,M = 0 andW = A :D(A) → 2E is anm-accretive map-

ping, then problem (2.1) is equivalent to findingq ∈ H , w ∈ T q , v ∈ Fq such that

f ∈ N(w,v) + λA
(
g(q)

)
. (2.3)

This problem was introduced and studied by Noor et al. [2,3].
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2.3
For a suitable choice for the mappingsA,B,C,G,W,N,M,g,f and the spaceE, we
can obtain a lot of known and new variational inequalities, variational inclusions and t
lated optimization problems. Furthermore, they can make us be able to study mathe
physics and engineering science problems in a general and unified frame, see [1–9

Definition 2.2 [10]. Let E be a real Banach space. The module of smoothness ofE is
defined by

ρE(t) = sup

{
1

2

(‖x + y‖ + ‖x − y‖) − 1; ‖x‖ � 1, ‖y‖ � t

}
.

The spaceE is said to be uniformly smooth if limt→0(ρE(t)/t) = 0. Moreover,E is called
q-uniformly smooth if there exists a constantc > 0 such thatρE(t) � ctq .

Remark 2.1 [10]. All Hilbert spaces,Lp (or lp) spaces (p � 2) and the Sobolev space
W

p
m (p � 2) are 2-uniformly smooth, while, for 1< p � 2, Lp (or lp) andW

p
m spaces are

p-uniformly smooth.

Definition 2.3. Let S :E → CB(E) be a set-valued mapping.S is said to be quasi
contractive, if there exists a constantr ∈ (0,1) such that for anyp ∈ Sx, q ∈ Sy,

‖p − q‖ � r max
{‖x − y‖,‖x − p‖,‖x − q‖,‖y − p‖,‖y − q‖}.

To prove the main result, we need the following lemmas.

Lemma 2.1 [15]. Let E be aq-uniformly smooth Banach space withq > 1. Then there
exists a constantc > 0 such that

∥∥tx + (1− t)y − z
∥∥q �

[
1− t (q − 1)

]‖y − z‖q + tc‖x − z‖q

− t (1− tq−1c)‖x − y‖q

for all x, y, z ∈ E andt ∈ [0,1].

Lemma 2.2 [16]. Suppose that{en}, {fn}, {gn} and {γn} are nonnegative real sequenc
such that

en+1 � (1− fn)en + fngn + γn, n � 0,

with {fn} ⊆ [0,1], ∑∞
n=0 fn = ∞, limn→∞ gn = 0 and

∑∞
n=0 γn < ∞. Then

lim
n→∞ en = 0.

For the remainder of this paper,r andc denote the constants appearing in Definition
and Lemma 2.1. We assume thatH(· , ·) is the Hausdorff metric onCB(E) defined by

H(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}
, A,B ∈ CB(E).
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Lemma 2.3 [17]. LetE be a complete metric space,T :E → CB(E) be a set-valued map
ping. Then for any givenε > 0 and any givenx, y ∈ E, u ∈ T x, there existsv ∈ Ty such
that

d(u, v) � (1+ ε)H(T x,Ty).

Lemma 2.4 [18]. Let X andY be two Banach spaces,T :X → 2Y be a lower semi-conti
nuous mapping with nonempty closed and convex values. ThenT admits a continuou
selection, i.e., there exist a continuous mappingh :X → Y such thath(x) ∈ T x for each
x ∈ X.

Using Lemmas 2.3 and 2.4, we suggest the following algorithms for the gener
set-valued variational inclusion (2.1).

Algorithm 2.1. For any givenx0 ∈ E, x ′
0 ∈ Ax0, y ′

0 ∈ Bx0, z′
0 ∈ Cx0, v′

0 ∈ Gx0, compute
the sequences{xn} and{yn} by the iterative schemes such that

(1) xn+1 ∈ (1− αn)xn + αn

(
f + yn − N(x̄n, ȳn) + M(zn, vn) − λW

(
g(yn)

))
,

(2) yn ∈ (1− βn)xn + βn

(
f + xn − N(x ′

n, y
′
n) + M(z′

n, v
′
n) − λW

(
g(xn)

