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In this paper, a numerical model for the dynamic response of tubular dielectric elastomer transducers is
presented and validated with experimental results for the first time. Dielectric elastomers (DE) are soft
polymer based smart materials that can be potentially employed in applications such as actuation, sens-
ing and energy harvesting (Kornbluh, 2004; Carpi et al., 2005; Waki et al., 2008). In our previous work, the
quasi-static response of tubular DE transducers was studied (Goulbourne et al., 2007; Son and Goul-
bourne, 2009). Here, a numerical model is developed to predict the dynamic response of tubular DE trans-
ducers. Inertia effects are included in our previous static model which yields a system of partial
differential equations. The results of the dynamic response of the tubular DE transducers are obtained
by numerically solving the simplified partial different equations using a finite difference scheme. The
capacitance change induced by the dynamic deformation of the tubular DE is also calculated by a simple
electrostatic model, illustrating dynamic passive sensing.

Several tubular DE transducer samples (VHB 4905 and silicone) were fabricated and an experimental
setup was developed to investigate the dynamic response by measuring capacitance and radial deforma-
tion. In the sensing experiments, a sweep of dynamic pressure profiles (0–5 Hz) are applied. It is observed
that silicone transducers have a larger dynamic sensing range. In the actuation experiments, the defor-
mation of the silicone actuator is monitored while a voltage signal (4.5 kV) is applied from 0 to 30 Hz.
The silicone actuator shows a good actuation response. The comparison between numerical and experi-
mental results for the DE transducers shows an overall error of 3%.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The purpose of this research is to study the dynamic response of
tubular dielectric elastomer transducers using both an experimen-
tal and numerical modeling approach. Dielectric elastomers can be
employed as actuators, large strain sensors and for energy harvest-
ing (Kornbluh, 2004; Carpi et al., 2005, 2008; Waki et al., 2008).
Dielectric elastomer sensors are essentially compliant capacitors,
which have a capacitance that varies with mechanical strain, or
alternatively, the resistance can be monitored. In general, conven-
tional sensor materials are relatively stiff and fail at low strains
within 2.5–5.0%. Dielectric elastomer sensors provide various
advantages such as large strain range, simple fabrication, low cost,
low weight, repeatability and shape compliance (Pei et al., 2004;
Rosenthal et al., 2007). Dielectric elastomer actuators are large
strain electroactive polymers with areal strains up to 300% (Pelrine
et al., 2000).
ll rights reserved.
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In the previous work, a finite deformation model for dielectric
elastomer membranes in actuation mode was derived (Goulbourne
et al., 2005). In this paper, a dynamic model for tubular configura-
tions is derived by combining a modified large deformation mem-
brane theory that accounts for the coupling electromechanical
effect in actuation commonly referred to as the Maxwell stress
and the dynamic capacitance change under finite strains which
accounts for passive sensing is calculated. The equations are sim-
plified with the assumption that the inertia effect in the meridional
direction is negligible. The dynamic model consists of a set of PDEs
(partial differential equations). A finite difference scheme (forward
difference method) is used to simulate the dynamic response of the
tubular DE transducer. The numerical method is general and can
readily be employed for other axisymmetric configurations, and
has a moderate computing time. The running time for the numer-
ical method can be reduced by optimizing the finite difference
algorithm.

