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Abstract

Upper and lower bounds for the magnitude of the largest Mahalanobis distance, calculated from n

multivariate observations of length p, are derived. These bounds are multivariate extensions of corresponding
bounds that arise for the most deviant Z-score calculated from a univariate sample of size n. The approach
taken is to pose optimization problems in a mathematical context and to employ variational methods to obtain
solutions. The attainability of the bounds obtained is demonstrated. Bounds for related quantities (elements
of the “hat matrix”) are also derived.
© 2006 Elsevier Inc. All rights reserved.
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1. Contexts: Statistical and general

Let y1, . . . , yn be points in R. Define Z-scores

zi = (yi − ȳ)

s

for i = 1, . . . , n, where the sample mean is calculated as

ȳ =
n∑

i=1

yi

n
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and the standard deviation is calculated as

s =
√√√√ n∑

i=1

(yi − ȳ)2

n − 1
.

Shiffler [9] showed that (n − 1)/
√

n is an upper bound for maxi |zi |, the magnitude of the most
deviant Z-score in a univariate sample of size n. Olkin [6] noted that although this result is often
attributed to Samuelson [8] historically the upper bound should identified with Thompson [7].
Various generalizations of this result have been considered. Hayes [4] showed that the magnitude
of the most deviant Z-score has the lower bound

√
(n − 1)/n, and that attaining this lower bound

necessarily requires that Shiffler and Harsha’s [10] upper bound for the standard deviation be also
attained. Gray and Woodall [3] discussed the extension of the upper bound to residuals obtainable
from the linear model with independent error terms of common variance.

In statistical analysis, the row vectors x′
i in Rp, for i = 1, . . . , n, of an n × p matrix X are

often interpreted as independent realizations from a multivariate normal density MVNp(µ, �).
The maximum likelihood estimates of the p dimensional vector mean µ and p × p variance
matrix � are µ̂ = x̄ = X′u/n, and �̂ = X′CX/n, respectively, where u is the vector of ones in
Rn and the n × n matrix C = In − 1

n
uu′, where In is the n × n identity matrix. Observe that the

matrix C is idempotent and that the matrix CX has rows x′
i − x̄′, for i = 1, . . . , n. Typically, the

unbiased estimate S = X′CX/(n − 1) of � is used in place of �̂.
If S is non-singular, the Mahalanobis distance of the p dimensional vector xi is defined as

D2
i = (xi − x̄)′S−1(xi − x̄). This is a generalization to the multivariate setting of the quantities

z2
i of the univariate case. Two standard texts on outlier detection Barnett and Lewis [2], and

Hawkins [5] provide a thorough discussion on the role of the Mahalanobis distance in the outlier
literature.

Using a useful matrix identity, Olkin [6] verified that (n − 1)2/n is an upper bound for the
maximum Mahalanobis distance in the special case of bivariate data. This result follows from a
more general upper bound for bivariate data derived by Olkin [6] who also noted that the same
upper bound follows as a consequence of Corollary 1 to Theorem 1 of Arnold and Groeneveld
[1] for higher dimensional data.

In this paper, an upper bound for the largest Mahalanobis distance obtainable from a multi-
variate sample is derived by posing the problem in a general mathematical context and it is then
solved as a Lagrange optimization problem. The largest Mahalanobis distance obtainable in a
sample of n multivariate p length vectors has upper bound (n − 1)2/n, and when n > p + 1,
the upper bound is attainable for k vectors, for each k = 1, . . . , p. Lower bounds for the largest
Mahalanobis distance are also obtained in various cases, using inter alia a dual approach to the
optimization problems; the attainability of these bounds is demonstrated. Finally, the maximum
and minimum values of (xi − x̄)′S−1(xj − x̄), for i /= j , are obtained.