))
,

(3) x̄n ∈ Ayn, ‖x̄n − x̄n+1‖ �
(

1+ 1

n + 1

)
H(Ayn,Ayn+1),

(4) ȳn ∈ Byn, ‖ȳn − ȳn+1‖ �
(

1+ 1

n + 1

)
H(Byn,Byn+1),

(5) zn ∈ Cyn, ‖zn − zn+1‖ �
(

1+ 1

n + 1

)
H(Cyn,Cyn+1),

(6) vn ∈ Gyn, ‖vn − vn+1‖ �
(

1+ 1

n + 1

)
H(Gyn,Gyn+1),

(7) x ′
n ∈ Axn, ‖x ′

n − x ′
n+1‖ �

(
1+ 1

n + 1

)
H(Axn,Axn+1),

(8) y ′
n ∈ Bxn, ‖y ′

n − y ′
n+1‖ �

(
1+ 1

n + 1

)
H(Bxn,Bxn+1),

(9) z′
n ∈ Cxn, ‖z′

n − z′
n+1‖ �

(
1+ 1

n + 1

)
H(Cxn,Cxn+1),

(10) v′
n ∈ Gxn, ‖v′

n − v′
n+1‖ �

(
1+ 1

n + 1

)
H(Gxn,Gxn+1), n = 0,1,2, . . . .

(2.4)

The sequence{xn} defined by (2.4), in the sequel, is called Ishikawa iterative sequenc

In Algorithm 2.1, if βn = 0 for all n � 0, thenyn = xn. Takex̄n = x ′
n, ȳn = y ′

n, zn = z′
n

andvn = v′
n for all n � 0, and we obtain the following
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Algorithm 2.2. For any givenx0 ∈ E, x̄0 ∈ Ax0, ȳ0 ∈ Bx0, z0 ∈ Cx0, v0 ∈ Gx0, compute
the sequences{xn}, {x̄n}, {ȳn}, {zn} and{vn} by the iterative schemes such that

xn+1 ∈ (1− αn)xn + αn

(
f + xn − N(x̄n, ȳn) + M(zn, vn) − λW

(
g(xn)

))
,

x̄n ∈ Axn, ‖x̄n − x̄n+1‖ �
(

1+ 1

n + 1

)
H(Axn,Axn+1),

ȳn ∈ Bxn, ‖ȳn − ȳn+1‖ �
(

1+ 1

n + 1

)
H(Bxn,Bxn+1),

zn ∈ Cxn, ‖zn − zn+1‖ �
(

1+ 1

n + 1

)
H(Cxn,Cxn+1),

vn ∈ Gxn, ‖vn − vn+1‖ �
(

1+ 1

n + 1

)
H(Gxn,Gxn+1), n = 0,1,2, . . . . (2.5)

The sequence{xn} defined by (2.5), in the sequel, is called Mann iterative sequence.

3. An existence theorem for solutions of the generalized set-valued
variational inclusions

In this section, we shall establish an existence theorem for solutions of the set-
variational inclusion (2.1). We have the following results.

Theorem 3.1. LetE be aq-uniformly smooth Banach space,A,B,C,G,W :E → CB(E)

be five set-valued mappings,N(· , ·),M(· , ·) :E × E → E, g :E → E be three single-
valued mappings. IfI − N(A(·),B(·)) + M(C(·),G(·)) − λW(g(·)) is quasi-contractive
then there existu ∈ E, x̄ ∈ Au, ȳ ∈ Bu, v ∈ Cu, z ∈ Gu which is a solution of the genera
ized set-valued variational inclusion(2.1).

Proof. Let

S(u) = u − N
(
A(u),B(u)

) + M
(
C(u),G(u)

) − λW
(
g(u)

)
,

S1(u) = f + S(u).

SinceS is set-valued quasi-contractive,S1 is also set-valued quasi-contractive.
It follows from Naddler [17] thatS1 has a unique fixed pointu ∈ E, that is

u ∈ S1(u) = f + u − N
(
A(u),B(u)

) + M
(
C(u),G(u)

) − λW
(
g(u)

)
.

Thus, there exist̄x ∈ Au, ȳ ∈ Bu, z ∈ Cu, v ∈ Gu such that

f ∈ N(x̄, ȳ) − M(z, v) + λW
(
g(u)

)
,

that is,u ∈ E is a solution of the generalized set-valued variational inclusion (2.1).�
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4. Approximate problem of solutions for generalized set-valued variational inclusion

In Theorem 3.1, under some conditions, we have proved that there existu ∈ E,
x̄ ∈ Au, ȳ ∈ Bu, z ∈ Cu, v ∈ Gu which is a solution of generalized set-valued va
ational inclusion (2.1). In this section, we shall study the approximate problem o
lutions for generalized set-valued variational inclusion (2.1). We have the followin
sult.

