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Abstract

A linear (qd, q, t)-perfect hash family of size s in a vector space V of order qd over a field F of order ¢
consists of a sequence @y, ..., ¢s of linear functions from V to F with the following property: for all ¢
subsets X C V there exists i € {1,..., s} such that ¢; is injective when restricted to F. A linear (qd, q,t)-
perfect hash family of minimal size d(¢# — 1) is said to be optimal. In this paper we use projective geometry
techniques to completely determine the values of ¢ for which optimal linear (q3, q, 3)-perfect hash families
exist and give constructions in these cases. We also give constructions of optimal linear (qz, q, 5)-perfect
hash families.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Projective planes; Linear perfect hash families

1. Introduction to perfect hash families

Perfect hash families were introduced by Mehlhorn [11] in 1984 as part of compiler design.
In the last few years, perfect hash families have proved useful in a large variety of applications,
in particular, there have been a number of recent applications to cryptography. For example, to
threshold cryptography (see Blackburn, Burmester, Desmedt and Wild [8] and Blackburn [6]),
to broadcast encryption (see Fiat and Naor [10]). They have also been used to improve explicit
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constructions of secure frameproof codes, key distribution patterns, group testing algorithms,
cover free families and separating systems (see Stinson, van Trung and Wei [12]).

Let s,t,n,q be positive integers and let V be a set of size n and let F be a set of size g.
A function ¢: V — F separates a subset X of V if ¢ is an injection when restricted to X. An
(n, q, t)-perfect hash family of size s is a set S = {¢1, ..., ¢s} of s functions from V to F with
the property that for all 7-subsets X C V, at least one of ¢1, ..., ¢ separates X.

We say that S is a linear perfect hash family if F can be identified with a finite field GF(q)
and V can be identified with a vector space over GF(g) in such a way that S is a set of linear
functions under this identification. Thus in the linear case, ¢ is a prime power and n = ¢ for
some integer d > 2. This paper deals with linear perfect hash families and throughout we use g
to denote a prime power. Linear perfect hash families also have a geometric interpretation which
is described in Section 2.1.

Blackburn and Wild [9] showed that if d > 2 and ¢ > 2 then a linear (qd, q, t)-perfect hash
family S has size |S| > d(t — 1). If |S| =d (¢t — 1) then S is called optimal. Blackburn and Wild
give conditions on the existence of optimal linear perfect hash families and show that an optimal
linear (qd, q, t)-perfect hash family S exists if g > (%t(t — 1))‘10_1).

Perfect hash families are hard to construct. There are few known constructions of optimal
linear perfect hash families. Blackburn and Wild give a general construction of an optimal linear
perfect hash family which works for ¢ much larger than their bound and of a certain form, namely
g=qy" """ where qo is any prime power and &; > d for 1 <i < d(r — 2). Blackburn [7]
gives a construction of optimal linear (p?, p, 4)-perfect hash families where p is a prime, p = 11
or p > 17. Wang and Xing [13] construct linear perfect hash families but their constructions are
not optimal. In [3] the authors use geometric techniques to show that optimal (qz, q,4)-linear
perfect hash families exist if ¢ = 11 or g > 17 and constructions are given for each such g.
The techniques used in the paper are geometric. In [1,2], recursive algorithms for constructing
perfect hash families are given. These algorithms need as input perfect hash families with small
parameters. This gives some motivation for constructing small perfect hash families.

In this paper we completely determine the values of (prime power) g for which optimal linear
(¢, q, 3)-perfect hash families exist, and provide constructions for all values of ¢ where they
do exist. We also find a surprising relation between these and optimal linear (¢2, ¢, 4)-perfect
hash families. We also consider the case d = 2,¢ = 5 and give constructions of optimal linear
(qz, q,5)-perfect hash families.

2. Optimal linear (¢3, ¢, 3)-perfect hash families
2.1. Geometric interpretation

Linear (qd ,q,t)-perfect hash families have a geometric interpretation described in [9]. We
detail this interpretation for the case d = 3, r = 3. For more details on projective geometry,
see [5]. We can identify the elements of V with the points of the affine geometry AG(3, g) of
dimension 3 over GF(g). For any linear function ¢: V — GF(g) and any element y € GF(q) the
elements v € V with ¢ (v) = y correspond to points in a plane of AG(3, ¢) and so ¢ corresponds
to a parallel class of planes. The function ¢ separates a set IC of 3 points of AG(d, ¢) if each point
in /C lies in a different plane in the parallel class corresponding to ¢. We can extend AG(3, q)
to a projective space PG(3, ¢g) be adding 7., a plane at infinity. The parallel planes of AG(3, q)
corresponding to ¢ all contain a line £4 of 7, and conversely, each line of 7, determines a
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parallel class of planes. Hence we may identify ¢ with the line £,. Note that for A € GF(g), ¢
and A¢ are identified with the same line £4.