The assumption of multivariate normality was introduced to motivate the estimates x̄ and S,
but it is not essential and so is dispensed with for the remainder of the paper; so henceforth we
need not regard the xis as random variables. We conclude this section by framing the problems in a
generalized mathematical setting as follows. Letx1, . . . , xn benvectors (data points, observations)
in Rp. Define the vector

x̄ = 1

n

n∑
i=1

xi (1.1)

and the p × p matrix
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S = 1

n − 1

n∑
i=1

(xi − x̄)(xi − x̄)′. (1.2)

We assume that the matrix S thus obtained is invertible and positive definite (thus requiring
that n � p). The n × n matrix H is defined by its components

hij = 1

n − 1
(xi − x̄)′S−1(xj − x̄). (1.3)

H is a non-negative, symmetric, idempotent matrix with trace p. Also observe that each row and
column of H sums to zero, that is

n∑
j=1

hij =
n∑

j=1

hji = 0.

For vector xi define the Mahalanobis distance Di by

D2
i = (n − 1)hii .

Define, for a given set of points x1, . . . , xn, the maximum Mahalanobis distance

M = max
i=1,...,n

D2
i .

Our goal is to optimize M and the hij s over points in Rp, subject to the constraints that x̄ and
S are fixed. This is achieved using the attractive and natural framework of Lagrangian methods.

2. The maximum Mahalanobis distance

First we find the maximum1 of hkk , for a given k subject to the mean and variance, as defined
in (1.1) and (1.2), being fixed. Without loss of generality, we take the mean x̄ = 0, following an
overall translation of all the (data) points. The rank of S must be p, since it is invertible. This fact,
along with the mean constraint, requires that the number of points must satisfy n � p + 1. We will
show that the maximum value of hkk is (n − 1)/n and that a necessary and sufficient condition
for this to be achieved is that the vectors x2, . . . , xn be coplanar (subject to S being invertible).
We also construct an example, using a suitable choice of data points, which demonstrates that it
is possible to make the p largest hkks all equal to (n − 1)/n; that is the p largest Mahalanobis
distances are all equal to (n − 1)2/n.

Theorem 2.1. The maximum value of

hkk = x′
kS

−1xk

n − 1
is

n − 1

n
,

where x1, . . . , xn are points in Rp, constrained such that
n∑

i=1

xi = 0

1 Technically, we find the supremum sup hkk over sets of n vectors in Rp , with x̄ and S fixed. Using the crude estimate
from the trace of H that hkk � p, the hkks are bounded above and hence the supremum exists.
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and the p × p matrix

S = 1

n − 1

n∑
i=1

xix
′
i

is invertible.

Proof. Without loss of generality, we take k = 1. For convenience, instead of S, we use

σ = n − 1

n
S = 1

n

n∑
i=1

xix
′
i . (2.1)

The problem is posed as a Lagrange optimization problem, with the Lagrangian function

L = x′
1σ

−1x1 + λ′
n∑

i=1

xi +
n∑

i=1

(
x′
i�xi − trace(�σ)

)
,

where λ and � are Lagrange multipliers and � is a p × p symmetric matrix. Taking derivatives
with respect to xi gives

(σ−1 + �)x1 = −1

2
λ (2.2)

and

�xi = −1

2
λ (2.3)

for i = 2, . . . , n. The derivative with respect to λ returns the constraint x̄ = 0. Combining these
equations gives

�x1 = (n − 1)

2
λ (2.4)

and

σ−1x1 = −n

2
λ. (2.5)

Using the definition of σ , multiplied on the right by �, along with Eqs. (2.3), (2.4) and the
constraint x̄ = 0, gives

σ� = 1

2
x1λ

′. (2.6)

It follows from this that, for p � 2, det(σ�) = 0 and consequently, � is not invertible.
Define the n × p matrix X with row vectors x′

i , so that nσ = X′X and x′
iσ

−1xi = nhii , where
hij is the generic entry of the n × n matrix

H = X(X′X)−1X′.
H corresponds to the hat matrix in the language of statistical outliers. From Eq. (2.5), we obtain

h11 = 1

n
x′

1σ
−1x1 = −1

2
x′

1λ.