Theorem 4.1. LetE be aq-uniformly smooth Banach space,A,B,C,G,W :E → CB(E)

be five set-valued continuous mappings,N(· , ·),M(· , ·) :E × E → E, g :E → E be three
single-valued continuous mappings, and{αn}, {βn} be two sequences in[0,1] satisfying
the following conditions:

(i) I − N(A(·),B(·)) + M(C(·),G(·)) − λW(g(·)) is quasi-contractive,
(ii) A,B,C,G are M-Lipschitz continuous with the constantsµ1, µ2, µ3 andµ4,
(iii) 0 < h � αn, n � 0, 0 < µi < 1/2, i = 1,2,3,4,
(iv) αn(q − 1− crq) < 1, crq < q − 1, β

q−1
n < 1/c(1− crq),

cα
q−1
n + crqβn(cr

q − q + 1) � 1− crq .

Then for any givenx0 ∈ E, x ′
0 ∈ Ax0, y ′

0 ∈ Bx0, z′
0 ∈ Cx0, v′

0 ∈ Gx0, the sequences{xn},
{x̄n}, {ȳn}, {zn} and{vn} defined by Algorithm2.1strongly converge to the solutionu ∈ E,
x̄ ∈ Au, ȳ ∈ Bu, z ∈ Cu, v ∈ Gu of the generalized set-valued variational inclusion(2.1)
which is given in Theorem3.1, respectively.

Proof. In (1) and (2) of (2.4), choosehn ∈ W(g(xn)), kn ∈ W(g(yn)), such that

xn+1 = (1− αn)xn + αn

(
f + yn − N(x̄n, ȳn) + M(zn, vn) − λkn

)
,

yn = (1− βn)xn + βn

(
f + xn − N(x ′

n, y
′
n) + M(z′

n, v
′
n) − λhn

)
.

Let

pn = f + yn − N(x̄n, ȳn) + M(zn, vn) − λkn,

rn = f + xn − N(x ′
n, y

′
n) + M(z′

n, v
′
n) − λhn.

Then

xn+1 = (1− αn)xn + αnpn,

yn = (1− βn)xn + βnrn. (4.1)

SinceI − N(A(·),B(·)) + M(C(·),G(·)) − λW(g(·)) is quasi-contractive,

‖pn − u‖ � r max
{‖yn − u‖,‖pn − yn‖

}
,

which implies that

‖pn − u‖q � rq
(‖yn − u‖q + ‖pn − yn‖q

)
. (4.2)
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Note that

‖pn − rn‖ � rd(xn, yn), n � 0.

We consider the following cases.
Case1. Suppose thatd(xn, yn) = ‖xn − yn‖ for somen � 0. It follows from (4.1) that

‖pn − rn‖ � r‖xn − yn‖ = r
∥∥βn(xn − rn)

∥∥ � rβn‖xn − rn‖. (4.3)

Case2. Suppose thatd(xn, yn) = ‖xn − rn‖ for somen � 0. Then we have

‖pn − rn‖ � r‖xn − rn‖. (4.4)

Case3. Suppose thatd(xn, yn) = ‖yn − rn‖ for somen � 0. Using (4.1), we have

‖pn − rn‖ � r‖yn − rn‖ = r
∥∥(1− βn)(xn − rn)

∥∥
= r(1− βn)‖xn − rn‖ � r‖xn − rn‖. (4.5)

Case4. Suppose thatd(xn, yn) = ‖xn − pn‖ for somen � 0. Then we have

‖pn − rn‖ � r‖xn − pn‖. (4.6)

Case5. Suppose thatd(xn, yn) = ‖yn − pn‖ for somen � 0. It follows from (4.1) that

‖pn − rn‖ � r‖yn − pn‖ = r
∥∥(1− βn)(xn − pn) + βn(rn − pn)

∥∥
� r(1− βn)‖xn − pn‖ + rβn‖pn − rn‖,

which implies that

‖pn − rn‖ � r(1− βn)

1− rβn
‖xn − pn‖ � r‖xn − pn‖. (4.7)