So a linear (q3, q, 3)-perfect hash family S = {¢,...,¢x} corresponds to a set S =
{€gp,s ..., Ly} of k lines of m,. The property that S is a perfect hash family means that given a
set IC of 3 points in AG(3, g), there exists at least one i (1 < i < k) such that each of the planes
through £4, contain at most one point of /C. Two points of AG(3, ¢) belong to different planes of
the parallel class through {4, if and only if the projective line joining them meets 7o in a point
that is not in £g;. The shadow of a set IC = {P1, P2, P3} of 3 distinct points of AG(3, q) is the
set of three points X = {P; P; N0, 1 <i < j <3} in 7. Note that if P, P, P3 are collinear,
then the three points in X coincide, otherwise, the three points in X are distinct and collinear.
Thus S = {¢1, ..., ¢r} is a linear (q3, q, 3)-perfect hash family if for any 3-set /C in AG(3, q),
there is at least one line of S disjoint from the shadow of /. As noted in [9], if S is optimal, then
it is a necessary condition that the lines in S form a dual arc of 7, that is, no three lines in S
are concurrent (or equivalently, no 3 functions in the perfect hash family are dependent).

The elements of a perfect hash family are lines in 75 = PG(2, ¢), so we work with homo-
geneous coordinates in PG(2, g). A point of PG(2, g) has homogeneous coordinates (xg, X1, x2)
where (xg, x1, X2) = p(x9, X1, x2) for any p € GF(g) \ {0}. A line of PG(2, g) is the set of points
(x0, x1, x2) satisfying a homogeneous equation axg + bx| + cxp = 0, we usually refer to a line
using its homogeneous coordinates [a, b, c].

Note that the line £y = [a, b, c] in 7y corresponds to the linear function ¢:V — GF(q)
where ¢ (x, y,z) = ax + by + cz. This is because ¢ (x1, y1,21) = ¢ (x2, y2, z2) if and only if
¢(x1 — x2,y1 — ¥2,21 — z2) = 0. This happens if and only if the line joining the two points
(x1,y1, 21, 1) and (x2, y2, z2, 1) in AG(3, ¢) meets 7, in a point of the line [a, b, c].

2.2. Constructions

In this section we completely determine the existence of optimal linear (¢>, g, 3)-perfect hash
families and provide constructions in the cases where they exist. Note that by definition of a
linear perfect hash family, ¢ must be a prime power.

An optimal linear (¢3, g, 3)-perfect hash family S has size d(r — 1) = 6. Thus S consists of 6
lines in mo, = PG(2, ¢) such that given any 3-set K in AG(3, ¢) at least one of the lines in § is
disjoint from the shadow of IC. Without loss of generality, we only consider 3-sets X consisting
of three distinct non-collinear points. Thus the shadow of /C consists of a set X' of three distinct
collinear points in 77,. Conversely, it is easy to see that given any set X of three distinct collinear
points in 7, there exists a 3-set in AG(2, ¢) whose shadow is X'. Thus we want to find a set S
of 6 lines in PG(2, g) such that given any set X" of three collinear points, at least one of the lines
of § is disjoint from X.

We now verify that the 6 lines {€4,, £4,, €45, £p,, Los, Lg} in S must form a dual arc. Suppose
not, so suppose that £y, £4,, £y, meet in a point P. Let Q = £y, N Ly, and let R = P Q N £y.
Then {P, Q, R} is a set of 3 collinear points contained in {£4,, ..., 4.} and so S is not a perfect
hash family.

Given a set S of 6 lines, we can partition S into 3 pairs of 2 lines, and each pair of lines meets
in a point. So each partition of S gives us 3 points. If these 3 points are collinear, then we can
find a set KC whose shadow consists of these 3 points and so S is not a perfect hash family. Thus
we are looking for a set S where for any such partition, the 3 points are not collinear.

In order to construct such sets S, we found it easier to work with the dual object. That is, such
a perfect hash family corresponds to a set S of 6 points (on an arc) that do not lie on 3 concurrent
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Table 1
The 10 bisecants of S’

[0, 1,0] [1,—1,0] [a,—1,0] [0,a,—1] [a,—a—1,1]
[ab, —a — b, 1] [0, 1, —1] [b,—1,0] [0,b, —1] [b,—b—1,1]

lines. To check this condition, we look at all the sets of 3 lines partitioning the 6 points and we
require them to be non-concurrent.

Suppose we start with 5 points S’ that form an arc, we count the number of conditions that
a 6th point must satisfy in order to complete S’ to a perfect hash family. First note that the 6th
point and 8’ must form an arc, so the 6th point cannot lie on any of the (;) = 10 bisecants of S’
(that is, lines joining 2 points of S"). We show that there are another 15 lines that the 6th point
cannot lie on. Let S’ = { Py, P, P3, Py, Ps}, then for example, the 6th point cannot lie on the line
joining Py P> N P3 P4 and Ps. We need to count the number of ways that we can form such a line.
First pick a point X from &’ (X = Ps in the above example), there are 5 ways to do this. Then
partition the remaining 4 points in &’ into 2 pairs and consider the lines ¢, m joining them, there
are 3 ways to do this. As above, the 6th point cannot lie on the line through ¢ Nm and X. Thus
5 x 3 =15 lines are eliminated.

