
Alexandria Engineering Journal (2014) 53, 513–527

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Alexandria University

Alexandria Engineering Journal

www.elsevier.com/locate/aej
www.sciencedirect.com
ORIGINAL ARTICLE
Detecting defects in software requirements

specification
* Corresponding author. Tel.: +20 1062642986.

E-mail addresses: amira.alshazly@gmail.com, amira_alshazly@yahoo.

com (A.A. Alshazly).

Peer review under responsibility of Faculty of Engineering, Alexandria

University.

Production and hosting by Elsevier

1110-0168 ª 2014 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University.

http://dx.doi.org/10.1016/j.aej.2014.06.001
Amira A. Alshazly a,*, Ahmed M. Elfatatry a, Mohamed S. Abougabal b
a Information Technology Dept., Institute of Graduate Studies & Research (IGSR), Alexandria University, Alexandria, Egypt
b Computer and Systems Engineering Dept., Faculty of Eng., Alexandria University, Alexandria, Egypt

Received 12 February 2014; revised 18 May 2014; accepted 1 June 2014
Available online 28 June 2014
KEYWORDS

Defects errors;

Taxonomy classification;

Inspection detection;

Methods for SQA and V&V;

Software requirements speci-

fication quality
Abstract This research is concerned with detecting defects in software requirements specification.

Motivated by both the problem of producing reliable requirements and the limitations of existing

taxonomies to provide a satisfactory level of information about defects in the requirements phase,

we focus on providing a better tool for requirements analysts. Only few attempts have been made to

classify defects and defect detection techniques. Scattered knowledge about defects and defect detec-

tion techniques needs compilation and re-evaluation in order to enhance the ability to discover

defects in the requirements phase. Toward this end, this work presents a taxonomy of requirements

defects and the causes of their occurrences. The purpose is to reach a comprehensive understanding

of both the sources of the problem and the solutions of possible defects and defect detection tech-

niques. The taxonomy’s design is based on the analysis of each defect and its sources. In addition,

this paper proposes a combined-reading technique for defects in requirements. The proposed

technique avoids the shortcomings of other reading techniques. The result of applying the

recommendations of this work specifically improves the quality of the requirements specification

and generally software quality.
ª 2014 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University.
1. Introduction

The requirements phase is the most critical phase of the soft-
ware development life cycle (SDLC). Wrong or missing
requirements lead to wrong or incomplete product; no matter
how good the subsequent phases are. The quality of the
requirements phase affects the overall quality of the subse-
quent phases and hence, the software product. Writing good

software requirements specification (SRS) is an important
determinant of software quality [1]. The SRS document defines
the capabilities of the provided software [2]. Therefore, if an

analyst or a developer does not share the same understanding
about requirements, the outcome of the development process
will not satisfy the customers’ needs [3]. The more progress

in the software development life cycle (SDLC), the more
defects will emerge. Consequently, the earlier the detection of
requirements defects, the much money and time of rework
can be saved. To achieve this, it is important to study defects

https://core.ac.uk/display/82637883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aej.2014.06.001&domain=pdf
mailto:amira.alshazly@gmail.com
mailto:amira_alshazly@yahoo.com
mailto:amira_alshazly@yahoo.com
http://dx.doi.org/10.1016/j.aej.2014.06.001
http://dx.doi.org/10.1016/j.aej.2014.06.001
http://www.sciencedirect.com/science/journal/11100168
http://dx.doi.org/10.1016/j.aej.2014.06.001

514 A.A. Alshazly et al.
in the requirements phase and defect detection techniques,
especially in the SRS document.

There is a need to organize the scattered information about

defects and defect detection techniques in order to put such
information in a framework that shows areas of shortages.
The organized knowledge is presented in the form of a taxon-

omy. While a number of techniques have been proposed for
detecting defects in the requirements phase, little work has
been done in analyzing and evaluating the suitability of avail-

able techniques for different situations in the requirements
phase [4]. Previous taxonomies of defects did not correlate
the defects in the requirements phase and the reasons for their
occurrence, as discussed in Section 3.

This work is motivated by the limitations of existing taxo-
nomies to achieve a satisfactory level of information about
defects in the requirements phase. These limitations were over-

come by proposing taxonomy of defects in requirements spec-
ification. The taxonomy correlates each defect and the reasons
for its occurrence in SRS documents. Also, the paper compares

the effectiveness of defect detection techniques (reading tech-
niques) in the requirements phase to determine the efficiency
and effectiveness of each reading technique. In addition, this

paper provides a combined-reading technique that is an
enhanced reading technique. The proposed technique avoids
the shortcomings of other reading techniques. It helps require-
ments engineers in detecting defects efficiently and correcting

them in the requirements phase. Therefore, the quality of soft-
ware could be enhanced.

First, a literature survey is carried out to reveal the current

state-of-the-art of research in requirements defects and existing
classifications. Another survey has been conducted on the pro-
posed requirements defect detection techniques (reading tech-

niques). Then, case-studies were applied on a number of SRS
documents to produce the taxonomy of defect types and to
determine the efficiency and effectiveness of the reading tech-

niques. The results of the taxonomy and the comparison of
the reading techniques were analyzed to present a combined-
reading technique. The combined reading technique has been
evaluated using four case-studies.

The paper is organized as follows. A literature review of
defects classification that can occur in requirements and a
survey of the requirements reading techniques are provided

in section two. Classification of defects is studied in section
three. The defect detection techniques are compared in section
Figure 1 Classification of
four. A taxonomy of requirements defects is proposed in
section five. The combined-reading technique is presented in
section six. Both the taxonomy of requirements defects and

the combined-reading technique are evaluated in section seven.
Finally, the work is concluded in Section 8.

2. Related work

The previous work concerning defect classification is presented

in this section and then a survey of the requirements’ defect-
detection techniques (reading techniques) is discussed.

2.1. Defects classifications

In this section, three taxonomies related to requirements
defects are discussed. Two taxonomies are related to defects,

which are the IEEE Std. 1028-1997 that classified the anomaly
classes [5], and the classification of defect types in requirement
specifications presented in [6]. The third is concerned with

requirements’ errors that cause defects [7].

2.1.1. The IEEE Std. 1028-1997 categorization of anomaly

classes

The IEEE Std. 1028-1997 categorized anomaly classes as: miss-
ing, extra (superfluous), ambiguous, inconsistent, improve-

ment desirable, not conforming to standards, risk-prone,
factually incorrect, not-implementable (for example because
of system constraints or time constraints), and editorial [5].

2.1.2. Classification of defect types in requirements
specifications

Margarido et al. [6] classified defect types in requirements
specifications by studying the literature review of defect taxono-
mies, deducing the adequacy of the classifiers to classify require-

ments defects, and identifying the frequency of the defects
classifiers. They classified requirements defects into: missing or
incomplete, incorrect information, inconsistent, ambiguous or
unclear, misplaced, infeasible or non-verifiable, redundant or

duplicate, typo or formatting, and not relevant or extraneous.

2.1.3. Classification of requirements’ errors

Walia et al. [7] developed a taxonomy of requirements’ errors

in the requirements phase. They identified and collected
requirements’ errors [7].

Detecting defects in software requirements specification 515
fourteen types of errors (sources of defects) from literature sur-
vey of software engineering, psychology and human cognitive
fields. Then, they categorized errors into three high-level clas-

ses of requirements’ errors: people errors, process errors, and
documentation errors, as follows (see Fig. 1).

� People errors include errors resulting from people involved
in requirements preparation.
� Process errors include errors that occur due to inadequate

requirement engineering process, and selecting wrong
means of achieving goals and objectives.
� Documentation errors include errors that occur due to
incorrect organization and specification of requirements,

regardless of whether the requirements author understood
the requirements correctly or not.