Multiplying Eq. (2.6) on the left by σ−1 and on the right by x1 gives

�x1 = 1

2
σ−1x1(λ

′x1).
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Eqs. (2.4) and (2.5) can be used to substitute for �x1 and σ−1x1 in terms of λ and together
yield

(n − 1)

2
λ = −n

4
λ(λ′x1).

If the trivial case of λ = 0 is excluded (which with Eq. (2.5) implies x1 = 0), we get

λ′x1 = −2(n − 1)

n

and hence h11 = (n − 1)/n is the maximum possible value of a diagonal element of the matrix
H . So

M = (n − 1)2

n
(2.7)

is the maximum possible Mahalanobis distance. �

Corollary 2.2. The points x2, . . . , xn must be coplanar in Rp for the maximum (2.7) to be
achieved.

Proof. From Eq. (2.6), it follows that

σ�xi = (x′
iλ)

x1

2
for i = 2, . . . , n. Substituting from Eqs. (2.3) and (2.5) then yields

σ

(
−1

2
λ

)
=
(

−2

n
x′
iσ

−1x1

)
x1

2
.

Again using (2.5) on the left side and assuming x1 /= 0, we find that x′
iσ

−1x1 = −1 and so
x′
iS

−1x1 = −(n − 1)/n, for i = 2, . . . , n. This implies that the elements of the first column (and
row) of H satisfy hi1 = −1/n, for i = 2, . . . , n. Furthermore, we deduce that since S−1x1 /= 0,
the points x2, . . . , xn must be coplanar in Rp for the maximum h11 to be achieved. (In the case of
p = 1 the remaining (n − 1) observations must be coincident and hjj = 1

n(n−1)
for j > 1.) �

Corollary 2.3. The condition of Corollary 2.2 is not only necessary for achieving the maximum
value (2.7), but is also sufficient.

Proof. Assume that for i = 2, . . . , n, there exists a vector v /= 0 and a scalar ρ such that

v′xi = ρ, (2.8)

i.e., the points x2, . . . , xn lie in a common plane in Rp. Using the assumption x̄ = 0, we also
obtain v′x1 = −(n − 1)ρ. Then

(n − 1)Sv =
n∑

n=1

xix
′
iv = −(n − 1)ρx1 +

n∑
i=2

ρxi = −nρx1.

Since S is invertible, the right side is non-zero and in particular ρ /= 0. Hence,

v = − n

n − 1
ρS−1x1 (2.9)
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and

(n − 1)ρ = −v′x1 = n

(n − 1)
ρx′

1S
−1x1.

Dividing by ρ, it follows that

x′
1S

−1x1 = (n − 1)2

n
= M

as defined in Eq. (2.7), and h11 = (n − 1)/n. From (2.9) we see that S−1x1 is a normal vector to
the plane. Also, by combining Eqs. (2.8) and (2.9), we find, as before, that x′

iS
−1x1 = −(n − 1)/n

for i = 2, . . . , n. �

We now demonstrate that the maximum is achievable for any given n and p with n > p + 1. In
so doing, we address a more general question viz. what is the maximum number of the diagonal
elements of the matrix H that can simultaneously achieve the maximum value (n − 1)/n? From
the property trace(H) = ∑n

i=1 hii = p, it follows that, if n > p + 1, then at most p of the hiis can
be equal to the maximum value (n − 1)/n. The example below illustrates that this is achievable.

Example 2.1. Let eα be the standard basis of Rp, i.e., (eα)β = δαβ . Define

xi =
{
ei, i = 2, . . . , p,

e1, i = p + 1, . . . , n.

Note that the points x2, . . . , xn are all coplanar, lying in the plane ξ1 + · · · + ξp = 1. From
the zero mean property x1 is found to be

x1 = −(n − p)e1 −
p∑

j=2

ej .

Then S = (n − 1)−1∑n
i=1 xix

′
i gives

S = 1

(n − 1)

(n − p)(n − p + 1)e1e
′
1 + (n − p)

p∑
i=2

(e1e
′
i + eie

′
1) +

p∑
i=2

p∑
j=2

eie
′
j +

p∑
i=2

eie
′
i

 .