We now coordinatise the plane so that we can find these 15 eliminated lines and the
10 bisecants of S’. We do all our calculations in 7 = PG(2,q). We use the fact that
in PG(2, g), any 5-arc (5 points, no three collinear) lies on a unique conic. Further, any
conic of PG(2, g) is equivalent to the conic C = {(0,0, 1)} U {((1,a,0?): « € GF(q)}. Since
our 5 points in &’ must lie on an arc, without loss of generality we can assume that &’ =
{(0,0,1),(1,0,0), (1,1, 1), (1,a,a?), (1, b, b?)} for some distinct a, b € GF(q), a, b #0, 1.

It is straightforward to calculate the coordinates of the 10 bisecants of S’, they are given in
Table 1.

We now calculate the coordinates of the 15 eliminated lines. To find the first eliminated line,
let £ be the line joining (1, 1, 1) and (1, b, b?) and let m be the line joining (1, 0, 0) and (1, a, a®).
The line ¢ has coordinates [b, —b — 1, 1] and m has coordinates [0, —a, 1], and the point A =
£ N'm has coordinates A = (a — b — 1, —b, —ab). Finally we need to find the line joining A
and X = (0, 0, 1); this line has coordinates [b, a — b — 1, 0]. This corresponds to the first row in
Table 2. We do this for all 15 cases, and the 15 eliminated lines obtained are detailed in Table 2.

To construct a perfect hash family, we need to add a 6th point Ps to S’ which does not lie
on any of these 15 eliminated lines and such that S’ U Pg is an arc (that is, Pg does not lie on
any of the 10 bisecants of S"). We first consider the case where Pg lies on the same conic as the
points in &', that is Ps = (1, x, x2) for some x € GF(g), x # 00,0, 1,a, b, and so S’ U Pg is an
arc (so Pg does not lie on any of the 10 bisecants of S’). The condition that Pg does not lie on
the first eliminated line [, a — b — 1, 0] means that x # #. In total we obtain 15 conditions
from the 15 eliminated lines, these are listed in Table 3.

We note that these are exactly the same 15 conditions obtained in [3] for the case d =2, = 4.
For example, the first condition here means that Pg cannot be (1, #, (a_Z_l )2). This corre-

sponds to point 72 in [3] where the excluded point is (1, #, 0). Note thatifa —b—1=0,
then using the homogeneity of the coordinates, the above condition becomes Pg # (0, 0, 1) (this
corresponds to the case T2 = (0, 1, 0) in [3]). Thus we can use the constructions obtained there
for this case. We give the constructions in the next theorem; we have dualised back, so we list

the 6 lines in 7w, = PG(2, ¢) that form the perfect hash family.
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Table 2
The 15 eliminated lines

X LNm Eliminated line
1 0,0,1) (a—b—1,—b,—ab) [b,a—b—1,0]
2 0,0,1) (1 —a—b, —ab, —ab) lab,1—a—b,0]
3 (0,0,1) (=b+a+1,a,ab) [—a,—b+a+1,0]
4 (1,0,0) (1,a,ab+a —b) [0, —ab —a + b, a]
5 (1,0,0) (1,b,ab+b—a) [0, —ab — b +a, b]
6 (1,0,0) (~=1,—1,—a —b+ab) [0,a+b—ab,—1]
7 (1,1,1) (1, b, ab) [b—ab,—1+ab,1—b]
8 (1,1,1) (1,a,ab) [a—ab,—1+4+ab,1 —a]
9 1,1,1) (1,0, —ab) [—ab,ab+1,—1]
10 (,a,a?) 1,1,b) lab—a?,a?> —b,1—a)
11 (1,a,d?) (=1,0,b) [—ab,b+a%, —a]
12 (1,a,a?) (1, b, b) lab — a?b,a® — b, b — a)
13 (1,b,b%) (1,1,a) lab—b2,b% —a,1 —b]
14 (1,b,b%) (=1,0,a) [—ab,a + b%, —b]
15 1, b,b%) (1,a,a) lab — b%a,b* —a,a — b)
Table 3
The 15 conditions when Pg is on the conic
Eliminated line coordinates Condition
b
1 [—b,—a+b+1,0] R e
2 lab,1—a—b,0] x#%
3 [—a,—b+a+1,0] X#
4 [0, —ab —a +b,a] x;éabt%“*b
5 [0. —ab — b +a.b] x # dbth=a
6 [0,a+b—ab,—1] x#a+b—ab
b—b
7 [b—ab,—1+ab,1—b] x# P
8 l[a—ab,—1+ab,1—a] x# b=
9 [—ab,ab+1,—1] x#ab
2 .2 —b
10 l[ab—a*,a* —b,1 —a] x;égj
11 [—ab,b+a2,—a] x#%
12 lab — a2b,a® — b, b — a] x#b=ab
13 lab—b%,b* —a,1—b] x b=t
14 [—ab,a + b%, —b] xX#G
15 [ab—b%a,b* —a,a —b] x# 4=ab

Theorem 2.1. Optimal linear (q>, q,3)-perfect hash families exist for prime powers g = 11,

q > 13. The following are examples for each such q.