Dynamic characterization of edge-clamped DE membrane actu-
ators in a diaphragm configuration was conducted using an exper-
imental approach in Fox (2007), Fox and Goulbourne (2008). The
static response of tubular DE sensors was studied and numerical
results were validated with experiments in Goulbourne et al.
(2007), Goulbourne and Son (2008). Tubular DE transducers have
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been previously analyzed by Carpi and De Rossi (2004), Pei et al.
(2004). Carpi et al. proposed a static model for actuation which
was validated within the small strain range (0–5.0%). The model
was based on the linear elasticity theory (Carpi and De Rossi,
2004). An actuation characterization of spring roll DE actuators
has been conducted using analysis techniques (Pei et al., 2004).
The previous works have focused on the static actuation response
and was limited to small strains. In this paper, a finite deformation
model is used to describe the dynamic response of these transduc-
ers in both actuation and sensing modes (Adkins and Rivlin, 1955).
For large elastic deformations, the developments by Adkins and
Rivlin (1952, 1955), Kydoniefs (1968, 1969, 1972), Matsikoudi-Ili-
opoulou (1987) are most notable. The dynamic mechanical re-
sponse of elastic membranes has been studied by Jenkins (1996),
Tüzel and Erbay (2004), Verron et al. (1999), Verron et al. (2001)
to name a few. Specifically, Jenkins et al. applied dynamic ap-
proaches to the dynamic inflation field while considering the
membrane’s inertia (Jenkins, 1996) and Tüzel studied the dynamic
response of an isotropic hyperelastic membrane tube, subjected to
a dynamic extension at one end (Tüzel and Erbay, 2004). Verron
applied the Mooney–Rivlin model or nonlinear viscoelastic Chris-
tensen’s model to the dynamic inflation of spherical membranes
(Verron et al., 1999, 2001). The dynamic response of planar dielec-
tric elastomer actuators was investigated in Sommer-Larsen et al.
(2001) by measuring current change while a high voltage (�6 kV)
was applied and the strain decrease of the DE actuator presumed
due to material viscoelasticity was presented (Pei et al., 2003).
Here the dynamic inflation of tubular membrane in the presence
of an electric field are considered.

Experimental results are obtained to validate the proposed dy-
namic modeling approach. The experimental procedure is devised
to measure the dynamic deformation and capacitance of the DE
membrane in sensing mode, in actuation mode, and in simulta-
neous sensing and actuation mode. For dynamic sensing the elec-
tromechanical response is measured while a dynamic pressure
was applied for various frequencies, 0–5.0 Hz. The tubular DE sen-
sors are prepared with 3M VHB 4905 and silicone films (NuSil
Technology: CF 19-2186), which are commercially available and
spincoated in situ, respectively. They are electroded with carbon
grease (Carbon Conductive Grease, M.G. Chemicals). Two end
cylindrical shapes (Radius = 9.5 and Length = 10 mm) of the trans-
ducers are made of fluoropolymers (Teflon�PTFE, McMaster-Carr
Supply Company). The dynamic pressure is generated for low fre-
quencies (�2.5 Hz) and higher frequencies (2.5–5.0 Hz). A compar-
ison between the dynamic behavior of the VHB and silicone
sensors is presented. For the dynamic actuation behavior of tubular
DEs, radial deformations of the tubular DE actuator are monitored
while a dynamic voltage signal is applied with various frequencies,
0–30 Hz. In the actuation experiments, since VHB with radial pre-
stretch did not show good actuation response while high voltage
(4.5 kV) is applied, only silicone DEs are used in the actuation
experiments.
Fig. 1a. Schematic of pressure/strains sensing using a dielectric elastomer.
2. Principle of dielectric elastomer transducer

Dielectric elastomers are large strain electromechanical trans-
ducers. The dielectric elastomer transducer is a three-component
system consisting of a compliant elastomeric insulator sandwiched
between two compliant electrodes. For the sensing configuration,
mechanical strains are detected by measuring one of two electrical
parameters: capacitance or resistance. These sensors are ideal for
large strain sensing applications due to the ability to retain electri-
cal conductivity at large strains – even up to 100%. For actuation,
electrostatic forces are induced by applying an electric field to
the dielectric elastomer. This results in thickness reduction and
an areal expansion in the in-plane directions due to an effect that
is amplified by the softness of the material and material incom-
pressibility. A schematic of the typical assembly of a dielectric elas-
tomer transducer as well as depiction of its sensing and actuation
mode is given in Figs. 1a and 1b.