From this, one may verify that the inverse is

S−1 = (n − 1)

n

 p

n − p
e1e

′
1 −

p∑
i=2

(e1e
′
i + eie

′
1) −

p∑
i=2

p∑
j=2

eie
′
j + n

p∑
i=2

eie
′
i

 .

Using this in definition (1.3) of the generic entry hij of the matrix H , we obtain

H =



n−1
n

− 1
n

· · · − 1
n

− 1
n

· · · − 1
n

− 1
n

n−1
n

· · · − 1
n

− 1
n

· · · − 1
n

...
...

. . .
...

...
. . .

...

− 1
n

− 1
n

· · · n−1
n

− 1
n

· · · − 1
n

− 1
n

− 1
n

· · · − 1
n

p
n(n−p)

· · · p
n(n−p)

− 1
n

− 1
n

· · · − 1
n

p
n(n−p)

· · · p
n(n−p)

...
...

. . .
...

...
. . .

...

− 1
n

− 1
n

· · · − 1
n

p
n(n−p)

· · · p
n(n−p)


,
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where the top left block is p × p. One can verify that H has all the desired properties listed above
(symmetric, each row sums to zero, it is idempotent and trace(H) = p). Observe that h11 = h22 =
· · · = hpp = (n − 1)/n, the maximum possible number of maximum diagonal values. (Indeed if
n = p + 1 then h(p+1)(p+1) = (n − 1)/n also.) This proves that

max{(h11 + · · · + hkk)} = k(n − 1)

n

for each k = 1, . . . , p.

3. Lower bounds for the maximum Mahalanobis distance

Theorem 3.1. A lower bound for the quantity M = maxi{x′
iS

−1xi}, is

mg = (n − 1)p

n
, (3.1)

where x1, . . . , xn are points in Rp that are subject to the constraint

x̄ =
n∑

i=1

xi = 0

and to the p × p matrix S = (n − 1)−1∑n
i=1 xix

′
i being invertible.

We call mg the global lower bound for M .

Proof. The sum of the Mahalanobis distances for the vectors x1, . . . , xn is
n∑

i=1

x′
iS

−1xi = trace((n − 1)H) = (n − 1)p, (3.2)

where the n × n matrix H defined in Eq. (1.3). Since each term in the sum is non-negative, the
maximum term M � (n−1)p

n
. �

Corollary 3.2. M = mg if and only if

x′
iS

−1xi = (n − 1)p

n
(3.3)

for all i = 1, . . . , n.

This occurs if and only if hii = p/n for all i. We emphasize that the infinimum of M will equal
the global lower bound mg , only for certain values of n and p. We explore this in some detail in
the following examples.

Example 3.1. When p = 1, Eq. (3.3) implies that M = mg , the global lower bound, if and only
if

x2
i = (n − 1)S

n

for all i. Taking this together with the mean constraint
∑n

i=1 xn = 0, we reach the following two
conclusions; when n is even, the global lower bound is achieved when exactly half of the xis equal
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√
(n − 1)S/n and the other half equal −√

(n − 1)S/n (and hence inf M = mg = (n − 1)/n for
p = 1 and n even), as was derived in Hayes [4]; when n is odd, the global lower bound is never
achieved as there is no combination of ±√

(n − 1)S/n with an odd number of terms that sums to
zero. Note that this does not preclude the infinimum of M being equal to mg , although we do not
show this. However, it is straightforward to put an upper bound on inf M by taking the vector of
xis of the type (a, −a, a, −a, . . . , a,−a, 0) thus obtaining the bounds

n − 1

n
� inf M � 1

for p = 1 and n odd.

Example 3.2. Next we examine the case of p = 2. Consider n (data) points uniformly distri-
buted on the circle of radius a; we take xj = (a cos ωj , a sin ωj ), where ωj = 2π(j − 1)/n for
j = 1, . . . , n. Then

∑n
j=1 xj = 0, for n > 2 since, using complex exponential notation,

n∑
j=1

e
2πı(j−1)

n = 0.