The key advantage of the requirement error taxonomy is to
cover errors that appear in requirements engineering steps.
This includes requirements elicitation, requirements analysis

and negotiation, requirements specification and requirements
management which help in the requirements’ verification.
Whereas the main drawback of this classification is that it does

not relate the types of defects to the causes leading to their
appearance.

2.2. Requirements defect-detection techniques

Concerning defect detection, several comparisons were made
between the requirements’ defect detection techniques, such as
the comparison between Perspective-Based-Reading techniques

(PBR) with Checklist-Based-Reading technique (CBR) as [8,9].
A number of researches have compared the Perspective-
Based-Reading techniques (PBR) with Checklist-Based-

Reading technique (CBR) and ad-hoc based reading technique
such as the work described in [10–12]. Others compared the
Scenario-Based-Reading techniques (SBR) with Checklist-

Based-Reading technique (CBR) and ad-hoc based reading
technique such as in [13,14]. Also, [15] presented a comparison
between the Usage-Based-Reading techniques (UBR) and
Checklist-Based-Reading technique (CBR).

In industry, several studies and surveys were conducted on
the requirements validation techniques (RVTs). Sulehri [16]
conducted interviews and a survey of requirements engineering

departments’ employees to judge the best performance of the
requirements validation techniques (RVTs) in six software
companies in Sweden. Concerning requirements inspection

techniques, the six companies used one of two reading tech-
niques which are Ad-hoc based reading and Checklist-Based-
Reading (CBR). It was found that the requirements inspection
techniques were generally very effective but they were only use-

ful for large-scale software organizations that have a large
number of human resources.

Saqi and Ahmed [17] carried out a study on six companies

from two countries regarding requirements validation. These
companies used one of two reading techniques which are ad-
hoc based reading and Checklist-Based-Reading (CBR). They

reached the same results of Sulehri’s study.
Concluding the industrial practices, in spite of conducting

these studies on the requirements validation techniques

(RVTs), no comparison has been made on the effectiveness
of the inspection techniques. The objective of the following
sub-sections is to review the defect detection techniques (read-
ing techniques) in requirements specification documents. The
purpose is to identify the goal, characteristics, advantages

and disadvantages, procedures of using each technique, and
the responsibility of the inspector in each technique.
2.2.1. Checklist-Based-Reading technique (CBR)

In Checklist-Based-Reading technique, the reviewer gets a
checklist that is expressed in the form of questions or state-
ments in order to search for a special kind of faults [18].

Inspectors read the document during answering a list of yes/
no questions that are based on their previous knowledge of
typical defects [10]. The checklist should not exceed a page

for each document [19]. The CBR technique is a non-system-
atic technique [8] because it does not provide instructions on
how the inspection can be performed. In CBR technique, the

reader is responsible for all the inspection processes and find-
ing all possible defects.

The Checklist-Based-Reading technique has the advantage
of providing guidance on what is inspected for [11], yet the dis-

advantages are listed below.

� The questions are often general. They are usually collected

from previous projects, literature, or other organizations,
and not sufficiently tailored to a particular development
environment [20].

� It does not tell the inspector how to ensure the software
quality attribute [20].
� It does not provide instructions on how the inspection can

be performed or how to use a checklist [20].
� Checklist questions are usually limited to specific types of
defects. Therefore, inspectors may not focus on defect types
that have not been previously detected. Consequently, they

may entirely miss classes of defects [20].
� All inspectors have the same checklist and should answer all
the questions [21] which lead to repeating and wasting

inspector’s effort, as a result of overlapping work of
inspectors.

2.2.2. Defect-Based-Reading technique (DBR)

Defect-Based-Reading technique concentrates on specific
defect types in requirements, where requirements are expressed

by state machine notation called Software Cost Reduction
(SCR) [22]. The DBR technique is carried out by the following
steps [19].

1. Defects are classified.
2. A set of questions is posed for each defect class.
3. Scenarios which are derived from checklists are built.

4. Each scenario is assigned to a reviewer to detect a particu-
lar type of defects.

This technique has the advantage of providing guidance for
inspector about ‘‘What and How’’ it is inspected for [11].
While its drawback is that the scenarios limit the attention

of the inspector to the detection of particular defects that are
defined by the custom guidance [20]. As a result, other types
of defects will not be detected unlike the checklist technique

which search for any defects in the documents [21].

516 A.A. Alshazly et al.
2.2.3. Perspective-Based-Reading technique (PBR)

Perspective-Based-Reading techniques concentrate on exam-

ining artifacts from different perspectives of the users of soft-
ware documents in order to improve efficiency by minimizing
the overlap among the faults found by the reviewers [15]. The

PBR techniques are carried out by identifying perspectives
that depend upon the roles people have within the software
development or maintenance process. For each perspective,

either one or multiple scenarios are defined that consist of
repeatable activities performed by the inspector, and ques-
tions answered by the inspector. This is done in order to
increase the understanding of the software product from a

particular perspective. It helps the inspector to identify
defects [20].

The PBR techniques have the following advantages [8].

� PBR is more effective, systematic, focused, goal-oriented,
customizable and transferable via training because

reviewers inspect software documents from specific stake-
holders’ perspectives concerning SRS to verify its
correctness.

� Less overlap in defect detection than CBR technique.
� PBR is better than CBR for reviewers who are less familiar
with software domain.
� To conclude this section, all Scenario-Based-Reading (SBR)

techniques (DBR and PBR techniques) share the following
factors.
� They are systematic techniques [8] because they provide a

procedure for how to read a document.
� The reader is only responsible for detecting defects that can
be found from a particular point of view, such as analyst or

designer perspectives, or special defect type as omission or
incorrectness.

3. Comparative analysis of defect classifications

The following results were found by comparing the classifica-

tions of defects in the requirements phase presented in
Section 2.1.

� The objective of the IEEE categorization of anomaly

classes is to classify types of defects in SDLC to improve
the quality of software. The objective of the classification
of Margarido et al. is to classify defect types in SRS

documents in order to build checklists to support require-
ments’ reviewers, whereas the objective of Walia’s classifi-
cation is to classify errors that could cause defects in

requirements phase generally to support the prevention
and detection of errors.
� Both classifications of Margarido et al. and Walia et al.
used the empirical research approaches to design their clas-

sification while the methodology that has been used to con-
duct the IEEE categorization of anomaly classes is not
specified.

� The IEEE categorization does not focus on any phase or
any type of document. It works on all SDLC phases. While
the classification of Margarido et al. is concerned with the

requirements phase and specifically with the SRS docu-
ments. Walia’s classification of requirements’ errors did
not focus on any type of requirement documents.
� The IEEE categorization of anomaly classes did not define

the characteristics of anomalies. It does not specify when
and why an anomaly occurs or how to discover its exis-
tence, while the classification of Margarido et al. of defect

types defined each of them and provided an example on
each of them, but they did not specify the causes of these
defects. Also, Walia’s classification of requirements’ errors
defined each requirement error and gave an example on

each of them but they did not relate types of defects and
errors leading to their appearance.
� Both classifications of Margarido et al. and Walia et al.

used the root-cause-analysis method for problem solving,
taking into account the difference in research objective
and problem. With regard to the IEEE categorization of

anomaly classes, the used problem solving method is not
specified.

To conclude this section, the IEEE classification focused on

the defects of all phases in the SDLC. The classification of
Margarido et al. is based on listing defects, defining each of
them and giving a number of examples but did not specify

the causes of these defects. The requirements’ errors taxonomy
of Walia et al., covered errors that appear in most of require-
ments engineering steps but did not correlate the types of

defects and errors causing them. Thus, there is a need to find
the relationship between the types of defects, and the errors
causing them. Specifying when and why defects occur, or

how to note its existence via scientific approach. Knowing
the nature of each defect will help detection and prevention
of requirement defects.
4. Comparative analysis of reading techniques

This section compares the effectiveness of defect detection
techniques (reading techniques), and the aim is to assist inspec-

tors in choosing effective and efficient techniques in order to
guarantee the SRS documents’ quality.