The two most common types of dielectric elastomers used in
fabricating transducers are polyacrylates and silicone elastomers
(Pelrine et al., 2000; Yang et al., 2005). Failure of a typical specimen
of 3M VHB 4905 (polyacrylate) does not occur until a stretch ratio
of 8. Applying compliant electrodes to the major surfaces of pre-
stretched dielectric elastomer specimens completes the fabrication
process. We have conducted an experimental evaluation of the
large stretch response of different electrodes: carbon grease, silver
grease, graphite powder, and graphite spray. The experimental re-
sults indicate that carbon grease and silver grease are the best
compliant electrodes of the four that were tested; carbon grease
has a slightly better overall performance and is also less costly
(Fox and Goulbourne, 2006).
3. Electroelastic model

In this section, the modeling approach for the dynamic response
of tubular DE transducer is presented. Specifically, the previous
large deformation model for the electromechanical response of
DE membranes is augmented to account for dynamic effects.

3.1. Geometric relationships: coordinates

In this section, a theoretical model to describe the deformation
response of tubular DE transducer based on Green and Adkins’
work on unreinforced elastic tubes is briefly derived. The tubular
DE transducers are modeled as an elastic cylindrical membrane
as shown in Fig. 2. From the symmetry of the problem and the
assumption that the membrane is very thin compared with the cyl-
inder’s radius, the state of stress is considered nearly constant
throughout the thickness (elastic membrane theory assumption).
A set of cylindrical polar coordinates (R,H,g) at the midplane are
employed in the undeformed state. The initial length and radius
of the cylindrical membrane are given by L0 and R, respectively.
The deformations of the tubular transducer are considered to be
entirely symmetric with respect to the z-axis. The meridian length
of the cylindrical membrane is denoted g in the undeformed state
and n in the deformed state. It follows that the principal directions
at any point in the deformed membrane coincides with the de-
formed coordinates (r,h,z), and the principal extension ratios are
denoted as k1, k2, and k3. Specifically, k1 and k2 are the meridional
and latitudinal stretch ratios that define the deformation and k3 is
the thickness stretch ratio.



Fig. 1b. Schematic of actuation using a dielectric elastomer.
Fig. 3. Stress vs stretch data for VHB 4905 samples compared with Mooney–Rivlin
model.

Table 1
Mooney–Rivlin constants for VHB 4905 and silicone.

Mooney–Rivlin constants C1 (kPa) C2 (kPa)

VHB 4905 16 7.3
Silicone 163 34.2
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r ¼ rðnÞ; h ¼ H; z ¼ zðnÞ

k1 ¼
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r
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h
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;

ð1Þ

where 2h0 and 2h are the undeformed and deformed thickness of
the membrane.

3.2. Material modeling: electroelastic stress and strain energy function

It is assumed that the elastic dielectric material is homogenous,
isotropic and electrically linear, so that there is no direct coupling
between the mechanical and the electrical response. We hypothe-
size that the stress for the material can be written as the sum of
the elastic and Maxwell stresses. Therefore, the total stresses are di-
vided into the two parts, mechanical and electrical portion. The
mechanical portion is determined by an elastic strain energy func-
tion (Mooney–Rivlin function). The electrical portion is given by
the Maxwell stress. In accordance with Adkins’ and Rivlin’s solution
approach, we presume that the applied forces normal to the cylindri-
cal surfaces are negligible in comparison to the in-plane stresses and
set n3 = 0. The stress components of the membrane are then given by
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Fig. 2. An undeformed cylindrical membrane (left). Half
where n1, n2, and n3 are the meridional, radial, and thickness stress
components and W is a Mooney–Rivlin energy function.

Fig. 3 shows the fit of the strain energy function with experi-
mental uniaxial data for 3M VHB 4905. The Mooney–Rivlin model
fits well with experimental data up to a stretch ratio around 4.

For simplification of the partial differential equations using the
finite difference scheme, the Mooney–Rivlin function is employed
for describing the stress–strain behavior of dielectric elastomers
(VHB 4905 & Silicone). The Mooney–Rivlin function has the form,

W ¼ C1ðI1 � 3Þ þ C2ðI2 � 3Þ; ð3Þ

where I1 and I2 are strain invariants and Ci (i = 1 and 2) are Mooney–
Rivlin constants determined from uniaxial extension tests on
rectangular samples supporting a uniformly distributed axial load
(Table 1) (Son and Goulbourne, 2009).