Also

xjx
′
j = a2

(
cos2 ωj cos ωj sin ωj

cos ωj sin ωj sin2 ωj

)
= a2

2

(
1 + cos 2ωj sin 2ωj

sin 2ωj 1 − cos 2ωj

)
.

Now
n∑

j=1

e2ıωj =
n∑

j=1

e
4πı(j−1)

n = 0

for n > 2, giving

(n − 1)S =
n∑

j=1

xjx
′
j = na2

2
I2,

and so

S = na2

2(n − 1)
I2,

where I2 is the 2 × 2 identity matrix. Hence,

x′
j S

−1xj = 2(n − 1)

na2
‖xj‖2 = 2(n − 1)

n

for all j . This is mg of Theorem 3.1 with p = 2. In conclusion, for p = 2 and all n > 2, inf M =
mg and the bound is achievable.

Example 3.3. Next we examine the general case, assuming that n � 2p. Define R = nmod 2p,
so n = 2dp + R, where d � 1, and 0 � R � 2p − 1. Define

xi =
{

(−1)i+1e{ i+1
2 mod p} if i � 2dp,

0 if 2dp < i � n,

where we define e0 = ep. Then x1 = e1, x2 = −e1, . . . , x2p−1 = ep, x2p = −ep, x2p+1 = e1,
x2p+2 = −e1, . . . , x2dp−1 = ep, x2dp = −ep, x2dp+1 = x2dp+2 = · · · = xn = 0. Clearly,∑n

i=1 xi = 0 and also
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(n − 1)S = 2d

p∑
α=1

eαe′
α = 2dIp,

so

1

n − 1
S−1 = 1

2d
Ip = 1

2
⌊

n
2p

⌋Ip,

where Ip is the p × p identity matrix. The diagonal elements of the H matrix are

hii =


1

2
⌊

n
2p

⌋ if 1 � i � 2p
⌊

n
2p

⌋
,

0 if 2p
⌊

n
2p

⌋
< i � n.

These values satisfy the condition
∑n

i=1 hii = p, and it follows that

max
i

{hii} = 1

2d
= 1

2
⌊

n
2p

⌋ .

So the maximum Mahalanobis distance for these data is

M1 = n − 1

2
⌊

n
2p

⌋ . (3.4)

Clearly, M1 = mg , the global lower bound, when 2p divides evenly into n.

4. A dual approach to optimization problems

A dual approach to the above problems and specifically the infinimum of M (the minimax)
problem is presented. This will also illustrate the fact that these problems are fundamentally
algebraic and geometric in nature, though their origins are rooted in statistics.

We assume that S is invertible and positive definite. There then exists a rotation matrix R̃ such
that (n − 1)S = R̃′�R̃, where � is a diagonal matrix with diagonal elements δαα > 0. Define
yi = R̃xi for i = 1, . . . , n. The zero-mean condition is preserved, i.e.,

∑n
i=1 yi = 0 and

� =
n∑

i=1

yiy
′
i . (4.1)

The elements of the H matrix, defined in (1.3) become hij = y′
i�

−1yj and the various problems
then consist of finding n vectors in Rp with certain desired optimization properties. We now
transpose the problems by defining the vectors zα (α = 1, . . . , p) in Rn by

(zα)i = (yi)α√
δαα

.

Then (4.1) becomes z′
αzβ = δαβ , that is {zα} forms an orthonormal set in Rn. The zero mean

condition becomes z′
αu = 0 where u is the vector of ones in Rn. The H matrix elements are

hij =
p∑

α=1

(f ′
i zα)(f ′

j zα),
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where {fi} is the standard basis of Rn and the Mahalanobis distances are

Di =
√√√√(n − 1)

p∑
α=1

(f ′
i zα)2.