4.1. Experiment

To achieve that, an experiment has been carried out to com-
pare the effectiveness of defect detection techniques (CBR,

PBR and DBR), and to determine the ability of each technique
to detect defects in terms of the type of defect and its source.
The hypothesis to be investigated in the experiment is as

follows.
H: Defect detection techniques vary in terms of their ability

to detect each defect based on the source causing its
occurrence.

To test this hypothesis, each defect detection technique has
been applied to three SRS documents listed below.

� The Automated Teller Machine network (ATM). A system
that supports computerized banking network which work
together with the bank computer to dispense money for

ATM cash-card carrier [23].
� The Online National Election Voting System (ONEV) is a
system to provide information about the candidates before

the date of the election, and to conduct the voting process at
election stations on the election date [24].

Detecting defects in software requirements specification 517
� The web publishing system is a system for the editor of a

regional historical society. The system assists the editor in
the automation of an article reviewing and publishing pro-
cess [25].

The detected-defects are classified into the type of defect,
the main-reason for their appearance and then classified fur-
ther in the sub-reason for their appearance. Then the

detected-defects by each technique were compared with the
defects detected by other techniques, as shown in Table 1.
The comparison has been performed on the following aspects:

the total number of detected-defects, the distribution of defects
on their source of occurrence, and both the common and dif-
ferent detected-defects between each pair of techniques.

Thereby, the effectiveness of defect detection techniques (read-
ing techniques) has been compared.
4.2. Results

(See Table 1).

4.3. Analysis of results

Comparing the Checklist-Based-Reading technique to the Sce-
nario-Based-Reading techniques, the following has been

observed.

� According to the total number of the detected-defects, the

PBR is more effective than DBR and CBR, while DBR is
more effective than CBR.
� According to the type of the detected-defects, the following

were concluded.
– In case of ambiguous and omission defects, the PBR is more
effective than DBR and CBR while DBR is more effective
than CBR.

– In case of inconsistent defects, the PBR is more effective
than DBR and CBR whereas the techniques CBR and
DBR are equal in effectiveness.

– Concerning the incorrect defects, the DBR is more effective
than CBR and PBR while CBR is more effective than PBR.

– With regard to the superfluous defects, the CBR and DBR

are equal in their effectiveness. While the PBR could not
find any superfluous defects.

5. Proposed taxonomy of requirements defects

In this section, a taxonomy of requirements’ defects and causes

is presented. An empirical approach has been used to prepare
the proposed taxonomy. In order to build the taxonomy, it is
Table 1 Results of the comparative analysis of reading

techniques.

Defect type CBR DBR PBR

Ambiguous 9 11 15

Inconsistent 6 6 14

Incorrect 10 12 6

Omission 23 42 46

Superfluous 2 2 0

Total 50 73 81
necessary to identify the factors contributing to the formation
of the SRS document, determine the types of defects that occur
in SRS documents, and the errors that may cause such defects.

Factors contributing to the formation of an SRS document
are: SRS authors, the process of requirements analysis, and the
process of writing the SRS document in documentation form.

A review of the literature reveals that certain types of
defects have to be excluded for the following reasons.

� The excluded defects from the IEEE classification of anom-
aly classes are the ‘‘improvement desirable anomaly’’ and
the ‘‘editorial anomaly’’. The ‘‘improvement desirable
anomaly’’ is a defect that may occur in a design or a code

which needs to be revised. Such defect type cannot occur
in the requirements document as the requirements docu-
ment is only a description of customer needs. The require-

ments document can be written in an ambiguous,
inconsistent way or in a way that is not confirming to stan-
dards. These defects can be rewritten or improved in the

rework (removing requirements defects). Based on the
above, it is unacceptable that the requirements document
contains an ‘‘improvement-desirable’’ defect. Moreover,

the ‘‘editorial anomaly’’ is a typo or formatting error that
can cause defects such as ambiguous, inconsistent or incor-
rect requirements, yet it is not a defect in itself.
� The excluded defects from the classification of Margarido

et al. of defect types in requirements’ specifications are
‘‘misplaced’’, ‘‘redundant’’ and ‘‘typo or formatting’’.
‘‘Misplaced’’ cannot be considered a defect type. For

instance, if a requirement is misplaced in any section of
the requirements’ specification document, it will be consid-
ered a requirement error that may cause defects such as

ambiguous, inconsistent or incorrect information. Further-
more, ‘‘redundancy’’ cannot be accepted as a defect. It
could be considered a requirement error because it can

cause defects such as ambiguous and inconsistent. Also,
‘‘typo’’ or ‘‘formatting’’ cannot be regarded as a defect.
‘‘Typo or formatting’’ class is a requirement error because
it can cause defects such as ambiguous, inconsistent or

incorrect information.

Hence, we specify the defects that can occur in SRS docu-

ments as: omission, ambiguous, inconsistent, superfluous,
incorrect, not-conforming to standards, not-implementable
and risk-prone. To reach an acceptable definition for each of

the defect type, defect definitions in other SDLC phases have
been reviewed in [26,27], p. 182] and [28] and the analysis of
literature review for the types of defects in the requirements
phase are reviewed. The description of each defect is shown

in Table 2 (see Table 2).
Based on the criticism of the requirement error taxonomy,

requirement errors have been identified. The three high-level

classes of requirements’ errors are entirely consistent with the
factors contributing to the formation of the SRS document.
These high-level of requirements’ errors are listed as follows.

� People errors include errors caused by people involved in
the process of requirements document development (SRS

authors).
� Process errors include errors caused by conducting the
requirements engineering process incorrectly (the process
of requirements analysis).

Table 2 Types of defect definitions.

Defect Description

Omission Necessary information related to the

problem being solved by the software has

been omitted from requirements

document or are not complete

Ambiguous The information written in the

requirements document has more than

one interpretation

Inconsistent One part of the requirements document is

inconsistent with other part/s or with the

problem that the SRS solves

Superfluous Some information of the SRS document

is not relevant to the problem being

solved or will not contribute to the

solution

Incorrect Some information in the SRS contradicts

other information about the same or

relevant information in the domain

knowledge or conflict with preceding

documents

Not-conforming

to standards

Some items in the requirement are written

in a way not conforming to the standards

determined by quality assurance

representatives

Not-implementable Some requirements are not

implementable due to system constraints,

human resources, budget, or technology

limitations

Risk-prone Some requirements are risk prone due to

unstable requirements or requirements

with high interdependence

518 A.A. Alshazly et al.
� Documentation errors include errors that occur during the
process of writing the requirements regardless of the
correctness of the requirements engineering processes or
whether the author understood the requirements or not.

The three high-levels of requirements’ errors will be used in
the taxonomy. Some of the detailed errors which are embedded

within each high-level class of requirements’ errors will be
excluded and others will be renamed, as follows.

Included errors are the errors that can be used in defect

detection, as listed below.

� Communication errors include errors resulting from mis-

communications among various stakeholders involved in
authoring the requirements document.
� Participation errors are errors that result from inadequate
or missing participation of important stakeholders involved

in developing the requirements document.
� Domain knowledge errors occur when the requirements’ authors
lack knowledge or experience about the problem domain.

� Specific application knowledge errors occur when the
requirements’ authors lack knowledge about some aspects
about the application or problem domain.

� Elicitation errors are produced from the use of an inade-
quate requirement elicitation process.
� Analysis errors include errors committed during the require-
ments analysis process.

