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Hsp90 is a dimeric molecular chaperone required for the activation and stabilization of numerous client
proteins many of which are involved in essential cellular processes like signal transduction pathways. This
activation process is regulated by ATP-induced large conformational changes, co-chaperones and posttrans-
lational modifications. For some co-chaperones, a detailed picture on their structures and functions exists, for
others their contributions to the Hsp90 system is still unclear. Recent progress on the conformational dynam-
ics of Hsp90 and how co-chaperones affect the Hsp90 chaperone cycle significantly increased our
understanding of the gearings of this complex molecular machinery. This article is part of a Special Issue
entitled: Heat Shock Protein 90 (Hsp90).
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1. Introduction

Hsp90 is an evolutionarily conserved and highly abundant molecu-
lar chaperone that mediates many fundamental cellular processes in-
cluding cell cycle control, cell survival, hormone signaling and
response to cellular stress [1–5]. Thus, Hsp90 function is a key compo-
nent providing maintenance of cellular homeostasis [6,7]. In eukary-
otes, Hsp90 promotes the formation of the correct conformation and
activation of more than 200 proteins referred as Hsp90 ‘clients’ [2,8–
10]. Since many of these proteins are deregulated in cancers, Hsp90 in-
hibition appears to be a promising therapeutic strategy for cancer treat-
ment [11–13]. By buffering oncogenic mutations and protecting
oncoproteins, Hsp90 assists the stabilization of tumorogenic cells that
are often considered to be ‘addicted’ to Hsp90 [14,15]. However, there
are numerous indications linking Hsp90 with cancer development and
progression. Hsp90 is involved in cellular defense against cancer by di-
rectly interacting and stabilizing the tumor suppressor protein p53 [16].
Hsp90 chaperone activity is of high importance as mutations in this
transcription factor were identified in more than half of all human tu-
mors studies. In this context, Hsf1, whose activity is attenuated by asso-
ciation with Hsp90, has been shown to be a potent modifier of
carcinogenesis [17]. Apparently, also normal cells use Hsp90 to increase
their inherent genetic heterogeneity: compelling evidence indicates
that Hsp90 plays a pivotal role in evolutionary processes by buffering
mutations that occur during normal morphological evolution [18–20].

The recruitment and assembly with client proteins requires collabo-
ration of eukaryotic Hsp90with Hsp70 and amultitude of the accessory
proteins called ‘co-chaperones’ to form large dynamic multi-chaperone
complexes [21–23]. To accomplish its function, the Hsp70/Hsp90 ma-
chinery acts in concert with the ubiquitin-proteosome system directing
misfolded proteins for degradation and thus plays an active role in pro-
tein quality control [24–26]. Unlike Hsp70 which binds to the nascent
polypeptide chain, the association with Hsp90 occurs at a later stage
of the client folding process.

In eukaryotes, Hsp90 is found in the cytosol, the nucleus and in or-
ganelles. The nuclear localized Hsp90 represents a small fraction of cy-
tosolic Hsp90 under physiological conditions [27]. Two cytosolic
Hsp90 isoforms exist: an inducible and a constitutive form, Hsp90α
and Hsp90β in man and Hsp82 and Hsc82 in yeast [28]. Plants express
several additional cytosolic isoforms and their high expression levels
protect cells from deleterious effects of diverse environmental fluctua-
tions and pathogens [29–31]. Organelle-specific Hsp90 forms exist in
mitochondria (TRAP1), chloroplasts and endoplasmic reticulum
(Grp94) [30,32,33]. Recent studies show that Hsp90 is not only present
inside the cell, but also on the cell surface of various cell types and se-
creted into the extracellular space suggesting distinct extracellular
chaperoning activity [12,34,35]. It seems that Hsp90 evolved to exert di-
verse functions in a variety of different organisms from bacteria toman.
However, while being an essential protein in eukaryotes, its bacterial
homologue HtpG appears to be dispensable [3,36]. Additional
differences in the modes of action between eukaryotic and
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prokaryotic/organellar Hsp90s exist. While in eukaryotes cytosolic
Hsp90 requires the assistance of large cohort of co-chaperones, its pro-
caryotic homologue seems to act on its own. However, the structural or-
ganization and the mechanism of the ATPase cycle necessary for the
Hsp90 chaperone activity are conserved among cytosolic and organellar
species [37–41]. The clientele of prokaryotic Hsp90 is to be identified
[42,43].
2. Structure and conformational dynamics of Hsp90

Hsp90 forms flexible homodimers, where each protomer contains
an N-terminal ATP-binding domain (N-domain), followed by charged
region of a variable length, a middle domain (M-domain) with binding
sites for client proteins and co-chaperones [44–50] and a C-terminal
dimerization domain (C-domain) with its C-terminal MEEVD motif an-
choring various tetratricopeptide repeat (TPR) domain-containing co-
chaperones [51–53]. Structural studies [54,55] revealed that Hsp90
adopts a number of structurally distinct conformations (Fig. 1). To es-
tablish a kinetic model of conformational rearrangements in Hsp90, so-
phisticated biophysical techiques including ensemble or single
molecule fluorescence resonance energy transfer (FRET) and analytical
ultracentrifugation (aUC) have been applied (Fig. 2a–c). This allowed
dissecting the steps of the ATPase cycle in detail [56,57].

