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a b s t r a c t

Living organisms not only repair DNA damage induced by environmental agents and endogenous
cellular metabolites, but have also developed mechanisms to survive in the presence of otherwise
lethal lesions. DNA-damage tolerance (DDT) is considered such a mechanism that resumes DNA syn-
thesis in the presence of replication-blocking lesions. Recent studies revealed that DDT in budding
yeast is achieved through sequential ubiquitination of DNA polymerase processivity factor, prolifer-
ating cell nuclear antigen (PCNA). It is generally believed that monoubiquitinated PCNA promotes
translesion DNA synthesis, whereas polyubiquitinated PCNA mediates an error-free mode of lesion
bypass. This review will discuss how ubiquitinated PCNA modulates different means of lesion
bypass.

� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V.
1. Introduction

Proliferating cell nuclear antigen (PCNA) is an auxiliary factor of
DNA polymerases and forms the eukaryotic DNA sliding clamp.
Due to its cyclical expression profile during the different phases
of the cell cycle, PCNA was initially named cyclin to indicate its
putative role in regulating cell proliferation [1–3]. PCNA is charac-
terized by its trimeric ring-shaped structure [4]. Three PCNA
monomers are associated to form a closed ring consisting of two
sides. The topologically identical N and C termini of PCNA mono-
mer are connected on one side while the other side contains sev-
eral b sheets linked by loops [4]. The ring-shaped structure of
PCNA is evolutionarily conserved and belongs to the family of
b-clamps [4,5]. Rich in lysine and arginine residues, the inner ring
of PCNA is positively charged, which allows for the effective encir-
cling around the negatively charged duplex DNA. Recent studies
reveal that PCNA is not only essential for replication in eukaryotes,
but also plays critical roles in several DNA damage-responsive
pathways [6]. In this review, we summarize recent advances in
the understanding of how mono- and polyubiquitinated PCNA
functions in DNA-damage tolerance (DDT) in eukaryotes.
al Societies. Published by Elsevier
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2. PCNA and DNA replication

PCNA is a DNA polymerase processivity factor. It functions as a
loading scaffold for the replication machinery through association
with various replication-related factors [6]. Three conserved pep-
tide sequences have been identified to mediate the interaction of
proteins with PCNA, including the PCNA-interacting peptide (PIP
box) [7], the KA box [8], and the ABH2 PCNA-interacting motif
(APIM) [9]. During DNA replication, the chaperonin-like replication
factor C (RFC) binds to the RNA primer-DNA template junction and
loads PCNA onto DNA [10,11]. Upon PCNA loading, Pola is released
and Pole is loaded to mediate leading-strand elongation [12]. For
the discontinuous lagging strand, firstly the short Okazaki frag-
ments have to be produced by Pola and Pold [13]. Next, the initia-
tor RNA sequences are removed from the newly synthesized
Okazaki fragments by Flap structure-specific endonuclease-1
(FEN-1) [14]. The processed Okazaki fragments are then ligated
via DNA ligase I. During this process, PCNA can directly interact
with Pold to stimulate its enzymatic activity while it encircles
DNA [15–17]. Similarly, PCNA can also interact with Pole, FEN-1
and DNA ligase I to stabilize their association with DNA and
increase their enzymatic activities [18–21].

3. DNA damage and PCNA ubiquitination

Living organisms are constantly challenged by various sources
of DNA damage. Environmental agents including radiation and
B.V. Open access under CC BY-NC-ND license.
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chemical mutagens, and endogenous cellular metabolites can
cause DNA damage [22]. Some types of DNA damage, such as UV
irradiation-induced lesions, may result in interference with DNA
replication. This is due to the failure of the highly stringent replica-
tive DNA polymerases to accommodate modified DNA template,
resulting in the blockade of the progression of the DNA replication
fork. Under normal conditions, most DNA lesions can be removed
by DNA repair pathways such as nucleotide excision repair and
base excision repair. However, failure in lesion correction by these
pathways prior to S phase in the cell cycle could pose severe con-
sequences leading to genome instability or even cell death. Cells
have evolved sophisticated lesion-bypass mechanisms to deal with
this threat and ensure survival by allowing DNA synthesis in the
presence of replication-blocking lesions. These lesion-bypass path-
ways in the budding yeast Saccharomyces cerevisiae belong to the
RAD6 epistasis group [23–25] and have been classified as error-
prone translesion synthesis (TLS), error-free TLS and error-free
postreplication repair [26] or DNA damage tolerance (DDT). Inter-
estingly, all three bypass pathways require PCNA, and different
covalent modifications of PCNA by ubiquitin (Ub) or a small Ub-
like modifier (SUMO) determine which tolerance pathway will be
utilized in the face of unrepaired lesions [27].