� Traceability errors result from an inadequate or incomplete
requirement traceability process to predecessors and succes-
sors, and the change management process.
� Organization errors arise during listing and organizing the

requirements illogically and ineffectively during the docu-
mentation process.
� No-usage of documentation standard errors result from writ-

ing requirements in a way that is not conforming to the doc-
umentation standards that have been determined by the
quality assurance representative.
� Specification errors occur during describing the require-

ments regardless of whether the developers correctly under-
stood the requirements or not. Examples include typo
errors, repetition of some steps, and mistakes in naming

and referencing requirements.

Excluded errors are the errors that cannot be used to

explain the reasons of defect occurrence, as listed below.

� Process execution errors include errors that occur when
requirement authors make mistakes while executing the

requirement elicitation and development processes regardless
of the adequacy of the chosen process (as defined by Walia)
[7]. However, the reviewer cannot identify the process execu-

tion error without asking the author of the specific part of
the requirements that contains defects about the reason for
the defect. Executing the requirement elicitation and devel-

opment processes is a long trip. As the inspector is not often
the author of the SRS, it is difficult to determine that the
cause of the defect is a process execution error.

� Inadequate method of achieving goals and objective errors In
this class of errors, Walia included errors that result from
selecting inadequate or incorrect methods for achieving
the stated goals and objectives of the SRS. For example,

he included the following errors.
– ‘‘System-specific information has been misunderstood lead-
ing to the selection of a wrong method.’’ This type of errors

is more suitable to be included in the specific application
knowledge errors class.

– ‘‘Selection of methods those were successful in other pro-

jects without investigating whether these methods are
proper for this project.’’ This type of error is more suitable
to be included in the elicitation errors or analysis errors class
according to the state of the real defect situation.

This class will be excluded because it is not precisely defined
and the contained errors could be classified in other categories.

� Management errors include errors that result from inade-
quate or poor management processes [7]. Walia put these

examples to explain this class of errors: misunderstandings
about the assignment of resources to different development
tasks, lack of leadership and misunderstanding of all the

alternatives [29]. All these mistakes can be classified in other
classes as elicitation errors or analysis errors class. It is not
reasonable to determine the presence of the managerial
errors or a lack of leadership errors without asking the

author of the part that contains the defect about the reasons
for his mistake. Often, despite the existence of managerial
problems, the author may or may not commit a defect. Sim-

ply, there is no correlation.

Renamed errors are errors that have been renamed to

become more expressive of their content. Renamed errors are
explained as follows.

Figure 2 The taxonomy of defect types and their sources.

Detecting defects in software requirements specification 519
� Other cognitive errors This includes – as Walia [7] defined –

errors that result from constraints on the cognitive abilities
of the requirement authors. He also explained that other
cognitive errors include errors caused by adverse mental

states, mental fatigue and lack of motivation, and errors
caused by the impact of environmental conditions on
requirements author [29]. All such errors affect the concen-

tration of the requirement’s author. Therefore, these
mistakes can be called concentration errors and remain
embedded in people errors class.

Based on the previous analysis, the classes of errors that
will be used in the taxonomy to determine the causes of defects
are: communication errors, participation errors, domain

knowledge errors, specific application knowledge errors, con-
centration errors, elicitation errors, analysis errors, traceability
errors, organization errors, no-usage of documentation stan-

dards errors and specification errors.
To determine the relationship between each defect and the

errors that caused it, an experiment has been conducted on
three SRS documents. The three case-studies are listed below.

� Automated Teller Machine network (ATM) [23].
� The Online National Election Voting System (ONEV) [24].

� Web publishing system [25].

The experiment conducted by detecting defects on the three

case-studies by using three reading techniques which are: CBR,
PBR and DBR. The discovered defects were classified based on
the causes of its occurrence by using the three high-level classes

of requirements’ errors (people errors, process errors and doc-
umentation errors) and then classified further to the detailed
error classes as shown in Fig. 2.
6. The proposed combined-reading technique

This section presents the proposed combined-reading tech-
nique to detect defects in requirements phase in SRS docu-

ments. In Section 6.1 the need for the proposed technique is
specified. The basis upon which the combined-reading tech-
nique is built is analyzed in Section 6.2. The combined-reading

technique is proposed in Section 6.3.

6.1. The necessity of a new technique

The number and types of detected-defects vary from one tech-
nique to the other. To find out the reason behind that, it is
essential to study the nature of each technique separately,

the nature of each defect type, its source of occurrence and
the ability of each defect detection technique to detect the
defect. According to the comparative analysis of reading tech-
niques presented in section four and by studying the questions

of the checklists in each technique, the following results were
found.

� In the Checklist-Based-Reading (CBR) technique, the focus
of the questions is on covering the different parts that con-
stitute the SRS document, but the questions do not cover all

types of defects. The questions omitted many potential
types of defects in each part of the SRS document.
� The Defect-Based-Reading (DBR) technique focuses on dif-
ferent types of defects, but it is not structured in terms of

the different parts that constitute the SRS document. The
DBR questions focus on each type of defects in some parts
of the SRS document but not in every part of the SRS doc-

ument. Also, the DBR technique did not focus on the var-
ious reasons for the emergence of each type of defects.

520 A.A. Alshazly et al.
� The Perspective-Based-Reading (PBR) technique focuses

mainly on the use-cases from the different perspectives of
different stakeholders of the SRS document. The PBR tech-
nique did not take into account the components of the

requirements document and the relationship of each part
with others.
� As for the ambiguous and omission defects, the PBR detects
a larger number of defects compared to DBR and CBR. We

conclude that, the PBR is the most effective while DBR is
more effective than CBR.
� Regarding the inconsistent defects, the PBR is more effec-

tive than DBR and CBR whereas both CBR and DBR
are equal in the number of detected defects.
� Concerning the incorrect defects, the DBR is more effective

than CBR and PBR while CBR is more effective than PBR.
� With regard to the superfluous defects, the CBR and DBR
are equal in their effectiveness. While the PBR could not
find any superfluous defects.

� All techniques do not give enough attention to the recom-
mendations of the IEEE STD 830-1998 [30] that describe
the content and quality of a proper software requirements

specification (SRS) document.

It can be concluded that it is difficult to detect defects by

using a single reading technique. Therefore, there is a need
for a new technique to detect defects in requirements docu-
ments taking into account the relationship between defect

types and their sources. The new technique should combine
the advantages of these reading techniques and avoid their lim-
itations. Thereby, the new technique contributes to the crea-
tion of a more efficient analysis compared to existing reading

techniques; which should be reflected in the quality of the
SRS documents.

6.2. The basis upon which the combined-reading technique is built

This reading technique is built to check the SRS content area
for defects that can occur. So, the specific checkpoints are

defects. However, not all defects could occur in all parts of
the SRS document. Each part of the SRS document has a
set of defects that can appear in it particularly. Therefore,

the checklist will verify the existence of these defects. Each part
has a purpose that must be studied to determine the types of
defects that are likely to appear and that affect the achieve-
ment of the goal. Therefore, when checking the absence of

these defects, the goal of each part of the SRS document will
be verified. To do so, the following steps have been followed.

1. Each component of the document has been analyzed to its
basic elements.

2. Based on the previous knowledge of defects as studied in

the taxonomy of requirements’ defects in section five, for
each element, the different types of potential defects and
their reasons for occurrence were determined.

3. For each element, questions were developed to cover the

different types of potential defects from the different stake-
holders’ perspectives whenever possible.