As before, we define, for a given set of vectors x1, . . . , xn in Rp, M = maxi D2
i which in the

transposed version is defined for a given set of vectors z1, . . . , zp in Rn. We now define, for given
n and p,

Mn,p = sup M (4.2)

and

mn,p = inf M, (4.3)

where the supremum and infinimum are taken over sets of p orthonormal vectors zα in Rn, which
are orthogonal to u. It follows that Mn,p = sup D2

1 = (n − 1) sup h11. So the previous problems
are transformed into optimization of the M over orthonormal sets of p vectors in the orthogonal
space of u = (1, 1, . . . , 1) in Rn. These problems depend only on n and p and not on the specific
nature of any given matrix S (such as its eigenvalues). We have shown that

Mn,p = (n − 1)2

n
.

We will not present a similar general formula for mn,p but rather present some bounds; specif-
ically we have the global lower bound mn,p � mg for all n, p and the upper bound M1 in (3.4).
We now use the dual approach to obtain another upper bound. Both of these bounds give rise to
an infinite number of instances when mn,p = mg .

We assume here that n � 2p and define

µ = �log2 p� + 1. (4.4)

Then p < 2µ � n. We write n = κ2µ + φ, where κ = ⌊
n

2µ

⌋
with κ � 1 and 0 � φ < 2µ. We now

construct a 2µ × 2µ orthogonal matrixQby defining the (a, b) element, fora, b ∈ {0, 1, . . . , 2µ −
1} as follows: we write the binary expansions of a and b, respectively, as a = ∑µ

l=1 2l−1al and
b = ∑µ

l=1 2l−1bl (with ak, bk ∈ {0, 1}) and then we define

Qab = 2− µ
2 (−1)

∑µ
k=1 akbk .

Note that the rows of 2
µ
2 Q consist of ±1s; the first row is Q0� = 2− µ

2 (1, 1, . . . , 1) and all other
rows are orthogonal to this. We now choose the p vectors zα in Rn as follows:

zα = 1√
κ

(Qα�, Qα�, . . . , Qα�,︸ ︷︷ ︸
κ times

0, . . . , 0)︸ ︷︷ ︸
φ times

for α = 1, . . . , p, where Qα� consists of the 2µ elements of row α of the matrix Q defined above.
These vectors form an orthonormal set in Rn and each one is orthogonal to Q0� and hence to u,
the vector of ones in Rn. For each α = 1, . . . , p, observe that (f ′

i zα)2 = 1
κ2µ for i = 1, . . . , κ2µ

and (f ′
i zα)2 = 0 for i = κ2µ + 1, . . . , n. So the corresponding Mahalanobis distances Di satisfy

D2
i =

{
(n−1)p

κ2µ if 1 � i � κ2µ,

0 if κ2µ < i � n.
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So the maximum Mahalanobis distance M2 = maxi D2
i for these data is given by

M2 = (n − 1)p

κ2µ
= (n − 1)p

2µ
⌊

n
2µ

⌋ (4.5)

with µ as given in (4.4). Note that this produces an infinite number of instances for which
M2 = mg , namely if there exists ν such that 2ν � 2p and 2ν divides evenly into n. Note also that
the bounds M1 in (3.4) and M2 in (4.5) are independent, as illustrated by the following examples:
when n = 6 and p = 3, M1 = 5

2 and M2 = 15
4 , so M1 < M2; when n = 8 and p = 3, M1 = 7

2
and M2 = 21

8 so M1 > M2. In conclusion, if n � 2p, then

mg � mn,p � min

(
n − 1

2
⌊

n
2p

⌋ ,
(n − 1)p

2µ
⌊

n
2µ

⌋ ) ,

where µ is given in (4.4).

5. Optimization of the elements of the H matrix

We have already shown that for any given diagonal element hkk of H ,

0 � hkk � n − 1

n

and that both bounds are achievable (the lower bound being trivial).
It remains to address the optimization of the off-diagonal elements. Without loss of generality,

we search for the optima of

h12 = 1

n − 1
x1S

−1x2.