(A) Let g = p", where p =11 or p is a prime greater than 13. Then {[0, 0,
[1,2, 22], [1,3, 32], [1,5, 52]} is a linear (q3, q, 3)-perfect hash family.

1], [1,0,0], [1, 1, 1],
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(B) Letq = rlor>4,i>2 Let {0,1,a,b} S GF(r) and let a € GE(r!) \ GF(r). Then {[0, 0, 1],
[1,0,0], [1,1,1], [l,a,az], 1,5, b2], [1,05,052]} is a linear (q3, q, 3)-perfect hash family.

(C) Let g =2", h =5, and let a be a generator of GF(2"). Then {[0,0, 1], [1,0,0], [1,1,1],
1, a, az], [1, a?, a4], [1, at, as]} is a linear (q3, q, 3)-perfect hash family.

(D) Let g =3" h >3, and let a be a generator of GF(3"). Then {[0,0, 1], [1,0,0], [1,1, 1],
1, a, az], [1, a?, Ol4], [1, at, ozg]} is a linear (q3, q, 3)-perfect hash family. (For h =3 and
h =5, a can be any generator, but for h = 4, a must be chosen carefully.)

Proof. This follows directly from the constructions in [3]. O

We note that it is difficult to explain geometrically why the conditions for the cases d = 2,
t =4 and d = 3, t = 3 are the same. However, if we look at perfect hash families as sequences
(using the model described in [9]) then it is possible to explain this surprising relation. The reader
should consult [4] for a detailed description of the sequence model of perfect hash families, and
an explanation of the relationship between these two cases.

To investigate the existence of optimal linear (¢, ¢, 3)-perfect hash families for the remaining
values of g, we need to consider the case when the 6th point Pg is not on the same conic as the
points in &’. So we need to find a point Ps which does not lie on any of the 15 eliminated lines in
Table 2 and such that S’ U Pg forms an arc (that is Ps does not lie on any of the 10 bisecants of S’
given in Table 1). There are two forms that the coordinates for Pg can take, either P = (1, x, y)
for some x, y € GF(q) or Ps = (0, 1, z) for some z € GF(g). To construct a perfect hash family,
we need to find a point Pg that does not lie on any of the 25 lines in Tables 1 and 2. We can
construct a perfect hash family when ¢ = 13 by considering a point Pg of the form Pg = (1, x, y).
The 25 eliminated lines give us 25 conditions on x and y. By checking all these 25 conditions,
we can find a construction that works for ¢ = 13, namely whena =2,b=3,x =4,y ="17.

Theorem 2.2. There exists an optimal linear (q3 ,q,3)-perfect hash family when g = 13. The
following is an example: {[0,0, 1], [1,0,0], [1,1,1], [1,2,2?%], [1, 3, 3%], [1,4, 7]}

The cases ¢ < 11 need to be checked individually, and it can be shown that if g =
2,3,4,5,7,8,9, then given any 5-set S’ = {(0,0, 1), (1,0,0), (1, 1, 1), (1, a, a?), (1, b, b*)}, for
a,b € GF(q), every point of PG(2, g) lies on at least one of the 25 eliminated lines listed in
Tables 1 and 2. Thus, there are no optimal linear perfect hash families for these values of g. In
summary, we have proved the following existence result.

Theorem 2.3. Optimal linear (>, q, 3)-perfect hash families exist if and only if q is a prime
powerand q > 11.

3. Optimal linear (¢2, ¢, 5)-perfect hash families

A linear (¢2, g, t)-perfect hash family has a geometric representation in the projective plane.
We can identify the elements of V with points in AG(2, ¢) and a linear function ¢: V — GF(q)
corresponds to a point Py on £« Let K be a set of ¢ points in AG(2, g). The (;) lines determined
by a pair of points of IC meet £, in (;) (not necessarily distinct) points on £, called the shadow
of KC. If P, is not in the shadow of /C, then all the lines through Py meet K in at most one point,
so ¢ separates K. A set S ={Py,, ..., Py} of k points of £, is a linear (qz, q, t)-perfect hash
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family if for all sets /C of ¢ points in AG(2, g), at least one point of S is not contained in the
shadow of K.

In this section we give constructions of optimal linear (g2, ¢, 5)-perfect hash families for ¢
much smaller than the known bound. We use a subfield construction and first review the known
subfield constructions of linear (g2, ¢, t)-perfect hash families.