It follows from (4.3)–(4.7) that

‖pn − rn‖q � rq‖xn − pn‖ + rq‖xn − rn‖q, n � 0. (4.8)

It follows from Lemma 2.1 that

‖yn − u‖q = ∥∥(1− βn)xn + βnrn − u
∥∥q = ∥∥(1− βn)(xn − u) + βn(rn − u)

∥∥q

�
[
1− βn(q − 1)

]‖xn − u‖q + βnc‖rn − u‖q

− βn

(
1− β

q−1
n c

)‖xn − rn‖q, n � 0. (4.9)

Similarly, we have

‖yn − pn‖q �
[
1− βn(q − 1)

]‖xn − pn‖q + βnc‖pn − rn‖q

− βn

(
1− β

q−1
n c

)‖xn − rn‖q , n � 0, (4.10)

and

‖xn+1 − u‖q �
[
1− αn(q − 1)

]‖xn − u‖q + αnc‖pn − u‖q

− αn

(
1− α

q−1
n c

)‖xn − pn‖q, n � 0. (4.11)

By virtue of the condition (iii) and (iv), (4.2) and (4.8)–(4.11), we have
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‖xn+1 − u‖q �
[
1− αn(q − 1)

]‖xn − u‖q + αncr
q
[‖yn − u‖q + ‖yn − pn‖q

]
− αn

(
1− α

q−1
n c

)‖xn − pn‖q

�
[
1− αn(q − 1) + crqαn

(
1− βn(q − 1)

)]‖xn − u‖q

+ c2rqαnβn‖rn − u‖q + c2rqαnβn‖pn − rn‖q

+ [
crqαn

(
1− βn(q − 1)

) − αn

(
1− α

q−1
n c

)]‖xn − pn‖q

− 2crqαnβn

(
1− β

q−1
n c

)‖xn − rn‖q

�
[
1− αn(q − 1) + crqαn

(
1− βn(q − 1)

) + c2r2qαnβn

]‖xn − u‖q

+ 2crqαnβn

(
crq + (

β
q−1
n c − 1

))‖xn − rn‖q

+ αn

[
c2r2qβn + crq

(
1− βn(q − 1)

) − (
1− α

q−1
n c

)]‖xn − pn‖q

�
[
1− αn(q − 1− crq)(1+ crqβn)

]‖xn − u‖q

�
[
1− αn(q − 1− crq)

]‖xn − u‖q .

Seten = ‖xn − u‖q , fn = αn(q − 1− crq),

gn = γn = 0, n � 0.

It follows from the conditions (iii), (iv) and Lemma 2.2 that

lim
n→∞ en = 0,

that is,

lim
n→∞ ‖xn − u‖ = 0.

Note that

‖rn − u‖ � r max
{‖xn − u‖,‖rn − xn‖

}
,

which implies

rn → u (n → ∞).

Thus, from (4.1), we have

yn = (1− βn)xn + βnrn → u.

From (2.4) and conditions (ii) and (iii), we have

‖x̄n − x̄n+1‖ �
(

1+ 1

n + 1

)
H(Ayn,Ayn+1) �

(
1+ 1

n + 1

)
µ1‖yn − yn+1‖,

which implies that{x̄n} is a Cauchy sequence inE.
So, there exists̄x ∈ E such that̄xn → x̄. Now we show that̄x ∈ Au.

In fact,

d(x̄,Au) � ‖x̄ − x̄n‖ + H(Axn,Au)

� ‖x̄ − x̄n‖ + µ1

(
1+ 1

)
‖xn − u‖ → 0.
n + 1
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Also, we have

ȳn → ȳ ∈ Bu, zn → z ∈ Cu, vn → v ∈ Gu.

From (2.4), we have

u ∈ f + u − N(x̄, ȳ) + M(z, v) − λW
(
g(u)

)
,

that is,

f ∈ N(x̄, ȳ) − M(z, v) + λW
(
g(u)

)
.

We get the required results.�
Remark 4.1. Theorem 4.1 generalizes Theorem 4.1 in S.S. Chang [1], the correspo
results in Noor et al. [2,3], Agarwal et al. [10], Liu [11,12], Osilike [13,14] and o
ers.

Remark 4.2. Since Algorithm 2.2 is a special case of Algorithm 2.1, from Th
rem 4.1, we can obtain the convergence theorem for Algorithm 2.2, the details are
ted.
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