4. Dividing questions into groups, based on the essential parts

of the SRS recommendation of the IEEE STD 830-1998
[30]. Taking into account that each set of questions covers
an essential part of the major components of the SRS

document.
6.3. The combined-reading technique

The main idea behind the combined-reading technique is to
examine every part of the SRS document separately. In each
part, a search is performed for the expected sources of defects

based on the previous knowledge of defects in a particular part
and the purpose of each part of the SRS document. The tech-
nique is expressed in the form of questions in order to investi-
gate special kinds of defects. Inspectors read the document

during answering a list of yes/no questions that are based on
the previous knowledge of frequently occurring defects. This
technique aims to serve untrained inspectors. Every question

in the method inspects a different part of the SRS document
for the type of defect and its cause. The technique is presented
in Appendix a and is explained in details in [31].
7. Evaluation

The aim of the evaluation is to verify the taxonomy of defects

in requirements specification, to support inspectors to choose
the suitable reading technique, and to investigate to what
extent the combined-reading technique does improve defect

detection in SRS documents.

7.1. Experiment

To perform this evaluation, an experiment has been conducted

on four case-studies described as follows.

� The Parking Garage Control System (PGCS) [32] is a system

that controls and supervises the entries and exits of a park-
ing. The total number of defects found during the inspec-
tion experiment is 51 defects. This SRS has been used

many times previously by University of Maryland and the
International Software Engineering Research Network
(ISERN) to conduct experiments to evaluate reading

techniques.
� The ABC Video System [33] is a system that automates and
reports the video rental and return processes. The total
number of defects found in that SRS during the inspection

experiment is 84 defects. This SRS has been used previously
by University of Maryland and the ISERN to conduct
experiments to evaluate reading techniques.

� The Online Shopping Mall (OSM) [34] application is an
online shopping site to enable vendors to set up online
shops, help customers to browse through the shops, pur-

chase online without the need to visit the shop physically
and give feedback for the received product or service. In
addition, the application provides a system administrator
the ability to approve and reject requests for new shops

and maintain lists of shop categories. The total number of
defects found in that SRS during the inspection experiment
is 238 defects.

� The Massively Multiplayer Online Role Playing Game

(MMORPG) reported in [35] is an online game to promote
cultural tourism in Turkey. The player travels over the

Turkish cities in order to perform missions and collect coins
and the gold scattered over some secret places. The total
number of defects found in that SRS during the inspection

experiment is 44 defects.

Detecting defects in software requirements specification 521
The experiment was performed by applying the defect
detection techniques (reading techniques) on each of the four
SRSs case-studies. The detected-defects are classified by the

type of defect, the main-reason for their appearances (the three
high-level classes of requirements errors) and classified further
to the sub-reason for their appearance.
7.2. Results

The experiments’ results gathered from the four SRSs used for
the evaluation purpose are presented in Table 3.

7.3. Analysis of results

In the following subsections, the results of the evaluation

experiment are analyzed.

7.3.1. Evaluating the taxonomy of defects

The taxonomy distinguishes between eight types of defects,

which are omission, ambiguous, inconsistent, superfluous, incor-
rect, not conforming to standards, not implementable, and risk-
prone. The labeling clearly describes each of them. The taxon-

omy is hierarchical and contains three levels. This structure
distinguishes between the type of defect, the main-source of
its occurrence and the sub-source for the occurrence. This is

in order to determine the radical causes of each type of defects.
To verify the taxonomy, we inspected defects in these four

SRS documents by four different reading techniques, which

are CBR, PBR, DBR and combined-reading in order to detect
the largest possible number of defects. The total number of dis-
tinct defects found in the SRSs during the inspection experi-
ment is 417 defects classified into six defect types (ambiguous,

incorrect, inconsistent, omission, superfluous and not conforming
to standards). This is consistent with the proposed taxonomy of
defect types and their sources. This confirms further the stabil-

ity and reliability of the taxonomy. However, we encourage
other researchers to do other experiments to verify the stability
and reliability of the taxonomy and to extend the taxonomy if

there were other sources for defect occurrence.
Compared to previous classifications, the proposed taxon-

omy differs in the points stated as follows.

� The objective of the IEEE categorization of anomaly classes
is to classify types of defects in (SDLC) to improve the qual-
ity of software. While the objective of the classification of

Margarido et al. is to classify defect types in SRS documents
Table 3 Results of experiment used for evaluating the

combined-reading technique.

Defect type CBR DBR PBR Combined-reading

Ambiguous 23 11 9 46

Inconsistent 1 1 4 8

Incorrect 16 17 9 30

Not conforming

to standards

2 2 1 1

Omission 92 123 169 196

Superfluous 8 7 5 18

Total 142 161 197 299
in order to build checklists to support requirements review-

ers, the objective of Walia’s classification is to classify errors
that cause defects in the requirements phase generally to sup-
port the prevention and detection of errors while the objec-

tive of the proposed taxonomy is to classify defects and
their causes in requirements phase (in SRS documents) to
specify the correlation between the defects and their sources
in order to guarantee the quality of the SRS document.

� An empirical research approach has been used to create the
classification of Margarido et al. for defects, the classifica-
tion of Walia et al. for requirements’ errors and the pro-

posed taxonomy for defects and their sources of
occurrence, while the methodology used to conduct the
IEEE categorization of anomaly classes is not clearly stated.

� The IEEE categorization does not focus on any phase or
any type of document. It works on all (SDLC) phases.
While the classification of Margarido et al. is concerned
with the requirements phase and specifically for the SRS

documents, the Walia’s classification of requirements’
errors did not focus on any type of requirements documents
while the proposed taxonomy is concerned with require-

ments phase and specifically the SRS documents.
� The IEEE categorization of anomaly classes did not define
or mention any characteristics of these anomalies. The IEEE

categorization does not specify when and why an anomaly
occurs or how to detect its existence, while the classification
of Margarido et al. of defect types defined each defect type

and gave an example on each of them but they did not spec-
ify the causes of these defects. Also, Walia’s classification of
requirements’ errors defined each requirement error and
gave an example on each of error, but they did not relate

the types of defects and errors leading to their appearance.
While the proposed taxonomy defined each defect, specified
the causes of these defects and gave an example on each pair

of defect and error causing it.
� The root-cause-analysis method used for problem solving in
the classification of Margarido et al. for defects, the classi-

fication of Walia et al. for requirements’ errors and the pro-
posed taxonomy for defects and their sources of occurrence;
taking into account the difference in research objective and
problem. With regard to the IEEE categorization of anom-

aly classes, the used problem solving method is not clear.

7.3.2. Evaluating the combined-reading technique

In order to evaluate the combined-reading technique, its effec-
tiveness in detecting the number and variety of defects is com-

pared with the effectiveness of other defect detection
techniques. The detected-defects by each of the techniques
have been compared with the detected-defects by other tech-

niques. The comparison has been performed on the following
aspects: the total number of detected-defects, the correlation
between defects and source of occurrence, and both the com-

mon and different detected-defects between other techniques.
An experiment has been conducted on the same four SRS

documents to evaluate the combined-reading technique. We

inspected defects in these four SRS documents by four differ-
ent reading techniques, which are CBR, PBR, DBR and com-
bined-reading, in order to compare the effectiveness of these
techniques. From the experiments that we performed, we

noted that the combined-reading technique is the most efficient

522 A.A. Alshazly et al.
in detecting defects in terms of the number of detected-defects
and the variety of types of detected-defects followed by the
Perspective-Based-Reading (PBR). The Defect-Based-Reading

(DBR) is in the third rank in terms of the number of detected-
defects. Checklist-Based-Reading (CBR) is ranked in the
fourth rank, as shown in Table 3.

To determine the efficiency of each technique in detecting
each type of defects, we examined the areas of differences
and commonalities among the given techniques. Concerning

the ambiguous defect type, the combined-reading is absolutely
the best, and far ahead from the rest of the techniques. The
CBR follows the combined-reading technique. The CBR
shares the same number of results with the combined-reading

technique in detecting sixteen ambiguous defects and exclu-
sively detects seven defects. In the third rank is the DBR and
in the fourth the PBR.

The inconsistent defect type has been detected by the com-
bined-reading technique and the PBR respectively. The CBR
and the DBR are equal in detecting the inconsistent defect.