3.1. Known subfield constructions of (>, q, t)-perfect hash families

An optimal linear (g2, ¢, 4)-perfect hash family has size d(t — 1) = 6, and so consists of
6 points on the line at infinity. In [3], it is shown that they exist for ¢ = 11 and all prime powers
q > 13, and constructions are given for all values of g where they exist. One of the key construc-
tions is the following subfield construction.

Theorem 3.1 (Subfield Cons;‘ruction [3]). Let g = ri,r>4,i >2. Let {0,1,a, b} € GFE(®r)
be distinct and let @ € GE(r') \ GF(r). Then {(0,1,0), (1,0,0), (1,1,0), (1,a,0), (1,b,0),
(1, ,0)} is a linear (g2, q, 4)-perfect hash family.

Geometrically, this corresponds to the following subplane construction. We can naturally em-
bed PG(2, r) as a subplane of PG(2, rb). Any subset S of ¢, that has 5 distinct points in PG(2, r)
and one point in PG(2, ') \ PG(2, r) is a (¢2, g, 4)-perfect hash family. This can be proved by
showing that if /C is any set of 4 points in AG(2, ') whose shadow contains 5 points in PG(2, r),
then we can find a collineation that fixes £, and maps /C to 4 points in AG(2, r). Thus the entire
shadow of K is contained in PG(2, r) and the given set S is not contained in the shadow of /C,
and so is a perfect hash family.

The construction of optimal linear perfect hash families given by Blackburn and Wild in [9]
is also a subfield/subplane construction. In the case d = 2, the geometric interpretation of their
construction is as follows. Suppose we have a chain of subfields Fy < F1 < --- < Fp(;—2) such
that |F;—2)| = ¢ and [F; : F;_1] > 2. Then in PG(2, F>(;—2)) = PG(2, g), we have a chain of
subplanes PG(2, Fy), PG(2, F1), ...,PG(2, g). We can form an optimal linear (qd, q,t)-perfect
hash family by taking one point on the line at infinity from each of the subplanes (that is, one
point of £+, from PG(2, Fp), one point of £+, from PG(2, F1) \ PG(2, Fp) and so on). Hence this
construction needs a large g of a certain form.

In practice, a smaller subfield construction works as the example with r = 4 shows above. We
show here how to optimize the subfield construction for the case = 5 and so obtain constructions
for much smaller ¢ than previously known. We first note that an optimal linear (¢2, ¢, 5)-perfect
hash family has size d(r — 1) = 8. Blackburn and Wild [9] proved that they exist if ¢ > 108,
further, they gave the above subfield construction. By improving this construction, we have ex-
amples for much smaller g.

3.2. Subfield constructions of (g%, q, 5)-perfect hash families

Before describing our constructions, we prove the following result about the structure of op-
timal linear (¢2, ¢, 5)-perfect hash families.

Lemma 3.2. If S is an optimal linear (g2, q, 5)-perfect hash family, then any subset of 6 points
of S is an optimal linear (q%, q, 4)-perfect hash family.
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Proof. Let S be a set of 8 points on £, such that at least one 6-subset S’ of S is not a (¢, ¢, 4)-
perfect hash family. We show that there is a set of 5 points in AG(2, ¢) whose shadow contains S
and so S is not a perfect hash family. If S’ is not a (g2, ¢, 4)-perfect hash family, then there
exists a set ' of 4 points in AG(2, ¢) whose shadow contains S’. Let {X1, X2} =S\ & and
K1, Ky € K, then Ks = X1 K| N X3K; is a point of AG(2, ¢) and the shadow of K = K’ U K5
contains &S, thus S is not a perfect hash family. 0O

We describe two subfield constructions of optimal linear (q2, q, 5)-perfect hash families. Note
that for simplicity we state these constructions using field extensions of degree 2. However, they
are valid for any extension of degree > 2.

Construction 1. Let g = rra prime power. Let a, b, c € GF(r) such that in PG(2,r), the 6
points (0, 1,0), (1,0,0), (1, 1,0), (1,a, 0), (1,b,0), (1, c,0) form a (r2, r, 4)-perfect hash fam-
ily. Let « € GF(r?) \ GF(r) and B € GF(r*) \ GF(r?), then the following 8 points on Ly in
PG(2, r*) form a (¢%, q, 5)-perfect hash family:

0,1,0, (1,0,0), (1,1,0), 1,a,0), 1,5,0), (1,¢,0), (1,a,0), (1,8,0).

Construction 2. Let g = 2 ra prime power. Let a,b,c,d € GF(r) and suppose the seven
points (0,1,0), (1,0,0), (1,1,0), (1,a,0), (1,5,0), (1,¢,0), (1,d,0) on £ in PG(2,r) are
such that any 6 of them forms a linear (r?,r, 4)-perfect hash family. Let a € GF(r?) \ GF(r).
Then the following 8 points on £ in PG(2, r?) form a (g2, q, 5)-perfect hash family:

0,1,0), (1,0,0), (1,1,0), 1,a,0), (1,5,0), (1,¢,0), (1,d,0), (1, 0).