During deformation, the initial thickness 2h0 of the membrane
becomes 2k3h0 and the stress resultants are obtained by integrat-
ing over the deformed thickness
of the undeformed and deformed membrane (right).
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3.3. Equations of motion for tubular DE membranes

The equations of motion in the meridional and radial directions
are expressed as,

dN1

dn
þ N1

r
dr
dn
� N2

r
dr
dn
¼ 2h0qR

d2n

dt2 ;

P � j1N1 � j2N2 ¼ 2h0qR
d2r
dt2 ;

ð5Þ

where j1 and j2 are the principal curvatures given by,

j1 ¼
�d2r=dn2

ð1� ðd2r=dn2Þ2Þ1=2 and j2 ¼
1
r
ð1� ðdr=dnÞ2Þ1=2

: ð6Þ

For simplification, it is assumed that inertia effects in the meridio-
nal direction are negligible. Therefore, the first equation of motion
in Eq. (5) becomes an equilibrium equation due to d2n/dt2 = 0 and
results in only the second equation of motion in Eq. (6) to solve.

The independent variable n in the deformed state is rewritten as
the independent variable g in the undeformed state by using the
chain rule.
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Therefore, Eqs. (5) and (6) can be rewritten using Eq. (7)
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For dynamic solutions, the initial conditions are the radial deforma-
tion and deformation rate which are defined at t = 0. Boundary con-
ditions are defined at one end and the midlength of the cylinder. At
the fixed end, the radial deformation is equal to zero and the curva-
ture in the meridional direction at the middle of the membrane is
zero.

k2ðg;0Þ ¼ k2ðgÞ;
dk2

dt
ðg;0Þ ¼ 0; ð10Þ
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The capacitance of the deformed tubular sensor is modeled by uti-
lizing large deformation membrane theory and electrostatics. The
approach is based on the assumption that the membrane is very
thin compared with the tubular sensor’s radius, as well as axisym-
metric deformation (Goulbourne and Son, 2008). The capacitance of
the unit volume of the deformed tubular membrane is calculated
using electrostatics. The total capacitance of the tubular membrane
is obtained by integrating the capacitance of the unit volume with
respect to the axis. The capacitance for an axisymmetric tubular
membrane is

C ¼ e0er2pR
Z k2ð0Þ

1

1

ln
Rk2þh0

1
k1k2

Rk2�h0
1

k1k2

� � 1
tanr

dk2; ð12Þ

where r is the angle between membrane curve and vertical direc-
tion in Fig. 1, er is the relative permittivity and e0 is the vacuum
permittivity.
3.4. Numerical solution procedure

In order to obtain the numerical solutions for the dynamic re-
sponse of tubular DE transducers, a finite different scheme (for-
ward difference method) is employed. The equation of motion,
Eq. (8) is second order in time and space and thus impossible to
solve analytically. The first and second derivatives with respect
to time and space are

k1 ¼ kj
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2;i
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where i and j are the space and time indices, respectively as well as
h and k are space and time increments.

The parameters h and k are defined as

h ¼ L0

n
; k ¼ T

m
; ð14Þ

where n and m are the space and time component number and T is
the time period.

The equation of motion, initial conditions, and boundary condi-
tions are rewritten by using the finite different method as
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In the case of j = 0, Eq. (15) by inserting Eq. (16) becomes

k2
2;i ¼

k2

2h0qR
ðP � j1N1 � j2N2Þ þ k1

2;i: ð18Þ

To ensure convergence of the solution, the k value is changed until
k2

2;n converges to 1, which matches with boundary condition, Eq.
(16). Considering j = 1, Eq. (15) becomes

k3
2;i ¼

k2

2h0qR
ðP � j1N1 � j2N2Þ þ 2k2

2;i � k1
2;i: ð19Þ

Similarly, the solution at j = 1 is obtained when k2
2;n is converged to 1

by changing the k value. By repeating the previous steps for
j = 2,3,4, . . . ,m, numerical solutions are obtained.