In terms of the number of detected-defects, the combined-read-
ing technique is better than the PBR techniques. However,
each of them detected different defects.

Regarding the incorrect defect, the combined-reading tech-
nique is far ahead of the rest of the techniques. The CBR and
the DBR are almost equal in efficiency of detecting the incor-
rect defects. The PBR technique is the worst in detecting the

incorrect defects.
The combined-reading technique is the best in detecting the

omission defects. The PBR technique comes in the second rank.

The combined-reading technique and the PBR technique
shared detecting ninety-seven omission defects. The DBR tech-
nique comes in the third rank and in the fourth rank comes the

CBR technique.
With respect to the superfluous defects, the combined-read-

ing technique is the best in detecting such type of errors. The

other three reading techniques are almost equal in detecting
the superfluous defects. Regarding the detection of the not con-
forming to standards the four reading techniques are almost
equal.

Based on the foregoing, the combined-reading technique is
better than other techniques, followed by the PBR technique.
Then, in the third rank comes the CBR technique and in the

fourth rank the DBR technique comes.

7.3.3. Advantages of the combined-reading technique

� It guides the inspector about what is being inspected and
provides instructions on how the inspection can be

performed.
� The technique does not need much training to use it.
� It is better for reviewers who are less familiar with the soft-

ware domain.
� The technique detects a large number of defects and a vari-
ety of defect types compared to other reading techniques

(CBR, DBR and PBR).
� Questions that constitute the combined-reading technique
are based on the errors causing defects. Thus, the com-
bined-reading technique guides inspectors to the reasons

of defect occurrence. Therefore, the technique does not rely
on inspector’s guessing to determine the cause of the defect.
7.3.4. Disadvantages of the combined-reading technique

� Questions are limited to the detection of defects that have
been previously detected throughout the study. Therefore,

inspectors may not focus on defect types that have not been
previously detected.
� It does not provide instructions on how to divide the inspec-

tion process between inspectors in order to determine the
responsibility of each of them.
� It is a non-automated technique.

Despite these shortcomings, the most of them can be over-
come by automating the combined-reading technique, and fur-
ther study of the sources of defects.
8. Conclusion and future work

Existing taxonomies of defects in the requirements phase clas-
sify defects regardless of their causes. While Walia’s taxonomy
classified the causes leading to defects in the requirements
phase, however, it ignored the relationship between defects

and errors that cause it. The proposed taxonomy focused on
the defects in the requirements phase and added correlation
between the defects and its sources to guarantee the quality

of the SRS document. The taxonomy helps in training the
SRS writers, and supports creating more accurate and efficient
defect prevention and defect detection techniques. In addition,

this work presented the Combined-Reading technique to
detect defects in the software requirements specification
(SRS) documents. The Combined-Reading technique com-
bines the advantages of other reading techniques in defect

detection.
The taxonomy of requirements defects needs to be vali-

dated further on other experiments to determine its stability

and reliability. There is a need for developing automated
defect detection techniques to reduce the reliance on the
human factor that depends on cognitive abilities. Also, the

Combined-reading technique needs more studies and experi-
ments to provide confirmation of its effectiveness on SRSs
from different domains and with different sizes. A formal

way for computing the complexity should also be
investigated.

Despite the exerted efforts in the research of the require-
ments inspection, many open questions that are still not

answered. Such questions include the following.

� What is the most efficient inspection-based technique?

� What is the suitable requirements defect detection technique
for each SDLC model?
� Is the requirements inspection a group work or an individ-

ual work?
� Does the requirements validation-based technique differ
from one software domain to the other?
Appendix A

The combined-reading technique.

Q. Checked item Defect type Defect main-source Defect sub-source Check-list items

1 External

interfaces

Omission Process errors Analysis Have all inputs and outputs of the software system been described in

details? (oriented to the developer)

2 User interfaces Omission People errors Concentration Have all interfaces between the software product and its users been

specified? (oriented to the end-user)

3 Constraints Omission Process errors Analysis Are all significant consumers have scarce resources; as memory,

network bandwidth, processor capacity. . . identified? Has the

anticipated consumption of resources been specified?

4 Use-case name

and number

Ambiguous People errors Concentration Does the use-case name reflect its goal?

5 Inconsistent Documentation errors Organization

(organizing the SRS

document)

Are the requirements arranged numerically according to the logical

order of occurrence and in order to prevent confusion between the

requirements?

6 Inconsistent Process errors Traceability Is there a conflict between the functional requirements names and the

relevant use-cases names?

7 Actor Ambiguous Documentation errors Specification (stating the

requirements)

Are actors clearly specified for each functional requirement?

8 Incorrect People errors Concentration Do you agree that the assigned actor is suitable for the connected use-

case?

9 Omission People errors Concentration Are there any missing actors (system, hardware, or human user),

although it is known that this actor should be included in this

functional requirement?

10 Omission Process errors Analysis Are there any missing actors (system, hardware, or human user)?

11 Description Ambiguous Documentation errors Specification (stating the

requirements)

Is the description of the functional requirements written in a clear and

concise language?

12 Inconsistent People errors Concentration Are the descriptions of the functional requirement consistent with what

is specified in the product functions section in terms of actor, flow of

events?

13 Pre-condition Ambiguous Process errors Analysis Do you think that the pre-conditions are described clearly?

14 Omission Process errors Analysis Is there a missing pre-condition for any use-case that should be existed?

15 Incorrect Process errors Analysis Is the pre-condition correctly defined and consistent with the goal of

the functional requirement and with you domain knowledge?

16 Input Ambiguous Documentation errors Specification (stating the

requirements)

Is the input written in a clear and concise language, and is linked to the

output of the previous functional requirement (if any)?

17 Incorrect People errors Concentration Is the expected input correctly defined and consistent with what is

written in the description section of the functional requirement?

18 Omission Documentation errors Specification (stating the

requirements)

Are there any omitted parts of the details of the inputs of the functional

requirements, including their source, accuracy, range of values,

frequency, units and format?

19 Omission People errors Concentration Are there any missing inputs to the functional requirements; although it

has been mentioned elsewhere in the document?

20 Omission Process errors Analysis Are all the inputs of the software specified?

21 Inconsistent Process errors Analysis Does the data input of the functional requirement conflict with the

logical structure of the database in the non-functional requirements

section?

(continued on next page)

D
etectin

g
d
efects

in
so
ftw

a
re

req
u
irem

en
ts

sp
ecifi

ca
tio

n
5
2
3

Q. Checked item Defect type Defect main-source Defect sub-source Check-list items

22 Trigger Inconsistent Documentation errors Specification (stating the

requirements)

Is it possible that conflict occurs as a result of the way of writing the trigger of

the functional requirement and the way of writing the trigger of the use-case?

23 Inconsistent Process errors Analysis Do you think that there is conflict between the trigger of the functional

requirement and the trigger section of its use-case?

24 Interactions

(Normal flow of

events)

Ambiguous Documentation errors Specification (stating the

requirements)

Is the flow of events written clearly and unambiguously? In order to assist the

analyst and the designer to make sure of what they should do

25 Ambiguous Process errors Analysis May the flow of events give different outputs according to the interpretation of

a requirement or a functional specification?

26 Incorrect Documentation errors Specification (stating the

requirements)

Is the sequence of functions in the functional requirement written in a clear and

correct way that reflects the intended goal of the function? Do you think that

the tasks provided by the use-case written in a clear and correct way to reflect

the intended goal?

27 Incorrect People errors Domain knowledge Is the goal of the sequence of functions or tasks in the normal flow of events

that the functional requirement provides, fulfilled?

28 Incorrect Process errors Analysis Does the sequence of functions or tasks in the normal flow of events, provided

by the functional requirement, fulfill the goal of it?