Ubiquitination is a chemical process by which Ub is covalently
attached to the Lys residue of a target protein by three enzymes:
Ub-activating enzyme (Uba or E1), Ub-conjugating enzyme (Ubc
or E2) and Ub ligase (E3) [28]. Substrate proteins can be modified
by a Ub monomer either at one Lys residue (monoubiquitination)
or multiple Lys residues (multi-monoubiquitination). Proteins
can also be modified by a Ub chain where Ub moieties sequentially
link to a previous Ub (polyubiquitination) [29]. However, whether
monoubiquitination is the prerequisite for polyubiquitination re-
mains unclear. Although all 7 Lys residues (K6, K11, K27, K29,
K33, K48 and K63) in Ub have been shown capable of forming
poly-Ub chains [30,31], the physiological significance of some
poly-Ub chains in living cells is not fully understood. The most
characterized function of Ub modification is the K48-linked poly-
Ub chain that targets proteins for degradation by the 26S protea-
some [29]. On the other hand, the non-canonical K63-linked
poly-Ub chain plays a role in regulating various signaling pathways
largely in a proteolysis-independent manner [32]. A paradigm of
DNA-damage response through covalent modifications of PCNA
was discovered by Stefan Jentsch and his colleagues [33], in which
PCNA can be either monoubiquitinated by the E2-E3 complex
Rad6–Rad18 at the K164 residue or further modified with K63-
linked Ub chain by another E2-E3 complex, Mms2-Ubc13-Rad5
(Fig. 1). Recently, the stepwise PCNA monoubiquitination and poly-
ubiquitination by the two complexes was reconstituted in vitro
[34], further confirming the above genetic model. In addition, the
same K164 residue of PCNA can also be sumoylated by yet another
E2-E3 complex, Ubc9-Siz1 [33,35].

3.1. PCNA monoubiquitination

Rad6 is a multi-functional E2 [36] and its role in DNA-damage
response is dependent on its physical interaction with Rad18, a
RING finger-containing E3 ligase [37,38]. Several observations pro-
vide strong evidence that the Rad6–Rad18 complex is recruited to
the stalled replication site to monoubiquitinate PCNA. Firstly, in
both yeast and mammalian cells, Rad18 is capable of binding to
single-stranded DNA (ssDNA), and this process appears to be med-
iated by ssDNA-binding replication protein A (RPA) [37,39]. Sec-
ondly, Rad18 can form a tight complex with Rad6 through its
Rad6-binding domain (R6BD) (residues 371–410 in yRad18 [40]
and 340–395 in hRad18 [41]), although the N-terminal RING-finger
domain may also independently bind Rad6 [42,43]. Thirdly, puri-
fied human Rad18 and Rad6B can efficiently monoubiquitinate
PCNA in vitro [41] and ectopic over-expression of hRAD18 induces
PCNA monoubiquitination [44]. Finally, RAD18 deletion in human
HCT116 cells results in the failure of PCNA monoubiquitination
in response to DNA damage [45], and Rad6A/6B depletion by siRNA
dramatically reduced monoubiquitinated PCNA in human cells
[41].

PCNA ubiquitination can be induced by various DNA-damaging
agents, such as UV irradiation, methyl methanesulfonate (MMS),
mitomycin C (MMC), hydroxyurea (HU) and the bulky adduct-
forming genotoxin benzo[a]pyrene dihydrodiol epoxide (BPDE)
[44,46]. In addition, both types of UV irradiation-generated DNA le-
sions, cyclobutane pyrimidine dimers (CPD) and 6-4 photoprod-
ucts (6-4PP), are capable of inducing PCNA monoubiquitination
[46]. In contrast, agents that generate double-stranded breaks
and block the cell cycle without stalling DNA replication forks, such
as bleomycin, camptothecin, nocodazole or ionizing radiation, do
not induce PCNA monoubiquitination [46]. This observation is con-
sistent with a model that PCNA monoubiquitination is dependent
on Rad18 to recognize ssDNA [37]. Notably, ionizing irradiation re-
sults in inconsistent response in different organisms. For example,
PCNA ubiquitination is detected in Schizosaccharomyces pombe but
not in mammalian cells when subjected to ionizing radiation [46–
48]. This discrepancy is probably due to the exceptional resistance
of S. pombe to ionizing radiation that allows very high doses to be
used, at which a wide spectrum of DNA lesions may be induced
[22].