In the apo state, Hsp90 adopts predominantly an open V-shaped
conformation. Binding of ATP to the N-terminal domain triggers
repositioning of a lid segment and leads to the formation of the
first intermediate state (I1). Concomitant structural changes induce
accommodation of a closed state, in which the N-domains are
dimerized and associated with the M-domains. This structural com-
paction represents the second intermediate state (I2), in which ATP
is hydrolyzed. After ATP hydrolysis, the N-domains dissociate, re-
lease ADP, Pi and Hsp90 returns to its original conformation. The
speed of the ATPase cycle which is dominated by these conforma-
tional changes, is slow, compared to other known ATP-dependent
chaperones. Hsp90 from yeast hydrolyzes one ATP molecule per
1–2 min [58,59], and the ATP hydrolysis by human Hsp90 is ten-
fold slower than that of its yeast homologue [37,60,61]. Hsp90
Fig. 1. Hsp90 structures crystal structures of full length Hsp90 from E. coli (HtpG) in the ope
formation (right, PDB 2CG9). The N-domain is depicted in blue, the M-domain in green and
belongs to the family of GHKL ATPases, which all share a similar
architecture of the ATP binding pocket [38].

Though the role of nucleotide in structural movements has been
well established, the conformations found in the absence of nucleo-
tide are less well understood. Importantly, open and closed forms of
Hsp90 have been detected even in the absence of nucleotide [57,62]
suggesting that these movements can occur spontaneously and that
a dynamic conformational equilibrium between different conforma-
tions exists. Further analysis of the C-terminal dimerization revealed
anti-correlated motions of the C- and N-domains showing important
communication pathways between remote regions of the protein
[63]. The activity of Hsp90 is additionally regulated by posttransla-
tional modifications of important switch point regions (Len Neckers
and co-workers, this BBA issue).

3. Hsp90 co-chaperones

Various co-chaperones associate dynamically with Hsp90 during
the chaperone cycle (Table 1). In eukaryotic cells, more than 20 co-
chaperones have been identified to regulate the function of Hsp90
in different ways, such as the inhibition and activation of its ATPase
activity as well as recruitment of specific client proteins [52,64–67].
Among them, the TPR co-chaperones, which recognize the C-terminal
MEEVDmotif in Hsp90 through a highly conserved clamp domain, are
a prominent example. Structurally, TPR motifs consist of degenerated
34-amino acid repeats forming two anti-parallel α helices separated
by a turn [68]. The helix–turn–helix motifs stack upon each to form
a superhelical groove, which interacts with TPR acceptor modules
[51]. TPR domain-containing co-chaperones include Hop [69] (yeast
homologue Sti1 [70]), protein phosphatase PP5 [71] (yeast homo-
logue Ppt1 [72]), J domain containing protein TPR2 [73], the myosin
folding factor Unc45 [74,75] and members of peptidylprolylisomerase
(PPIase) family, like Fkbp52 [76–79], Fkbp51 [80] and Cyp40 [81]
(yeast homologues Cpr6/Cpr7 [82]).

The protein Hop/Sti1 binds and stabilizes the open conformation
of Hsp90 and thus inhibits its ATPase activity [52,69,83]. The presence
of three TPR domains allows for its simultaneous binding and modu-
lation of Hsp70 and Hsp90, which leads to the facilitation of client
n conformation (left, PDB 2IOQ) and nucleotide-bound yeast Hsp90 in the closed con-
the C-domain in orange.
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Fig. 2. Biophysical methods to investigate the Hsp90 chaperone machinery (a) Schematic representation of the conformational changes induced by binding of nucleotide to Hsp90.
(b) Nucleotide-induced conformational rearrangements can be monitored by FRET or (c) analytical ultracentrifugation. (d) Schematic representation of complex formation with
Hsp90 and the co-chaperones Sti1 and Cpr6. Association between Hsp90 and the co-chaperones can be detected using (e) FRET or (f) analytical ultracentrifugation.
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protein transfer [67,84,85]. Biochemical studies showed that the TPR1
and TPR2a domain bind to the EEVD-containing C-terminus of Hsp70
and Hsp90, respectively (Fig. 3a) [51,86,87]. Recent results showed
that Hop/Sti1 is a monomeric protein [88,89] and current models sug-
gest that binding of one Hop/Sti1 monomer to one Hsp90 dimer is
sufficient to inhibit the ATPase activity of Hsp90 dimer [89]. In this
context it also needs to be considered that the concentration of
Hsp90 co-chaperone is significantly lower than that of Hsp90 [90].
Functional analysis in yeast shows that Hop/Sti1 is not an essential
protein, but lethality can be induced when Hop/Sti1 is knocked out
with other genes such as the Hsp40 homologue Ydj1 or the Hsp90
co-chaperone p23/Sba1 [91–93]. Reconstitution studies showed that
Hop/Sti1 is indispensable for maintaining the hormone binding activ-
ity of the progesterone receptor [94]. Recent results indicate that
Hop/Sti1 has an influence on many different Hsp90 clients. For exam-
ple, Lin and co-workers suggest that in Drosophila Hop/Sti1 is impor-
tant for phenotypic stability and this involves a complex of Hop/Sti1
with Hsp90 and the protein Piwi [95]. S-nitrosylation or knockdown
of Hop contributes to the maturation of mutant form cystic fibrosis
transmembrane conductance regulator (CFTR) [96], similar to the
co-chaperone Aha1 [97] (see also below), qualifying it as a new target
for the treatment of cystic fibrosis.