29 Inconsistent Process errors Analysis Does the behavior of the functional requirement conflict with the behavior of

other use-cases? Does the behavior of the functional requirement conflict with

your domain knowledge or the software general description?

30 Inconsistent Process errors Analysis Is there a conflict between the behavior of the functional requirement and the

behavior of its use-cases?

31 Omission People errors Concentration Is there any missing functionality or task that should be provided by the use-

case to fulfill its goal, although this function has been mentioned elsewhere in

the document?

32 Omission Process errors Analysis Is there any missing functionality or task that should be provided by the use-

case to fulfill its goal? Is the flow of events described with concrete terms and

measurable concepts? Does the flow of events need to be described with more

details for design?

33 Superfluous Process errors Analysis Is there any superfluous functionality or task that will not contribute to achieve

the goal of the use-case? Is there any superfluous functionality or task that is not

programmable, in the flow of events of the functional requirements?

34 Exceptional flow

of events

Ambiguous Documentation errors Specification Is the exceptional flow of events written clearly and unambiguously? In order to

assist the analyst and the designer to make sure of what they should do.

35 Incorrect Process errors Analysis Based on your domain knowledge, are the described variants to the normal flow

of events correct and in a way that fulfills their goal? Do they make sense?

36 Omission Process errors Analysis Are there any missing variations of the normal flow of events that have not been

identified in the functional requirements?

37 Superfluous Process errors Analysis Is there any superfluous functionality or task that will not contribute to achieve

the goal of the functional requirements?

38 Post-conditions Ambiguous Process errors Analysis Are described post-conditions clear?

39 Incorrect Process errors Analysis Is the expected post-conditions correctly defined? Does it lead to achieve the

goal of the functional requirement?

40 Omission Process errors Analysis Are the post-conditions described for all functional requirements? In order to

indicate the achievement of the goal of the functional requirement

5
2
4

A
.A

.
A
lsh

a
zly

et
a
l.

Q. Checked item Defect type Defect main-source Defect sub-source Check-list items

41 Output Ambiguous Documentation errors Specification (stating the

requirements)

Is the output written in a clear and concise language that informs the designer

what should be done and describes the outputs to the end user?

42 Ambiguous Process errors Analysis Does the output reflect the success or failure of the functional requirements?

43 Incorrect Process errors Analysis Is the expected output correctly defined? Does it lead to achieve the goal of the

functional requirement?

44 Omission Documentation errors Specification (stating the

requirements)

Are there any omitted parts of the details of the outputs from the functional

requirements that have been specified for both normal flow of events and

variations, including their destination, accuracy, range of values, frequency, and

format?

45 Omission People errors Concentration Are there any missing outputs of the functional requirements for both normal

flow of events and variations, although it has been mentioned elsewhere in the

document?

46 Omission Process errors Analysis Have all the outputs of the functional requirements been specified for both

normal flow of events and variations, including their destination, accuracy,

range of values, frequency and format?

47 Inconsistent Process errors Analysis Does the output of any functional requirement facilitate referencing to the input

or the pre-condition of the following functional requirement?

48 Criticality Omission Documentation errors No use of documentation

standards

Is the criticality of functional requirements identified?

49 Priority Omission Documentation errors No use of documentation

standards

Is the implementation priority of each functional requirement identified? Are

the criteria for assigning functional requirement priority levels been defined?

50 Activity

diagram

Ambiguous Documentation errors Specification (stating the

requirements)

Is every component in the activity diagram written in a way reflects what it

actually does and to enhance understandability of the requirements? Does each

activity diagram have name?

51 Incorrect People errors Concentration Is the name of activity diagram correct, in the sense that it reflects the goal of it?

52 Inconsistent Documentation errors Specification (stating the

requirements)

Is there a conflict between the components of the activity diagram, or between

them and the textual descriptions of the functional requirement?

53 Superfluous Process errors Analysis Is there any superfluous activity in the activity diagram? Is the activity diagram

too detailed to restrict the design?

54 Traceability Omission Documentation errors Specification (stating the

requirements)

Have all internal cross-references to other requirements been specified?

55 Overall use-case

and its relation

with other use-

cases

Ambiguous Documentation errors Specification (stating the

requirements)

Is every requirement written in a clear and concise language to ensure a unique

interpretation?

56 Ambiguous Process errors Analysis Has every requirement been specified separately and been avoiding compound

requirements?

57 Incorrect Documentation errors Organization (organizing the

SRS document)

Are all functional requirements actually functional requirements and not

constraint?

58 Incorrect People errors Concentration Does the functional requirement lead to fulfill the goal of the application? Is the

functional requirement consistent with the sections: purpose and scope of the

SRS document?

59 Incorrect Process errors Analysis Are all functional requirements actually functional requirements?

(continued on next page)

D
etectin

g
d
efects

in
so
ftw

a
re

req
u
irem

en
ts

sp
ecifi

ca
tio

n
5
2
5

Q. Checked item Defect type Defect main-source Defect sub-source Check-list items

60 Inconsistent People errors Concentration Is there any typo error in the requirement that may lead to

contradictory results and inconsistent requirements especially in

parameters?

61 Omission Process errors Analysis Have the time criteria been specified for the functional

requirements?

62 Omission Process errors Analysis Are there any missing functional requirements that may contribute

to achieve the goal of the program? If so, is it identified as TBD?

Do the requirements provide an adequate basis for design?

63 Omission Process errors Analysis According to your domain knowledge or the introduction section,

has the SRS omitted functional requirements that you think they

are necessary?

64 Superfluous Process errors Analysis Is there any superfluous use-case that will not contribute to achieve

the goal of the program? Is there any superfluous use-case that is

not mentioned in the general description of the software product?

65 Performance

requirements

Incorrect Documentation errors Organization

(organizing the SRS

document)

Is there any confusion between performance requirements and

design constraints or any other constraints?

66 Omission Process errors Analysis Are both static- and dynamic- numerical performance

requirements specified precisely?

67 Omission Process errors Elicitation Are both static- and dynamic- numerical performance

requirements specified?

68 Non-functional

requirements

Omission Process errors Elicitation Are the necessary non-functional requirements specified, including

reliability, availability, security, maintainability and portability?

69 General

questions

Inconsistent Documentation errors No use of

documentation

standards

Did the author of the SRS document use numbering levels to

identify sections of the SRS and the functional requirements?

5
2
6

A
.A

.
A
lsh

a
zly

et
a
l.

Detecting defects in software requirements specification 527
References

[1] A. Aurum, C. Wohlin, Engineering and Managing Software

Requirements, Springer-Verlag New York Inc., Secaucus, NJ,

USA, 2005.

[2] W.M. Wilson, Writing effective natural language requirements

specifications, Crosstalk J. Def. Softw. Eng. (1999) 16–19.

[3] Effective Requirements Definition and Management: Improves

Systems and Communication (White paper), Ed. 8310 North

Capital of Texas Highway, Corporate Office: Whitepaper of

Borland Software Corporation - The open ALM Company,

2009.

[4] R. Chughtai, A Domain-Specific approach to Verification &

Validation of Software Requirements, M.Sc. thesis, Arizona

State University, 2012.

[5] IEEE, IEEE Standard for Software Reviews, IEEE Std 1028–

1997, 1998, pp. i–37.

[6] I.L. Margarido, J.P. Faria, R.M. Vidal, M. Vieira, Classification

of defect types in requirements specifications: Literature review,

proposal and assessment, Presented at the 2011 6th Iberian

Conference on Information Systems and Technologies (CISTI),

Chaves / Portugal, 2011.

[7] G.S. Walia, J.C. Carver, A systematic literature review to

identify and classify software requirement errors, Inform. Softw.

Technol. 51 (2009) 1087–1109.