Table 2
The initial dimensions of tubular DE sensor and actuator (VHB 4905 and silicone film).

Sample R (mm) L (mm) t (mm)

VHB sensor 9.56 20 0.5
Silicone sensor 9.56 20 0.1
Silicone actuator 9.56 20 0.2

Fig. 5. Experimental setup for dynamic response of tubular DE sensors and
actuators.
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Fig. 6a. Dynamic capacitance of a VHB sensor at 0.3 Hz.
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4. Experimental and numerical results

In this section, the dynamic characteristics of tubular VHB and
silicone transducers are presented. In Section 4.1, the experimental
setup for the dynamic response is described. In Section 4.2, the
sensing response is analyzed. Specifically, the frequency response
is monitored while dynamic pressure is applied at various frequen-
cies. In Section 4.3, the actuation response is described. The re-
sponse is measured while dynamic high voltage is applied with
various frequencies. For the validation of our modeling approach,
the experimental results are compared with the numerical results,
which are simulated using finite difference scheme, described in
Section 3.4.

4.1. Experimental setup

In this section, the sample preparation procedure and experi-
mental setup are presented. Polyacrylate and silicone films are used
to make tubular DE samples. 3M VHB is commercially available and
silicone films are fabricated using a spincoater (Son and Goulbourne,
2009) and the initial dimensions are given in Table 2. For a length to
radius ratio of one, the edge constraints could limit the radial defor-
mation of the middle cross-section of the sample. Fig. 4 shows the
effect of the length–radius ratio (L/R) on the radial deformation.
According to Fig. 4, the effect of L/R is negligible within pressure
range considered in this research (0–2000 Pa).

In the experimental setup (Fig. 5), dynamic responses of tubular
DE sensor/actuator are obtained by measuring the capacitance and
the radial deformation at the midpoint of the transducer, which are
measured by a capacitance meter (Model 3000, GLK) and a triangu-
lar optical laser sensor (Model LTC-050-20, MTI INSTRUMENT,
INC). Dynamic pressure is used to inflate the tubular sensor and
actuator by a combination of a syringe (140CC), linear stage
(NLS4 Series linear stage, Newmark systems, INC) and solenoid
valves (SY3340-SGZ, SMC), and measured by a pressure sensor
(163PC01D36, OMEGA). A high voltage dynamic signal is applied
by supplying a LabVIEW generated signal to an amplifier (Model
610E, Trek, INC).

For the tubular DE sensor experiment, the fabricated tubular
samples are attached to a frame (Fig. 5) and a dynamic pressure
(1400 and 2000 Pa) is applied with excitation frequencies ranging
from 0 to 5.0 Hz. Higher frequencies (2.5–5.0 Hz) are generated by
opening and closing the solenoid valves. For even higher frequen-
Fig. 4. The effect of L/R on the radial deformation of the sample.
cies, modifications to the experimental setup would be needed. A
schematic of the experimental setup is given in Fig. 3. For the tubu-
lar DE actuator experiment, the linear stage and syringe provide a
static pressure (2000 Pa) and a dynamic voltage (4.5 kV) is applied
with excitation frequencies ranging from 0 to 30 Hz. In each of
these experiments, 3 tests for 4 each samples are performed.
4.2. Dynamic response of tubular DE sensors with dynamic pressure
input