Before proving these constructions work, we provide a geometric description of them us-
ing subplanes. To use Construction 1, we naturally embed PG(2, r) in PG(2, r?) in PG(2, r%)
(all with the same line at infinity ). Let S be a set of 8 points on £+, satisfying the follow-
ing: S consists of 6 points in PG(2, r) that form a (g2, ¢, 4)-perfect hash family; one point of
PG(2,r%) \ PG(2, r); and one point of PG(2, r*) \ PG(2, r2). Then S is a (¢2, g, 5)-perfect hash
family. To use Construction 2, we naturally embed PG(2, r) in PG(2, r2) (with the common
line at infinity £). Let S’ be a set of 7 points of £s, N PG(2, r) such that any 6 of them is a
(4%, q, 4)-perfect hash family. Then S’ together with any point of £+, in PG(2, r2)\PG(2, r) is
a (qz, q,5)-perfect hash family.

Proof of Constructions. By Theorem 3.1, Construction 1 contains the 7 points (0, 1,0),
(1,0,0), (1,1,0), (1,a,0), (1,5,0), (1,¢,0), (1, 0) in PG(2,r?) such that any 6 are a
(r2, r, 4)-perfect hash family. Hence, Construction 1 is a special case of Construction 2, so we
only need to prove Construction 2.

Geometrically, we argue that if 5 points in AG(2, ¢) have a shadow that contains a set S” of
7 points of £+, in PG(2, r), then all points of the shadow are in PG(2, r). Let K be a set of 5
points in AG(2, ¢) whose shadow contains S’ a set of 7 points of £, in PG(2, r). We consider
the case where the shadow of /C has 10 points on £, (the cases where the shadow of K has less
than 10 points are proved similarly). Hence there are 10 2-secants of K that meet £, in distinct
points. Those 2-secants which contain a point of S’ are called S’-secants, so K has 7 §’-secants.
Each point of K lies on 1, 2, 3 or 4 §’-secants, and it is easy to see that there are only 4 ways
to distribute the S’-secants among the points of K. These four cases are illustrated as graphs
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TN

Fig. 1. The 4 cases for the S’-secants.

K;

K
K, >

Fig. 2. The S’-secants for case B.

in Fig. 1 where the vertices are the points of K and the edges are the S’-secants. For example,
case A has one point of K lying on 4 &’-secants, three points of X lying on 3 &’-secants and one
point of K lying on 1 &’-secants.

We first note that case A cannot occur, since then the four points of K that lie on 3 or 4 §’-
secants form a 4 arc whose shadow of 6 points is contained in &', and so S’ contains a set of
6 points that is not a (r2, r, 4)-perfect hash family, a contradiction.

Consider case B, we note that there is only one way to draw a graph consisting of 5 vertices,
such that 4 of the vertices lie on 3 edges, and the remaining vertex lies on 2 edges. Thus up to
isomorphism, there is only one configuration in this case. Without loss of generality, we can label
the points of K so that K, K3, K3, K4 each lie on 3 §’-secants and K5 lies on 2 S’-secants and
such that K1 K5 is an &’-secant. Figure 2 shows the 5 points and the lines in the figure indicate
the S’-secants.

Now, the translation group of AG(2, g) consisting of the automorphisms of AG(2, ¢) fixing
pointwise the line at infinity is transitive on the points of AG(2, ¢) and for any point of AG(2, q),
the stabilizer of that point is transitive on the points of the (fixed) lines through it. Hence we can
find a collineation that fixes £, pointwise and maps K| and K> to points in AG(2, r). It is now
easy to check that all the points of IC must be in AG(2, r). For example, K, K; € AG(2, q),
and K> K4 and K| K4 are both &’-secants, hence they are both lines of AG(2, r), and so their
intersection K4 must be in AG(2, r). Similarly, K3, K5 € AG(2,r). So K C AG(2, r), and hence
all of the points of the shadow of /C are in AG(2, r) and so S cannot contain the shadow of /.
Cases C and D are similar. O
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Now we want to determine the values of g for which perfect hash families arise from these
constructions. We prove the following existence results, and the proof describes the construction
of a perfect hash family for each g where it exists.

Theorem 3.3.

(1) There exists an optimal linear (¢*, q, 5)-perfect hash family if ¢ = r*, where r is a prime
power satisfying r =11 orr > 13.

(2) There exists an optimal linear (g*, q, 5)-perfect hash family if g = r?, where r is a prime
power satisfying char GF(r) > 31.

Proof of part (1). We use Construction 1 for part (1), and so we need an optimal linear r2,r, 4)-
perfect hash family. In [3] it is shown these exist for all prime powers r where r = 11 or r > 13.
Further, constructions are provided for each value of » where they exist. Hence we can use these
construction with Construction 1 to obtain optimal linear (g2, ¢, 5)-perfect hash family if ¢ = r*,

r =11 or r > 13. Note that the smallest value there exists for is ¢ = 114 =14,641. O

The proof of part (2) uses Construction 2 and is lengthys; it is proved in the next subsection.
Note that the smallest example of a (¢2, ¢, 5)-perfect hash family in this case is for ¢ = 312 =
961. This is much smaller g than the known existence bound of 10%.