In contrast to Hop/Sti1, p23/Sba1 binds specifically to the closed
conformation of Hsp90 [98,99]. It was identified as a component in ste-
roid receptors complex together with Hsp90 and a PPIase [100].
p23/Sba1 is a small acidic protein containing an unstructured C-termi-
nal tail, which plays an important role in its intrinsic chaperone activity
[101]. Structural studies revealed that the contact sites are prominently
located in the N-domain of Hsp90 (Fig. 3b), but also with minor M-do-
main interaction [54]. In yeast, deletion of p23/Sba1 results in mild
growth defects at both low and high temperature [91]. In mice,
p23/Sba1 is not essential for prenatal development but necessary for
perinatal survival, as the development of lungs functions is substantially
impaired in p23/Sba1 knockout embryos [102,103].

p23/Sba1 facilitates the maturation of client proteins by stabilizing
the closed conformation of Hsp90 [104]. As a result, the ATP hydrolysis,
which is indispensable for the release of the client protein [58,105], is
partially inhibited in the presence of p23/Sba1 [65,106]. From previous
studieswe know that p23/Sba1 is the limiting component for the stabil-
ity of Hsp90-client protein heterocomplex [107]. Since p23/Sba1 pos-
sesses chaperone activity [108,109], it may interact directly with the
client protein and may thus serve as the control of its conformation.
For this function, the C-terminal tail of p23/Sba1 seems important
[101,110].

Cdc37 is another co-chaperone which inhibits the ATPase activity of
Hsp90 [111,112]. Originally, Cdc37 was identified in S. cerevisiae as a
gene essential for cell cycle progression [113,114]. During the investiga-
tion of the oncoprotein v-Src, Cdc37 was found as a part of the Hsp90-
kinase complex [115,116]. Further work in different organisms showed
that Cdc37 is specific for chaperoning kinases [117]. It interacts with ki-
nases through its N-terminal domain and binds to the N-domain of
Hsp90 via its C-terminal parts (Fig. 3c). The ATPase arrest is mediated
by the insertion of the Cdc37 R167 side chain into the nucleotide bind-
ing pocket of Hsp90. This directly inhibits the binding of ATP [54]. Fur-
thermore, the binding of the Hsp90 lid segment prevents its closing of
the ATP binding sites and blocks the access of catalytic residue of the
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Table 1
Summary of Hsp90 co-chaperones.

Co-chaperones Function

TPR co-chaperones

Mammals Yeast Plant

protein Gene name
(human)

Hop STIP1 Sti1 Hop Scaffold for Hsp90/Hsp70 interaction; involved in client protein maturation; inhibition of Hsp90 ATPase
Fkbp52 FKBP4 None AT5G48

570a
Peptidy-prolyl-isomerase; chaperone; involved in client protein maturation

Fkbp51 FKBP5 None ROF1 Peptidy-prolyl-isomerase; chaperone; involved in client protein maturation
Cyp40 PPID Cpr6/Cpr7 SQN Peptidy-prolyl-isomerase; chaperone; involved in client protein maturation
AIP AIP None None Complex with AhR (aryl hydrocarbon receptor), PPARα (peroxisome proliferator-activated receptor α), Hbx

(Hepatitis B virus X protein)
CHIP STUB1 None CHIP Ubiquitin ligase, tagging protein for degradation
PP5 PPP5C Ppt1 PP5.2 Phosphatase
Tpr2 DNAJC7 None ATP58I

PKa
Tpr2 recognizes both Hsp70 and Hsp90 through its TPR domains. It may mediates the retrograde transfer of
substrates from Hsp90 onto Hsp70

Sgt1 SUGT1 Sgt1 SGT1B Forms complex with Hsp90 and CHORD proteins; involved in the function of NLR receptors in plant and animal
innate immunity

Unc45 UNC45B She4 None Assembly of myosin fibers
Ttc4 TTC4 Cns1 AT1G04

130a
Nuclear transport protein; putative tumor suppressor involved in the transformation of melanocytes

Tom70 TOMM70A Tom70p None Mitochondrial protein import
None None Toc64 Chloroplast protein import
Tah1 RPAP3/FLJ21908 Tah1 AT1G56