The initial capacitance value of the VHB sensor is 85 pF and the
initial dimensions of the sensor are given in Table 2. Figs. 6a and 6b
show the capacitance change and deformed radius of the tubular
VHB sensor while a dynamic pressure (2000 Pa) is applied at
0.3 Hz. At a low frequency (0.3 Hz), there is no delay between
the pressure signal, the measured capacitance, and deformed ra-
dius. The maximum values of the measured capacitance and de-
formed radius are consistently measured to be 107 pF and
11 mm as shown in Figs. 6a and 6b. That is to say, the VHB sensor
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has a good quasi-static sensing response. Figs. 7a and 7b show the
sensing response of the VHB sensor at 2.0 Hz. For a 2.0 Hz signal of
amplitude 2000 Pa, the capacitance signal is not identical to the
dynamic pressure signal and the maximum value of capacitance
decays with time. To understand the output signal further, which
exhibits a definite rise and decay time, a comparison between
the radial deformation and the input pressure is conducted.
Fig. 7b shows that the mechanical response (radial deformation)
of the VHB sensor at 2.0 Hz is identical to the pressure signal and
there is no delay. Therefore, the dissimilarity between the capaci-
tance and the pressure signal is electrical in nature. There is an
apparent time required for charging/discharging the VHB sensor.
That is to say, the VHB tubular sensor is capacitive in nature. Addi-
tionally, the amplitude of the radial deformation decreases as the
cycle is repeated. This is due to the material viscoelasticity. VHB
sensors do not have a linear dynamic response at frequencies
above 2.0 Hz. The sensor has good quasi-static behavior, but a poor
dynamic response above 2.0 Hz.

Between the frequency range of 0–5.0 Hz, the capacitance
change and radial deformation of the tubular silicone sensor are
monitored while a dynamic pressure is applied. Initially, the capac-
itance value of the depressurized sensor is 435 pF. Initial dimen-
sions of the sensor are given in Table 2. It should be noted that
the dynamic pressure profile is not a perfect rectangular shape. It
is expected that the dynamic response of the silicone sensor shows
linearity in proportion to the dynamic pressure. In Fig. 8, the some-
what quasi-static response of a silicone sensor (0.17 Hz) is shown.
In detail, Fig. 8a shows that the measured capacitance is identical
to the dynamic pressure signal and the dynamic maximum value
of the capacitance is 485 pF. That is to say, the silicone sensor
shows a linear relationship between the mechanical input and
the electrical output. Comparatively, Fig. 8b shows the deformation
of the membrane corresponding to the measured capacitance in
Fig. 8a. Fig. 9 illustrates the dynamic response of the silicone sensor
at 4.7 Hz. In Fig. 9a, it is shown that the maximum value of the
capacitance is 485 pF, but there is a slight delay between the
mechanical input and the electrical output. Similarly in Fig. 9b,
the maximum radial deformation is 10.30 mm at a pressure of
1400 Pa but, there is almost no delay or time lag between the
mechanical input and the output. Therefore, the delay in Fig. 9a ex-
ists only between the mechanical input and the electrical output.
This appears to be related to the electrical charging and discharg-
ing time for the silicone sensor.

In summary, both VHB and silicone sensors show good quasi-
static sensing behavior. The experimental analysis indicates that
the maximum capacitance value of the VHB sensor at 2.0 Hz decays
in time and the electrical output signal is delayed due to charging/
discharging time (around 0.3 s at 2.0 Hz), so that the VHB sensor
shows poor dynamic response. On the other hand, the silicone sen-
sor outputs a non-decaying signal and the charging/discharging
time is significantly less around 0.05 s at 4.7 Hz. Therefore, it can
be concluded that the silicone sensor has a wider dynamic range
in comparison to VHB sensors.

Figs. 10a and 10b show a comparison between numerical and
experimental results for the silicone sensor at 1400 Pa at 5.0 Hz.
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Fig. 9b. Radial deformation of a tubular silicone sensor at 4.7 Hz.
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Fig. 11. Radial deformation of tubular silicone actuator at 2.0 Hz.
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In Figs. 10a and 10b, there are differences between the numerical
(rectangular) and experimental results (close to trapezoid),
although the minimum and maximum values have a good correla-
tion. The trapezoidal curve of the experimental capacitance results
in Fig. 10a is due to the discharging and charging time for the sil-
icone sensor as well as the trapezoidal shape of the dynamic pres-
sure input in Fig. 8. Also, the measured radial deformation in
Fig. 10b comes from the trapezoidal shape of the experimental
pressure input. Since these factors in the experiment are not in-
cluded in the theoretical model, the differences in the results are
expected. The comparison between maximum/minimum values
of numerical and experimental capacitance and radial deformation
in Fig. 10 shows within 3% overall error.
4.3. Dynamic response of tubular DE actuators with dynamic voltage
input