3.3. Proof of Theorem 3.3(2)

To prove Theorem 3.3(2), we need to show that if » > 31, then there exists a set of 7 points
of £ in PG(2, r) such that any 6 of them forms a linear (r2, r, 4)-perfect hash family. We call
such a family of 7 points a suitable family.

We give an easy counting argument using the results from [3] that show a suitable family
will exist if 7 > 96. Let S be a set of 6 points on £« that form a (r2, r, 4)-perfect hash family.
A subset S’ of 5 of these points eliminates 15 points that cannot be added to S’ to form a perfect
hash family [3]. So in total, there are (2) x 15 = 90 points eliminated. So if ¢ > 6 + 90 = 96
then there will be a point P on £ such that SU P is a set of 7 points such that any 6 form a
(%, r, 4)-perfect hash family.

We want to construct suitable families, so we start with a particular (2, r, 4)-perfect hash
family and calculate these 90 points. We consider the following set of six points S = {(0, 1, 0),
(1,0,0), (1,1,0), (1,2,0), (1,3,0), (1,5,0)} of £. This set is a (rz, r, 4)-perfect hash family
for r = 11 and r any prime power r > 13 as shown in [3]. We want to find a seventh point
on £ to add to S to make a suitable family (that is, so that every six points form a perfect
hash family). There are 6 cases to consider, for example, the first case considers the 5 points
S1=1{(1,0,0),(1,1,0),(1,2,0),(1,3,0),(1,5,0)} =S\ {(0, 1,0)} and finds the 15 points of
£~ that cannot be added to S i to form a perfect hash family. We use the results from [3] to find the
coordinates of these 15 points. We obtain in total 90 points we cannot use. Table 4 lists the 6 cases
and the resulting 15 points in each case. The 6 cases in the table are S| =S\ {(0, 1,0)}, S} =
S\{(L, 5,00} S =S\ {(1,3,0)}, Sy =S\ {(1,2,0)}, S5 =S\ {(1, 1, 0)}, Sg =S\ {(1,0,0)}.

If we assume that the underlying field has characteristic larger than 7, then we can divide
these homogeneous point coordinates by any of —1, 2, 3, 7. This reduces these 90 points to the
following set of points which we have divided into 8 subcases in Table 5. Note that by casual
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Table 4
The 90 forbidden points

S| S S; S Ss S
T1 (1,11,0) 0,1,0) (=2,2,0) (—=1,3,0) 0,1,0) (=1,1,0)
T2 (7,19,0) 2,3,0) 4,5,0) (3,5,0) (4,10,0) (3,7,0)
T3 (13,29,0) 4,6,0) (6,10, 0) (7,15,0) 6,15,0) (5,13,0)
T4 (6,24,0) 3,7,0) (5,13,0) (5,17,0) (5,19,0) (4,14,0)
T5 (6,20,0) 2,5,0) 2,7,0) (3,13,0) (3,11,0) (2,8,0)
T6 9,15,0) (1,—-1,0) (1,-3,0) (1,-7,0) 2,1,0) (1,-1,0)
T7 (5,9,0) 2,3,0) 4,5,0) (4,10,0) (3,5,0) (3,7,0)
T8 (—-1,5,0) (1,4,0) (1,8,0) (2,12,0) (1,9,0) 1,7,0)
T9 (8,4,0) (1,-3,0) (3,-5,0) (2,-10,0) 2,-5,0) 2,-2,0)
T10 2,-4,0) (—1,—4,0) (—3,-8,0) (=2,—12,0) (=2,-9,0) (-2,-8,0)
T11 (=7,-5,0) (—=1,1,0) (—-1,3,0) (=2,2,0) (—1,4,0) (—=1,1,0)
T12 (=7,-9,0) (-2,—1,0) (—4,-3,0) (—4,-2,0) (—=3,—4,0) (-3,-5,0)
T13 (1,—-15,0) (-1,-6,0) (—1,-10,0) (—1,-15,0) (-2,-15,0) (-1,-9,0)
T14 (—8,-20,0) (=2,-3,0) (=2,-5,0) (-3,-5,0) (-=3,-10,0) (=2,-6,0)
T15 (—14,-24,0) (-3,-2,0) (—=5,-2,0) (—5,-3,0) (—=5,—6,0) (—4,—-6,0)
Table 5
The 8 subcases
Case
1 0,1,0)
2 (1,1,0), (1,4,0), (1,6,0), (1,7,0), (1, 8,0), (1,9,0), (1, 10,0), (1, 11,0), (1, 15,0)

(1,-1,0), (1,-2,0), (1, =3,0), (1,—4,0), (1, —-5,0), (1,-7,0), (1,—15,0)