440a
Forms complex with Pih1 and Hsp90

Non-TPR co-chaperones
Aha1 AHSA1 Aha1 AT3G12

050a
Stimulates ATPase activity; induces conformation changes in Hsp90

p23 PTGES3 Sba1 AT3G03
773a

Involved in client protein maturation; inhibition of Hsp90 ATPase; chaperone

Cdc37 CDC37 Cdc37 None Kinase-specific co-chaperone; inhibition of Hsp90 ATPase, chaperone
Chp1/Melusin CHORDC1 None Rar1 Forms complex with Hsp90 and Sgt1; involved in the function of NLR receptors in plant and animal innate

immunity
NudC NUDC NudC AT4G27

890a
CHORD domain-containing chaperone; dynein-associated nuclear migration protein; plays multiple roles in mitosis
and cytokinesis

a Several homologues are uncharacterized in plants. The listed gene names are for Arabidopsis thaliana.
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Hsp90M-domain to the ATP binding pocket. Finally, Cdc37 holds the N-
domain in an open state and precludes its dimerization [66].

Unlike the co-chaperones discussed above, Aha1 is so far the most
prominent activator of the ATPase activity of Hsp90. In yeast, both
Aha1 and its homologue Hch1 are not essential [118]. Nevertheless,
the activation of specific clients such as v-Src and hormone receptors
is severely affected in the double knockout cells [119]. Interestingly,
Aha1 seems to play an important role in the quality control pathway
of the CFTR. Down-regulation of Aha1 could rescue the phenotype
caused by misfolded CFTR [120]. Based on biochemical and co-crystalli-
zation studies, Aha1 binds the M-domain of Hsp90 [48,119]. A recent
NMR analysis further suggests that there are also interactions involving
the N-domain of Hsp90 (Fig. 3d) [45,97]. In the suggested asymmetric
activation mechanism, one Aha1 molecule is sufficient to stimulate the
ATPase activity of one Hsp90 dimer [45]. Binding of Aha1 induces an
Hsp90 domain orientation, where the N-domains are in a closed state,
which accelerates the progression of the ATPase cycle [45,56]. FRET
measurements show that the presence of Aha1 enables Hsp90 to bypass
the I1 state and to directly reach the I2 state in the ATPase cycle [56].

Studies of steroid hormone receptor (SHR) complexes led to the iden-
tification of another subset of Hsp90 co-chaperones, the TPR-containing
peptidyl-prolyl cis-trans isomerases, such as Fkbp52, Fkbp51 and Cyp40
in mammals [22,77,121–123] and Cpr6, Cpr7 in yeast [124]. These pro-
teins contain a PPIase domain, which catalyzes the interconversion of
the cis-trans isomerization of peptide bonds prior to proline residues
[125], and a TPR domain(s) for the interaction with C-terminal end of
Hsp90 (Fig. 3e).Most of these large PPIases show independent chaperone
activity [108,109,121]. However, the functionof PPIases in SHR complexes
is not well understood. They may be selected by specific client proteins.
For example, Cyp40 is most abundant in ER complexes [126] and
Fkbp52mediates potentiation ofGRbut not ER [78]. Notably, TPR contain-
ing PPIases are not only restricted to chaperoning SHR but also influence
the function of other proteins. For example, AIP was shown to be a nega-
tive regulator of PPARα (Peroxisome proliferator-activated receptor fam-
ily member, regulation of enzymes involved in fatty acid metabolism)
[127]. It also facilitates the AhR [Aryl-hydrocarbon Receptor, a
transcription factor that belongs to bHLH/PAS (basic helix–loop–helix/-
Per–Arnt–Sim) family] signaling pathway by preventing nucleocytoplas-
mic shuttling of the unliganded receptor [128–131]. Fkbp38 affects
neuronal apoptosis by inhibiting the anti-apoptotic function of Bcl-2
[132], and its isoform Fkbp8 plays a positive role in the RNA replication
of Hepatitis C virus [133].

Pp5/Ppt1 is special among the co-chaperones as it is a protein
phosphatase which associates with Hsp90 through its N-terminal
TPR domain (Fig. 3f). Binding to Hsp90 results in the abrogation of
the intrinsic inhibition of Pp5/Ppt1 [134]. In yeast, Ppt1 specifically
dephosphorylates Hsp90 and Cdc37 [72,135]. This influences the
maturation of client proteins. In Ppt1 knockout strains, activity of
Hsp90-specific clients is significantly reduced, which implies that
the tight regulation of Hsp90 phosphorylation state is necessary for
the efficient processing of client proteins [72].

Sgt1 is a co-chaperone required for innate immunity in plants and
animals [136]. It interacts with the N-domain of Hsp90 through its CS
domain, which is structurally similar to p23/Sba1 (Fig. 3g) [137,138].
However, the binding surfaces are different from each other and Sgt1
has no inherent Hsp90 ATPase regulatory activity. Interestingly,
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although Sgt1 also contains a TPR domain, it is not involved in the inter-
action with Hsp90 [139]. Functionally, Hsp90 and Sgt1 form a ternary
complex with another co-chaperone, Rar1 (Fig. 3g), which acts as a
coremodulator in plant immunity [140]. Recent co-crystallization stud-
ies provide a structural basis for the assembly of the Hsp90–Sgt1–Rar1
protein complex. Rar1 interacts with Hsp90 through the C-terminal
lobe of its CHORD domain (cysteine and histidine-rich domain),
opposite to the Sgt1-interacting region [141]. This complex may be
involved in the recruitment and activation of NLRs (nucleotide-binding
leucine-rich repeat receptors) [140].