A series of experiments were conducted in which a dynamic
voltage input between 0 and 30 Hz with an amplitude of 4.5 kV
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Fig. 10a. Comparison of numerical and experimental results for capacitance
sensing (5.0 Hz).
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Fig. 10b. Comparison of radial deformation between numerical and experimental
results (5.0 Hz).
was applied to the tubular membrane. The initial dimensions of
the transducers are given in Table 2. Radial deformation of the ini-
tially pressurized tubular silicone actuator (2000 Pa) is measured
while a dynamic voltage is applied. The radius of the tubular sili-
cone actuator with the static pressure is 10.80 mm. Figs. 11 and
12 describe the relationship between the electrical input (voltage)
and the mechanical output (radial deformation) for the given fre-
quency values. Since there is a linear relationship and no delay be-
tween electrical input and mechanical output, good dynamic
actuation responses of the tubular silicone actuator are shown.
The normalized maximum amplitudes ((Deformed radius-10.80)/
(10.80–9.56)) for 3 sets of voltage sweeps (1–30 Hz) are shown
in Fig. 13. The maximum amplitude averages around 0.5 below
15 Hz, and reaches 0.6 at 20–22 Hz and then steadily declines with
increasing frequency.

Figs. 14 and 15 show the comparison between numerical and
experimental results for a 4.5 kV signal at 2.0 and 10 Hz. The
experimental curves in Figs. 14 and 15 accord well with the
numerical results. The correlation between numerical and experi-
mental results are within 3% overall error. Therefore, the modeling
approach that is proposed in this paper is validated by these exper-
imental results.
5. Summary

In this paper, the dynamic actuation and sensing response of
tubular dielectric elastomers was discussed. A theoretical back-
ground for the dynamic model based on a large deformation theory
for DE membranes and electrostatics was presented. Numerical re-
sults were obtained by employing a finite difference scheme to
solve the PDEs. The experiments indicate that both VHB and sili-
cone sensors have good quasi-static sensing behavior. However,
for the dynamic response within a limited frequency range, the
VHB sensor shows poor response after 2.0 Hz and 13% radial strain
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Fig. 12. Radial deformation of tubular silicone actuator at 10 Hz.



10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12

0 0.1 0.2 0.3 0.4 0.5

Time (s)

D
ef

o
rm

ed
 r

ad
iu

s 
(m

m)

Experimental result

Numerical result

Fig. 14. Comparison between numerical and experimental results (2.0 Hz).

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12

0 0.02 0.04 0.06 0.08 0.1
Time (s)

D
e
fo

rm
e
d

 r
a
d

iu
s
 (

m
m

)

Experimental result

Numerical result

Fig. 15. Comparison between numerical and experimental result (10 Hz).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35

Frequency (Hz)

N
o

rm
al

iz
ed

 r
ad

ia
l d

ef
o

rm
at

io
n Exp1

Exp2

Exp3

Fig. 13. Dynamic actuation peak amplitudes for voltage frequencies, 1–30 Hz.

S. Son, N.C. Goulbourne / International Journal of Solids and Structures 47 (2010) 2672–2679 2679
under an applied dynamic pressure. The tubular silicone sensor
shows good sensing response at higher frequencies up to 5.0 Hz
and 8% radial strain. Tubular silicone actuators were assembled
and dynamically actuated with a voltage signal (4.5 kV) at 0–
30 Hz. From the results it can be concluded that tubular silicone
transducers have a better dynamic sensing and actuation response
in the frequency range analyzed in this research. Comparison be-
tween the maximum values of numerical and experimental results
for the silicone sensor and actuator shows good agreement with 3%
overall error. This shows that the dynamic model and solution ap-
proach based on the finite difference method is a good tool for pre-
dicting the finite dynamic deformation of tubular DE sensors and
actuators.
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