3 (2,-5,0),(2,1,0),(2,3,0), (2,5,0), (2,7,0), (2,9,0), (2,15,0)
4 (3,-5,0), (3,2,0), (3,4,0), (3,5,0), (3,7,0), (3,8,0), (3, 10,0), (3, 11,0), (3, 13,0)
5 4,3,0), 4,5,0)
6 (5,2,0), (5,3,0), (5,6,0), (5,9,0), (5,13,0), (5,17,0), (5,19, 0)
7 (7,5,0), (7,9,0), (7, 12,0), (7, 15,0), (7, 19,0)
8 (13,29,0)

inspection of the table, we can see that the points (1, 4, 0), (1, 6,0), (1,7,0), (1,8,0), (1,9,0),
(1, 10,0), (1,11, 0), (1, 15, 0) can never be added to our set S to make a suitable family.

Suppose the characteristic of the underlying field is p, we show that for most p, we can add
the point (1, 12, 0) to make a suitable family.

Theorem 3.4. The set {(0,1,0),(1,0,0),(1,1,0),(1,2,0),(1,3,0),(1,5,0),(1,12,0)} is a
suitable family for p =37 and p > 53 (except p =179).

Proof. To add the point (1, 12, 0) to the set S = {(0, 1, 0), (1,0, 0), (1, 1,0), (1,2,0), (1,3, 0),
(1,5,0)} to make a suitable family, we need to show that the point (1, 12, 0) is never equivalent
mod p to any of the points listed in cases 1-8 in Table 5.

In case 1, (0, 1,0) is never (1, 12, 0). For case 2, (1,12,0) = (1, —1,0) if and only if 12 =
—1 mod p, if and only if p = 13 (as p is prime). We repeat this process for all the points in
this case and get the following forbidden values of p: 2, 3, 7, 11, 13, 17, 19, 23. For case 3,
(1,12,0) = (2,24, 0). For the first point, we have (2,24,0) = (2, —5,0) if and only if 24 =
—5 mod p, if and only if p = 29. Repeating this gives the following forbidden values: 3, 5, 17,
19, 23, 29. The forbidden values for case 4 are 2, 5, 7, 13, 17, 23, 29, 31, 41. For case 5 we get 3,
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5, 43; for case 6 we get 2, 3, 13, 19, 29, 41, 43, 47; for case 7 we get 2, 3, 5, 23, 79 and for case 8
we get 11, 29. Thus, the forbidden values of p are p =79 and p <47, except p=37. O

Using a similar technique, we find a suitable family for the remaining characteristics p > 31.
Theorem 3.5.

(1) {(0,1,0),(1,0,0),(1,1,0),(1,2,0),(1,3,0), (1,5,0), (1,16,0)} is a suitable family for
p=47,79.

(2) {(07 ]’O)v (1707 O)? (]1 170)1 (1’ 21 O)’ (17 350)7 (17570)3 (1’ 201 O)} is a suitable family for
p=41,43.

3) {(0,1,0),(1,0,0),(1,1,0),(1,2,0),(1,3,0), (1,5,0), (1,21,0)} is a suitable family for
p=31L

We note that computer tests have shown that there are no suitable families containing
{(0,1,0),(1,0,0), (1,1,0), (1,2,0), (1, 3,0), (1,5,0)} for p < 31. However, it may be possi-
ble to construct suitable families for smaller characteristic p by taking a different set of 6 initial
points. We chose these 6 points to work with as they are a linear (g2, ¢, 4)-perfect hash family
for a large set of ¢: namely all g = p", p > 11, p # 13.

Proof of Theorem 3.3(2). By Theorems 3.4 and 3.5, there exists a suitable family for all
prime power r = p”, p prime, p > 31. That is, there exists a set of 7 points on £+, in PG(2, ¢)
such that any 6 of them form a (r2, r, 4)-perfect hash family. Hence we can use Construction 2
to construct a (¢2, g, 5)-perfect hash family for all ¢ = r2, where r is a prime power satisfying
charGF(r) > 31. O

4. Conclusion

In this article, we used geometric techniques to investigate the existence of and to construct
optimal linear (¢, ¢, t)-perfect hash families. We completely answered the question of exis-
tence in the case d = 3, t = 3, and provided constructions for all ¢ where they exist. We also
gave constructions for the case d = 2, t = 5 for much smaller g than previously known, and
much smaller than the known existence bound. In [3], the case d = 2, t = 4 is solved using
similar techniques. It seems likely that larger values of d and ¢ will not be accessible by these
geometric techniques as the number of conditions to calculate quickly grows large. A general
technique for constructing perfect hash families with small parameters would be useful. Moti-
vation is provided by articles such as [1,2] which give algorithms that use perfect hash families
with small parameters to construct other perfect hash families.

We note that in each case we studied, optimal linear perfect hash families exist for much
smaller ¢ than current bounds indicate, so a natural question is: can the bounds in [9] be im-
proved?
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