We again introduce the variable σ = n
n−1S, so that h12 = (x1σ

−1x2)/n. We treat the problem as
a constrained optimization with the Lagrangian function

L = x′
1σ

−1x2 + λ′
n∑

i=1

xi +
n∑

i=1

(x′
i�xi − trace(�σ)),

where again � is symmetric. Taking derivatives with respect to x1, x2 and xi (for i � 3) gives

σ−1x2 + 2�x1 + λ = 0,

σ−1x1 + 2�x2 + λ = 0, (5.1)

2�xi + λ = 0, i = 3, . . . , n.

Adding these equations gives

σ−1(x1 + x2) = −nλ. (5.2)

From the definition of σ , as in (2.1), multiplied on the right by �, and using the fact that x̄ = 0
along with Eqs. (5.1), we find that

−2nσ� = x1(σ
−1x2)

′ + x2(σ
−1x1)

′.

Hence,

−2σ�xi = h2ix1 + h1ix2 (5.3)
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for i = 1, 2, 3, . . . , n. Now multiplying Eqs. (5.1) on the left by (−nσ), and eliminating λ using
(5.2), gives

x1 + (1 − n)x2 − 2nσ�x1 = 0,

x2 + (1 − n)x1 − 2nσ�x2 = 0,

x1 + x2 − 2nσ�xi = 0, i = 3, . . . , n.

Combining these with (5.3), we obtain

x1(1 + nh12) + x2(nh11 − (n − 1)) = 0,

x1(nh22 − (n − 1)) + x2(1 + nh12) = 0, (5.4)

x1(1 + nh2i ) + x2(1 + nh1i ) = 0, i = 3, . . . , n.

We assume that x1 /= 0 and x2 /= 0; otherwise h12 = 0. If x1 and x2 are linearly independent,
then these equations give h11 = n−1

n
= h22, h12 = − 1

n
and h1i = h2i = − 1

n
for i � 3. This case

does not correspond to an extremum of h12. Otherwise, there exists γ such that x2 = γ x1. Then
h12 = γ h11, h22 = γ 2h11 and h2i = γ h1i . So, Eqs. (5.4) become

1 + nγh11 + γ (nh11 − n + 1) = 0,

nγ 2h11 − (n − 1) + γ (1 + nγh11) = 0, (5.5)

1 + nγh1i + γ (1 + nh1i ) = 0.

Taking γ times the first equation minus the second equation gives γ 2 = 1.
If γ = 1, solving the equations gives h11 = n−2

2n
= h12 = h22 and h1i = h2i = − 1

n
for i � 3;

if γ = −1, then h11 = 1
2 = h22, h12 = − 1

2 and h1i = h2i = 0 for i � 3. So the maximum value
of h12 is 1

2 − 1
n

and the minimum is − 1
2 . In conclusion we find that for all n > 2,

−1

2
� h12 � 1

2
− 1

n
.

We will now demonstrate how these extreme values of h12 are achieved by presenting actual
data that reproduce them. It is illustrative to consider first the case of one dimension, p = 1. In that
instance, the γ = 1 case corresponds to n points: (n − 2)r, (n − 2)r, −2r, −2r, . . . , −2r where
r2 = σ

2n−4 ; the γ = −1 case corresponds to n points: r, −r, 0, 0, . . . , 0 where r2 = nσ
2 .

We now consider the higher dimensional cases, where p � 2. Observe that forσ to be invertible,
i.e., of full rank, it is necessary that n � p + 2, since we now have the additional constraint on
the xis that x2 = ±x1.

Example 5.1. We present an example corresponding to γ = 1, in which one can observe that
h12 = 1

2 − 1
n

. Let eα be the standard basis of Rp and define

xi =


− 1

2

(
(n − p − 1)ep +∑p−1

j=1ej

)
, i = 1, 2,

ei−2, i = 3, . . . , p + 1,

ep, i = p + 2, . . . , n.