Another ternary assembly, the Hsp90–Tah1–Pih1 complex, was
recently discovered in chromatin remodeling and small nuclear RNP
maturation. Tah1 interacts with Hsp90 through its TPR domain
(Fig. 3h) and its C-terminal region binds Pih1, an unstable non-TPR
co-chaperone of Hsp90. The Hsp90–Tah1 complex stabilizes Pih1 in
vivo and prevents its aggregation in vitro [142]. Recent biochemical
work points out that the Tah1–Pih1 heterodimer binds to Hsp90
with similar affinity as Tah1 alone and inhibits the ATPase activity
of Hsp90 suggesting that the Pih1–Tah1 complex may act as a ‘client
adaptor’ recruiting specific clients to the Hsp90 machinery [143].

The above examples provide a glimpse on the gearings of the
Hsp90 co-chaperone system. For some co-chaperones we have
obtained a quite detailed picture on their structures and functions,
for others we are beginning to understand their contributions to the
Hsp90 system. Co-chaperones are also involved in other physiological
processes not discussed here (Table 1), such as mitochondrial/chloro-
plast protein import (Tom70/Toc64), nuclear migration (NudC) and
melanoma progression (TTC4), Hsp90/Hsp70-dependent protein
degradation (CHIP). Thus, the picture will be expanding in the coming
years.
4. The chaperone cycle of Hsp90

During the maturation of the client protein, such as SHRs and
kinases, Hsp90 functions in concert with a large set of co-chaperones
(Table 1), which are crucial to drive the chaperone cycle of Hsp90-client
protein interactions [76,77,79,82,121,144]. Some co-chaperones, such
as Hop/Sti1 and PPIases, have strong influences on the activation of
the SHRs, most of which strictly depend on the interaction with the
Hsp90 machinery [78,145]. Research on the assembly of Hsp90 with
SHRs has shown that several distinct Hsp90-co-chaperone complexes
are formed during the maturation processes [8,22,100,146]. According
to the models based on reconstitution experiments, the assembly of
SHRs involves the chronological progression through three complexes
with different co-chaperone compositions [22]. In the first, ‘early com-
plex’ Hsp70 and Hsp40 bind the receptor [146–148]. After association
with Hsp90, the ‘intermediate complex’ is formed [22]. Hop/Sti1 is an
important component in this process. It serves as an adaptor protein be-
tween Hsp70 and Hsp90 [67,69,84]. In addition to the Hop/Sti1–Hsp90
complex, a third complex, which contains a PPIase and the co-chaper-
one p23/Sba1, has also been found to be a part of the chaperone cycle
at a later stage [22,100,104,106,149,150], termed the ‘late complex’. No-
tably, similar heterocomplexes can be found from yeast to mammals
and seemingly independent of the presence of client protein [22]. How-
ever, the regulation of the progression from one complex to another
remained unclear.

Recent biochemical studies using fluorescence resonance ener-
gy transfer (FRET), analytical ultracentrifugation (aUC) (Fig. 2d–f),
NMR spectroscopy and electron microscopy, provided insight into
how the exchange of co-chaperones is regulated. Based on these
results, a new model of the chaperone cycle emerges, in which
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first one Hop/Sti1 binds to the open conformation of Hsp90 and
inhibits its ATPase activity (Fig. 4). The other TPR-acceptor site
is then preferentially occupied by a PPIase, leading to an asym-
metric Hsp90 intermediate complex. After the binding of ATP
and p23/Sba1, Hsp90 adopts the ‘closed’ conformation which
weakens the binding of Hop/Sti1 and therefore promotes its exit.
Another PPIase or TPR co-chaperone can potentially bind to form
the late complex together with Hsp90 and p23/Sba1 [89]. After
ATP hydrolysis, p23/Sba1, PPIase and the folded client are released
from Hsp90 (Fig. 4).

5. Hsp90 function is regulated by posttranslational modifications

In recent years, an additional layer of regulation, the covalent
modification of Hsp90, gained increasing significance. Hsp90 is tightly
controlled by several posttranslational modifications including phos-
phorylation, acetylation, nitrosylation. These modifications influence
the chaperone activity of Hsp90 and thus the maturation of selected
clients. Transient posttranslational modifications ensure fast and
efficient responses to extra- and intra-cellular stimuli. Thus, spatially
distant residues allow precisely adjusting Hsp90 chaperone activity to
cellular requirements. Up to date, several of the modified positions
have been mapped and the mechanism of Hsp90 modification has
been elucidated.