Replication stresses and spontaneous DNA damage may also in-
duce PCNA ubiquitination. A classic example is that deletion of
POL32, encoding the non-essential subunit of Pold in budding yeast,
induces PCNA ubiquitination [49]. Monoubiquitinated PCNA was
also detected in undamaged cells [50,51], probably due to the high
frequency of spontaneous DNA damage or genetic defects in cer-
tain types of cultured cells.

In addition to DNA damage and replication stress, loading of the
PCNA homotrimeric ring onto DNA by RFC is a prerequisite for
PCNA ubiquitination [52]. Cell-cycle checkpoint signaling path-
ways are also involved in regulating PCNA ubiquitination. For
example, one report indicates that in BPDE-treated human cells,
monoubiquitination of PCNA is regulated by the ATR/Chk1 signal-
ing pathway [44]. However, reports from several other groups sug-
gest that PCNA monoubiquitination is independent of ATR, but
requires Chk1, Claspin, and Timeless [46,53,54]. Although it was
suggested that these factors function in stabilizing stalled replica-
tion forks in response to DNA damage, the precise mechanism
underlying their regulation of PCNA ubiquitination remains un-
known. Tumor suppressor proteins p53 and p21 are also involved
in regulating PCNA ubiquitination, probably acting as repressors to
inhibit ubiquitin modification of PCNA [55–58].

Monoubiquitination is a reversible process [59]. A class of pro-
teases, also known as deubiquitinating enzymes (DUBs), function
as negative regulators by removing the Ub tag from modified pro-
teins. Ubiquitin-specific protease 1 (Usp1) is responsible for
deubiquitinating monoubiquitinated PCNA [60]. A high dose of
UV irradiation diminishes the level of Usp1 through autocleavage,
which correlates with the increase of monoubiquitinated PCNA
[46,60,61]. Depleting Usp1 in HeLa cells by siRNA knockdown
results in an elevation of monoubiquitinated PCNA upon UV
irradiation [51]. These findings may provide an explanation for
UV-induced accumulation of monoubiquitinated PCNA. However,
the Usp1 loss concomitant with the increased PCNA monoubiquiti-
nation was not detected in MMS- or MMC-treated mammalian
cells [46]. One possible explanation for this observation is that
different DNA-damaging agents employ distinct mechanisms to
regulate Usp1 through differentially regulating its partners, such
as UAF1 [61]. Interestingly, a significant increase in monoubiquiti-
nated PCNA was also detected in the absence of damage in



Fig. 1. The role of PCNA in replication and DNA-damage tolerance. PCNA is involved in genomic DNA synthesis as a loading scaffold for the replication machinery. Upon DNA
damage, the Rad6-Rad18 ubiquitination complex mediates at least three different lesion bypass pathways, namely Polf-dependent mutagenic TLS, Polg-dependent error-free
TLS and Mms2-Ubc13-Rad5-dependent error-free postreplication repair. All three lesion-bypass pathways appear to require Ub-modified PCNA. Physical and genetic
interactions between the two TLS pathways are indicated by a double arrow. This model is primarily based on studies in yeast.
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Usp1-depleted cells [51]. This finding demonstrates the important
role of Usp1 in repressing PCNA monoubiquitination in normal hu-
man cells. Whether Usp1 is responsible for deubiquitinating poly-
ubiquitinated PCNA remains to be determined, although one study
did detect an elevated PCNA polyubiquitination upon Usp1 deple-
tion [51].