Then, Eq. (2.1) gives

σ = 1

2n

2
p−1∑
i=1

eie
′
i +

p−1∑
i=1

p−1∑
j=1

eie
′
j + (n − p − 1)

p−1∑
i=1

(epe′
i + eie

′
p) + (n − p − 1)(n − p + 1)epe′

p

 .
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From this, one may verify that the inverse is

σ−1 = n

p−1∑
i=1

eie
′
i −

p−1∑
i=1

p−1∑
j=1

eie
′
j −

p−1∑
i=1

(epe′
i + eie

′
p) + p + 1

n − p − 1
epe′

p.

Using this, we then calculate the matrix

H =



n−2
2n

n−2
2n

− 1
n

− 1
n

· · · − 1
n

− 1
n

· · · − 1
n

n−2
2n

n−2
2n

− 1
n

− 1
n

· · · − 1
n

− 1
n

· · · − 1
n

1
n

− 1
n

n−1
n

− 1
n

· · · − 1
n

− 1
n

· · · − 1
n

− 1
n

− 1
n

− 1
n

n−1
n

· · · − 1
n

− 1
n

· · · − 1
n

...
...

...
...

. . .
...

...
...

− 1
n

− 1
n

− 1
n

− 1
n

· · · n−1
n

− 1
n

· · · − 1
n

1
n

− 1
n

− 1
n

− 1
n

· · · − 1
n

p+1
n(n−p−1)

· · · p+1
n(n−p−1)

...
...

...
...

...
...

. . .
...

− 1
n

− 1
n

− 1
n

− 1
n

· · · − 1
n

p+1
n(n−p−1)

· · · p+1
n(n−p−1)



,

where the square diagonal blocks have sides respectively of size 2, p − 1 and n − p − 1.

Example 5.2. We present an example corresponding to γ = −1, in which one can observe that
h12 = − 1

2 . Define

xi =


(−1)i−1e1, i = 1, 2,

ei−1, i = 3, . . . , p,

−∑p−1
j=2ej − (n − p − 1)ep, i = p + 1,

ep, i = p + 2, . . . , n,

where again we take n � p + 2 and also assume p � 3. The case p = 2 is obtained in a similar
analysis by omitting the second line of this definition and the sum term from the third line. Then,
Eq. (2.1) gives

σ = 1

n

2e1e
′
1 +

p−1∑
i=2

eie
′
i +

p−1∑
i=2

p−1∑
j=2

eie
′
j + (n − p − 1)

p−1∑
i=2

(epe′
i + eie

′
p) + (n − p)(n − p − 1)epe′

p

 .

From this, one may verify that the inverse is

σ−1 = n

2
e1e

′
1 + n

p−1∑
i=2

eie
′
i − n

n − 2

p−1∑
i=2

p−1∑
j=2

eie
′
j − n

n − 2

p−1∑
i=2

(epe′
i + eie

′
p)

+ n(p − 1)

(n − 2)(n − p − 1)
epe′

p.
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Using this, we then calculate the matrix

H =



1
2 − 1

2 0 0 · · · 0 0 · · · 0

− 1
2

1
2 0 0 · · · 0 0 · · · 0

0 0 n−3
n−2 − 1

n−2 · · · − 1
n−2 − 1

n−2 · · · − 1
n−2

0 0 − 1
n−2

n−3
n−2 · · · − 1

n−2 − 1
n−2 · · · − 1

n−2
...

...
...

...
. . .

...
...

...

0 0 − 1
n−2 − 1

n−2 · · · n−3
n−2 − 1

n−2 · · · − 1
n−2

0 0 − 1
n−2 − 1

n−2 · · · − 1
n−2

p−1
(n−2)(n−p−1)

· · · p−1
(n−2)(n−p−1)

...
...

...
...

...
...

. . .
...

0 0 − 1
n−2 − 1

n−2 · · · − 1
n−2

p−1
(n−2)(n−p−1)

· · · p−1
(n−2)(n−p−1)



,

where the square diagonal blocks have sides respectively of size 2, p − 1 and n − p − 1.
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