5.1. Phosphorylation

Phosphorylation is the most frequently occurring posttranslational
modification of Hsp90. Generally, Hsp90 is phosphorylated at multiple
sites located in distinct regions of the dimeric protein and its hyperpho-
sphorylation in the absence of the phosphatase Ppt1 leads to a decreased
activation of client proteins in S. cerevisiae [72]. Hsp90 phosphorylation
has also been linked to the posttranslational assembly of the C-terminal
globular head of the reovirus attachment protein σ1 [151] supporting
the notion that dynamic phosphorylation/dephosphorylation events
represent a key regulatory mechanism for chaperone function.

Hsp90 appears to be predominantly phosphorylated on serine
residues, though threonine and tyrosine phosphorylations were also
reported [152]. The role played by individual phosphorylation sites in
modulating the cellular functions of Hsp90 is currently under investiga-
tion. Gratton and colleagues found that c-Src-mediated Hsp90β phos-
phorylation leads to increased association of Hsp90 and endothelial
nitric oxide synthase (eNOS), and thus NO release from endothelial
cells [153]. Hsp90 phosphorylation is also linked to apoptosis. In leuke-
mic cells, suppression of Hsp90β phosphorylation increases its associa-
tion with apoptotic peptidase activating factor 1 (APAF1), abrogates
cytochrome c-induced apoptosome assembly and promotes apopto-
some inhibition [154]. In a recent study, Neckers and co-workers
[155] reported that the Wee1/Swe1-mediated phosphorylation of
Hsp90 on a tyrosine moiety in the N-domain is cell-cycle associated,
affects geldanamycin binding and reduces cancer cell sensitivity to
Hsp90 inhibition. The CKII-mediated phosphorylation of Hsp90 at a
threonine moiety in the N-domain affected association with specific
clients and co-chaperones [156]. Interestingly, most of these effects
were compensated by overexpression of the co-chaperone Aha1. Since
both phospho-sites are important determinants of Hsp90 drug sensitiv-
ity, these observations might provide a new strategy to increase the
cellular potency of Hsp90 inhibitors [157].

Hsp90 can be phosphorylated in an isoform-specific manner.
DNA-dependent protein kinase (DNA-PK) has been found to phos-
phorylate Hsp90α, but not the β isoform, at two unique threonine
residues in the N-terminal domain [158]. Recent studies demonstrat-
ed that the non-ubiquitous calmodulin kinase Pnck perturbs Hsp90
chaperone activity by phosphorylating both human Hsp90 isoforms
[159] leading to the degradation of selected clients. Since in the cellu-
lar context, the two Hsp90 isoforms are not functionally redundant,
unique phosphorylation events may allow further isoform-specific
variations [160].

Though many individual phosphorylation sites have been shown
to specifically affect Hsp90 function, the question that still remained
was how the global control of Hsp90 toward its diverse clientele is
achieved by phosphorylation. The recent quantitative analysis of
yeast Hsp90 phosphorylation performed by Buchner's lab determined
multiple phosphorylation sites in different regions of Hsp90 and
allowed addressing the specific role of the phosphatase Ppt1 (Soroka
J. and Buchner J., unpublished data). These unpublished data show
that phosphorylation of key residues specifically and by different
molecular mechanisms modulate conformational rearrangements
during the ATPase cycle of Hsp90 with profound effects on client
activation. The sites of phosphorylation seem to work as functional
switches, allowing adapting chaperone activity to the cellular
environment.

Interestingly, many kinases that regulate the Hsp90 phosphoryla-
tion status, including CKII, Wee1, Src, Raf1 or Cdk4 [155,161] are at
the same time Hsp90 clients. This suggests that changes in phosphor-
ylation are coupled to the ability of Hsp90 to fold and activate this
selected group of clients.

5.2. Acetylation

Acetylation is a second prominent Hsp90 modification and its
influence on the Hsp90 chaperone machinery was extensively
examined in the last years. p300 has been reported to be an
acetyltransferase responsible for acetylating Hsp90 [162]and several
groups recently discovered HDAC6 as an Hsp90 deacetylase. Kovacs
et al. demonstrated that HDAC6-mediated reversible deacetylation
is important for regulating the chaperone function of Hsp90 [163].
Their study shows a direct physical interaction between HDAC6 and
Hsp90. Several reports confirmed that blocking HDAC6 activity, either
with specific inhibitors or after silencing with siRNA, compromised
complex formation with client proteins including key oncogenic
proteins and led to their destabilization [163–165]. Several lysine
moieties in Hsp90 are modified. Neckers and colleagues demonstrat-
ed that changes in the acetylation state serves as a key regulator of
Hsp90 function both in yeast and man influencing client protein
maturation and co-chaperone binding [166]. In summary, these
studies highlight a link between Hsp90 acetylation and cell signaling
events, nuclear transport or processing of a selected group of clients
controlling gene expression.

5.3. Nitrosylation

Hsp90 is also a target of S-nitrosylation and NO modification of a
cysteine residue in the C-terminal domain of human Hsp90α was
shown to affect its chaperone function [167,168]. S-nitrosylation
negatively influenced the Hsp90 ATPase activity in vitro and reduced as-
sociation with eNOS in endothelial cells. The authors proposed a model
in which S-nitrosylation down-regulates Hsp90 chaperone properties
and provides a feedback mechanism to inhibit further eNOS activation.
To undercover how themodification of the C-terminal nitrosylation site
inhibits the ATPase activity of Hsp90, Retzlaff and colleagues tested a set
of point mutants [169]. The authors found that this cysteine residue in
the C-domain functions as a sensitive switch point regulating the
inter-domain communication in the Hsp90 dimer and consequently af-
fecting client activity.