[8] L. He, J. Carver, PBR vs. checklist: a replication in the n-fold

inspection context, Presented at the Proceedings of the 2006

ACM/IEEE international symposium on Empirical software

engineering (ISESE’06), Rio de Janeiro, Brazil, 2006.

[9] G. Sabaliauskaite, F. Matsukawa, S. Kusumoto, K. Inoue, An

Experimental Comparison of Checklist-Based Reading and

Perspective-Based Reading for UML Design Document

Inspection, Presented at the Proceedings of the 2002

International Symposium on Empirical Software Engineering,

2002.

[10] F. Lanubile, G. Visaggio, Evaluating defect detection techniques

for software requirements inspections, International Software

Engineering Research Network (ISERN) Report no00-08, 2000.

[11] M. Ciolkowski, What do we know about perspective-based

reading? An approach for quantitative aggregation in software

engineering, Presented at the Proceedings of the 2009 3rd

International Symposium on Empirical Software Engineering

and Measurement, 2009.

[12] A. Porter, L. Votta, Comparing detection methods for software

requirements inspections: a replication using professional

subjects, Empirical Softw. Eng. 3 (1998) 355–379.

[13] A.A. Porter, L.G. Votta, An experiment to assess different

defect detection methods for software requirements inspections,

Presented at the Proceedings of the 16th international

conference on Software engineering, Sorrento, Italy, 1994.

[14] A.A. Porter, J. Lawrence, G. Votta, V.R. Basili, Comparing

detection methods for software requirements inspections: a

replicated experiment, IEEE Trans. Softw. Eng. 21 (June 1995)

563–575.

[15] T. Thelin, P. Runeson, C. Wohlin, An experimental comparison

of usage-based and checklist-based reading, IEEE Trans Softw.

Eng. 29 (2003) 687–704.

[16] L.H. Sulehri, Comparative Selection of Requirements

Validation Techniques Based on Industrial Survey, M.Sc.

Thesis, Department of Interaction and System Design, School

of Engineering, Blekinge Institute of Technology, 2009.

[17] S.B. Saqi, S. Ahmed, Requirements Validation Techniques

Practiced in Industry: Studies of Six Companies, M.Sc. thesis,

Department of System and Software Engineering, School of

Engineering, Blekinge Institute of Technology, Ronneby,

Sweden, 2008.
[18] M. Staron, L. Kuzniarz, C. Thurn, An empirical assessment of

using stereotypes to improve reading techniques in software

inspections, Presented at the Proceedings of the Third

Workshop on Software Quality (WoSQ ‘05), St. Louis,

Missouri, 2005.

[19] A. Aurum, H. Petersson, C. Wohlin, State-of-the-art: software

inspections after 25 years, Softw. Test. Verif. Reliab. 12 (2002)

133–154.

[20] O. Laitenberger, A survey of software inspection technologies,

Handbook Softw. Eng. Knowl. Eng. 2 (2002) 517–555.

[21] X.M. Yang, Towards a Self-evolving Software Defect Detection

Process, M.Sc. Thesis, Computer Science, University of

Saskatchewan, Saskatoon, Saskatchewan, 2007.

[22] G.H. Travassos, F. Shull, M. Fredericks, V.R. Basili, Detecting

defects in object-oriented designs: using reading techniques to

increase software quality, Presented at the Proceedings of the

14th ACM SIGPLAN Conference on Object-oriented

Programming, Systems, Languages, and Applications

(OOPSLA), Denver, Colorado, United States, 1999.

[23] J. Raymond, Schneider, Requirements Document for an

Automated Teller Machine Network (ATM), Private

Communication, 1996, pp. 1-17.

[24] E. Joldoshev, H.S. Matar, M.B. Özkan, H. Lutin, Software

Requirement Specification For Online National Election Voting

System, Computer Engineering Department, Middle East

Technical University, 2010, pp. 1–55.

[25] J. Teamleader, P. Adams, B. Baker, C. Charlie, Web Publishing

System, Michigan State University, 2004, pp. 1–31.

[26] G. Travassos, F. Shull, M. Fredericks, V.R. Basili, Detecting

defects in object-oriented designs: using reading techniques to

increase software quality, Presented at the Proceedings of the

14th ACM SIGPLAN Conference on Object-oriented

Programming, Systems, Languages, and Applications, Denver,

Colorado, United States, 1999.

[27] C. Denger, T. Olsson, Quality Assurance in Requirements

Engineering, in: A. Aurum, C. Wohlin (Eds.), Engineering and

Managing Software Requirements, Springer, Berlin, Heidelberg,

2005, pp. 163–185.

[28] B. Anda, D.I.K. Sjøberg, Towards an inspection technique for

use case models, Presented at the Proceedings of the 14th

International Conference on Software Engineering and

Knowledge Engineering (SEKE’02), Ischia, Italy, 2002.

[29] G.S. Walia, J.C. Carver, A Systematic Literature Review to

Identify and Classify Software Requirements Errors, University

of Alabama MSU-071207, 2007.

[30] IEEE, IEEE Recommended Practice for Software Requirements

Specifications, IEEE Std. 830–1998 (Revision of IEEE Std. 830–

1993), 1994, pp. 1–40.

[31] A. Alshazly, A Combined Reading Technique to Detect

Software Defects in Requirements Phase, M.Sc. thesis,

Department of Information Technology, Institute of Graduate

Studies and Research (IGSR), University of Alexandria,

Alexandria, Egypt, 2013.

[32] R.J. Schneider, Requirements document for a parking garage

control system (PGCS), Private Communication, 1996, pp. 1–18.

[33] R.J. Schneider, Requirements Document for ABC Video

System, Private Communication, 1996, pp. 1–14.

[34] S. Ray, S. Bhattacharya, S. Shaw, S. Sett, Online Shopping Mall

Project Report, Department of Information Technology, B.P.

PODDAR Insititute of Management and Technology, West

Bengal University of Technology, 2009, pp. 1–50.

[35] C. Kilcioglu, M. Degirmenci, U.C. Buyuksahin, Software

Requirements Specifications: Massively Multiplayer Online

Role Playing Game Project (MMORPG), Department of

Computer Engineering, Middle East Technical University,

2010, pp. 1-32.

http://refhub.elsevier.com/S1110-0168(14)00056-8/h0005
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0005
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0005
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0005
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0010
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0010
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0035
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0035
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0035
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0060
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0060
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0060
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0070
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0070
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0070
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0070
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0075
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0075
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0075
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0095
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0095
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0095
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0100
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0100
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0190
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0190
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0190
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0190
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0190
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0190
http://refhub.elsevier.com/S1110-0168(14)00056-8/h0190

	app31
	Detecting defects in software requirements specification
	1 Introduction
	2 Related work
	2.1 Defects classifications
	2.1.1 The IEEE Std. 1028-1997 categorization of anomaly classes
	2.1.2 Classification of defect types in requirements specifications
	2.1.3 Classification of requirements’ errors

	2.2 Requirements defect-detection techniques
	2.2.1 Checklist-Based-Reading technique (CBR)
	2.2.2 Defect-Based-Reading technique (DBR)
	2.2.3 Perspective-Based-Reading technique (PBR)

	3 Comparative analysis of defect classifications
	4 Comparative analysis of reading techniques
	4.1 Experiment
	4.2 Results
	4.3 Analysis of results

	5 Proposed taxonomy of requirements defects
	6 The proposed combined-reading technique
	6.1 The necessity of a new technique
	6.2 The basis upon which the combined-reading technique is built
	6.3 The combined-reading technique

	7 Evaluation
	7.1 Experiment
	7.2 Results
	7.3 Analysis of results
	7.3.1 Evaluating the taxonomy of defects
	7.3.2 Evaluating the combined-reading technique
	7.3.3 Advantages of the combined-reading technique
	7.3.4 Disadvantages of the combined-reading technique

	8 Conclusion and future work
	Appendix A
	References