5.4. Methylation

Increasing evidence suggests that Hsp90 plays an important role
in chromatin remodeling. It has been proposed that specific DNA
methylation and chromatin modifications, which might be function-
ally linked to Hsp90, are interdependent processes involved in



Fig. 4. Co-chaperone cycle of the Hsp90 machinery Hsp70, Hsp40 and a client protein form an ‘early complex’. The client protein is transferred from Hsp70 to Hsp90 through the
adaptor protein Hop/Sti1. One Hop/Sti1 bound is sufficient to stabilize the open conformation of Hsp90. The other TPR-acceptor site is preferentially occupied by a PPIase, leading to
an asymmetric intermediate complex. Hsp90 adopts the ATPase-active (closed) conformation after binding of ATP. p23/Sba1 stabilizes the closed state of Hsp90, which weakens the
binding of Hop/Sti1 and promotes its exit from the complex. Potentially another PPIase (dashed-line) associates to form the ‘late complex’ together with Hsp90 and p23/Sba1. After
hydrolysis of ATP, p23/Sba1 and the folded client are released from Hsp90.

630 J. Li et al. / Biochimica et Biophysica Acta 1823 (2012) 624–635
chromatin silencing [170,171]. Hsp90 residues subjected to methyla-
tion still await mapping. Hamamoto et al. identified a novel histone
lysine methyltransferase, SMYD3, up-regulated in several cancers
and discovered that its catalytic activity was dramatically enhanced
by interaction with Hsp90 [172,173]. An outstanding issue is whether
SMYD3 can also methylate Hsp90 and how this process affects its
chaperone cycle.

6. Hsp90 client proteins

In the past decades, more than 200 client proteins have been identi-
fied which show Hsp90 dependence (see http://www.picard.ch/
downloads/Hsp90interactors.pdf). Furthermore, proteome-wide stud-
ies suggest that the number of clients will further increase [10,174].
Early work on Hsp90 clients mainly focused on two classes: protein ki-
nases and nuclear receptors [146,175–177]. Besides those well-studied
clients, many others related to e.g. viral infection, innate immunity and
RNA modification have been discovered in recent years [142,178–180].
To date, Hsp90 clients involve almost all physiological events such as
signal transduction, cell cycle progression and transcriptional regulation.
The interaction with the Hsp90 machinery enables their correct folding,
activation, transport and even degradation [25,181–184] (Fig. 4).

Hsf1 is the central player controlling the heat stress response.
Under heat shock conditions it upregulates several hundred genes in-
cluding Hsp90. Under normal condition, as a client protein, Hsf1 is
kept in an inactive monomeric form through the transient interaction
with Hsp90 [185,186]. This complex is highly dynamic and Hsf1 con-
stantly associates and dissociates from Hsp90. During stress, Hsp90
binds to unfolding proteins which compete for binding to Hsf1.
Upon dissociation from Hsp90, Hsf1 homotrimerizes, undergoes
phosphorylation and translocates to the nucleus. Thus, Hsp90 func-
tions as an Hsf1 regulator monitoring the cellular stress response
[185,187].

Interestingly, also viral proteins are Hsp90-dependent. Viral pro-
teins, such as Picornavirus capsid proteins, hepatitis B virus (HBV)
core proteins and hepatitis C virus (HCV) nonstructural protein NS3

http://www.picard.ch/downloads/Hsp90interactors.pdf
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have been identified as clients of Hsp90 as their folding and assembly
requires Hsp90 machinery [188–190]. Pharmacological inhibition of
Hsp90 resulted in the failure of virus replication in cell cultures and
infected animals [133,188,191,192]. As well, some toxins, such as
diphtheria toxin and binary actin-ADP-ribosylating toxin have been
identified as the client proteins of Hsp90 [193,194]. Hsp90 facilitates
the translocation of these toxins. In consequence, inhibition of
Hsp90 prevents cellular uptake and thus protects cells from intoxica-
tion [193].

Recent studies in plants and mammals revealed that Hsp90 is vital
to stabilize NLR proteins, which are conserved immune sensors to
recognize pathogens [179,195]. In humans, 21 NLR proteins are
involved in innate immune responses [196]. Accumulating evidence
indicates that Hsp90 and its co-chaperones Sgt1, Rar1 are involved
in the maturation of these proteins [140,197].

Hsp90 is also known to chaperone nuclear proteins and therefore
involved in DNA replication, DNA repair, DNA metabolism, RNA tran-
scription and RNA processing [180,198]. The telomere protein system
is a well-studied example. Freeman and co-workers found that Hsp90
facilitates telomere DNA maintenance by mediating the switch
between its capping and extending structure [199]. Impairment of
Hsp90 functions resulted in the decreased activity of telomerases
[198]. Latest studies show that the assembly of small nucleolar ribo-
nucleoproteins and RNA polymerase as well requires Hsp90. The
R2TP complex (consisting of Tah1, Pih1 and the AAA+ ATPase Rvb1
and Rvb2) is the client-specific co-chaperone system involved in
RNA processing [142,180].

A long standing open question is the molecular basis of client
recognition by Hsp90. To date, no common sequence or motif has
been identified among the numerous client proteins. The αC-β4
loop in the kinase domain was found to be an important region
for the association with Hsp90 [200,201]. However, it is not the
only determinant for the interaction, since other regions adjacent
to the kinase domain have also an influence on the binding to
Hsp90 [202,203]. Probably the association with Hsp90 is determined
by the conformation or stability of the client protein instead of the
primary structure. Prominent examples here are the Src kinases.
Hsp90 is able to stably associate with viral Src kinase (v-Src), but
it only transiently interacts with its normal cellular counterpart
(c-Src) [204], although they are almost identical (95% sequence
identity). Despite this high level of sequence identity, c-Src is more
resistant to chemical and heat denaturation and v-Src is prone to
aggregation [204]. Moreover, also co-chaperones can contribute to the
process of client selection and recognition. For example, Cdc37
seems to be a co-chaperone specific for kinases, while Sgt1 plays an
important role in the processing of NLR proteins as discussed
above.

The structural analysis of the interaction of Hsp90 with client pro-
teins is a challenging task, as most of them are highly unstable and ag-
gregation-prone. The EM reconstruction of the Hsp90–Cdc37–Cdk4
complex provided a first view of the client-loaded Hsp90 complex.
The model suggests that clients bind in an asymmetric manner to one
N- and M-domain of Hsp90 [48]. Recent structural studies using a
model client protein showed that the Hsp90 M-domain preferentially
binds a locally structured region in the intrinsically unfoldedmodel pro-
tein [49]. Binding induces a partially closed conformation of Hsp90 and
enhances the ATPase activity [49,60,205].

However, the conformations of Hsp90-bound clients are yet to be
answered, as the present results on this issue are controversial.
Studies using the model client citrate synthase indicated that Hsp90
interacts with structured intermediates [206]. This is consistent
with the notion derived from the experiments with SHRs [8] and
also the structure of a kinase in the cryo EM kinase complex [48].

A well characterized client is p53 [207]. Biochemical experiments
suggest that p53 interacts with Hsp90 in a rather folded state
[16,207]. However, recent results imply that p53 may be destabilized
by Hsp90 [208]. There are also several studies in which NMR-based
approaches were used to determine the conformation of Hsp90-
bound p53 and the sites of interaction (Stefan Rüdiger and co-
workers, this BBA issue). For heat-treated p53, Hsp90 was suggested
to bind the largely unfolded protein [209]. For the interaction of
Hsp90 with native p53, the binding sites on Hsp90 could be mapped
to the M-domain [210,211] and to the C-domain [211]. Some NMR
studies suggest that Hsp90 binds to heat-unfolded p53 [209]. Howev-
er, there is no consensus on the structure of the bound p53 in this
case. Park et al. [210] propose that Hsp90 domains induce a molten
globule state in p53. In contrast, Hagn et al. report a native-like struc-
ture of bound p53 [211]. Further analysis will be required to resolve
this conundrum and to determine the folding states of different
Hsp90-bound client proteins.

7. Perspectives

The extensive research over the past decades witnessed a rapid
expansion of our knowledge on the mechanism of the Hsp90 machin-
ery. A combination of experimental approaches enabled dissecting
the ATP-induced conformational changes and progression of the
chaperone cycle in detail. For some of the Hsp90 co-chaperones we
have now an idea of their influence on Hsp90 and their integration
in the conformational cycle. Also the analysis of posttranslational
modifications provides further understanding of the regulatory
mechanisms governing the Hsp90 chaperone machinery. Neverthe-
less, many characteristics remain to be explored due to the dynamic
nature and inherent complexity of the Hsp90 system. For example,
how does Hsp90 recognize different client proteins?What is the loca-
tion of the client binding site or are there several sites? What is the
specific contribution of each co-chaperone to the maturation of the
client proteins? How do multiple, different posttranslational modifi-
cations influence the function of Hsp90 and its co-chaperones? In
the future, it will be important to further analyze the Hsp90 chaper-
one machinery in the presence of client proteins to see how they
influence co-chaperone interaction and other aspects of the confor-
mational cycle.

In recent years, Hsp90 has emerged as an important anti-can-
cer drug target and commenced a new era in the field of cancer
therapeutics [12,13]. The initial success suggests also great prom-
ise for other diseases in which Hsp90 is involved, such as inflam-
matory or neurodegenerative disorders. The discovery that Hsp90
secretion enhances wound healing [212] and is correlated with
cancer metastasis [35] indicates that novel cell-impermeable
Hsp90 modulator may allow selectively targeting these species.
Thus, the comprehensive study of the Hsp90 machinery will not
only contribute to the understanding of cellular protein folding
mechanisms but also to the treatment of human diseases.
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