3.2. PCNA polyubiquitination

PCNA modification with K63-linked Ub chain is mediated by the
Mms2-Ubc13-Rad5 complex [33]. Mms2 is a member of the Ubc
variant (UEV) family of proteins [62] and shares significant se-
quence similarity with other Ubcs [63]. Due to the lack of the active
Cys residue, Mms2 does not possess Ub-conjugating activity [64].
Ubc13 is the only identified E2 to mediate PCNA ubiquitination
with K63-linked poly-Ub chain; this enzymatic activity requires
UEV as a co-factor [65]. Rad5 belongs to the SWI/SNF superfamily,
and it functions as a RING-domain-containing E3 in the process of
PCNA polyubiquitination [33]. The notion that both Rad6–Rad18
and Ubc13-Mms2-Rad5 complexes are required for PCNA poly-
ubiquitination in yeast is supported by several lines of evidence.
First of all, PCNA interacts with both Rad5 and Rad18. Moreover,
deletion of RAD6 abolishes not only monoubiquitination but also
polyubiquitination on PCNA upon DNA damage [33]. Furthermore,
polyubiquitinated PCNA is absent in UBC13-, MMS2- or RAD5-mu-
tated yeast cells treated with DNA-damaging agents, but mono-
ubiquitinated PCNA remains [33]. Structural analyses revealed
the stable Ubc13-Mms2 complex formation through hydrophobic
interaction [66,67] and the site-specific mutagenesis analyses of
the interface residues revealed the molecular basis by which
Mms2 interacts specifically with Ubc13 but not other Ubcs [68].
More interestingly, NMR studies discovered the non-covalent
interaction between Mms2 and Ub that facilitates K63-linked
di-Ub chain formation with the Ubc13-Ub thiolester [64]. Since
functional human homologues of yeast Rad5 [69,70], Ubc13 [71]
and Mms2 [62,72,73] have been identified, and polyubiquitinated
PCNA is detected in cultured mammalian cells [51,74], it is gener-
ally believed that PCNA polyubiquitination is conserved through-
out the eukaryote kingdom.
4. Roles of PCNA ubiquitination in DNA-damage tolerance

DNA-damage tolerance (DDT) is a molecular mechanism that
does not restore damaged DNA to the correct sequence but allows
completion of DNA replication across damaged DNA. A group of
specialized DNA polymerases, termed TLS polymerases, is respon-
sible for the DDT process. These specialized polymerases are capa-
ble of accommodating damaged DNA sites [75], and are
evolutionarily conserved between prokaryotes and eukaryotes
[76]. Most TLS polymerases belong to the Y family of DNA polymer-
ases although some A, B and X family polymerases are also able to
mediate TLS in certain circumstances [77,78]. These Y-family poly-
merases exhibit relaxed active sites for DNA distortions and are
capable of accommodating damaged DNA and mediating nucleo-
tide insertion opposite lesions. However, they do not have the
30 ? 50 proofreading exonuclease activity associated with replica-
tive polymerases; hence, the replication fidelity is relatively low
[75,79]. In mammals, four Y-family TLS polymerases are known,
including polymerase eta (Polg, Rad30 in yeast), polymerase kappa
(Polj), polymerase iota (Poli) and Rev1 [79,80]. Interestingly, all of
these polymerases contain one or two Ub-binding domains (UBM
or UBZ), which are involved in mediating their interaction with
ubiquitinated PCNA [81], and three of them, including Polg, Polj
and Poli, also contain PIP box and Rev1 binding domains [82–85]
(Fig. 2). On the other hand, Rev1 interacts with PCNA via its



Fig. 2. Schematic diagram illustrating the functional domains of human TLS polymerases. Domains are depicted as boxes with different shapes and colors. Numbers indicate
the protein length. Note that Rev3 is not in scale with other Y-family polymerases, and that little is known about its functional domains other than a B-family polymerase
domain and a Rev7-binding domain. UBM, Ub-binding motif; UBZ, Ub-binding zinc finger; PIP, PCNA interacting peptide; BRCT, BRCA1 C-terminal domain.
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N-terminal BRCT domain [86], and with other TLS polymerases as
well as Rev7 through its C-terminus [87–89].

In spite of the relaxed active sites, TLS polymerases exhibit sub-
strate specificity, and different polymerases may be responsible for
specific lesions. For example, Polg mediates error-free TLS to by-
pass UV-induced CPDs [90–92]. Poli cannot mediate cis-syn T<>T
dimer bypass; however, it efficiently inserts deoxynucleotides
opposite 6-4 PP and abasic sites [93,94]. Polf can read through dif-
ferent types of lesions, but with poor efficiency in nucleotide inser-
tion, whereas it is efficient in nucleotide extension [93,95].

The DDT pathways can be either mutagenic or error-free, which
is dependent on the type of PCNA ubiquitination as well as the
polymerases employed. The currently established model is that
Ub-modified PCNA mediates a switch from replicative DNA poly-
merases to TLS polymerases in response to DNA damage, and dif-
ferent types of PCNA ubiquitination confer distinct responses:
monoubiquitinated PCNA promotes Polf-dependent (mutagenic)
or Polg-dependent (error-free) TLS, whereas polyubiquitinated
PCNA promotes Mms2-Ubc13-Rad5-dependent error-free DDT
[33,35,96]. The critical role of PCNA ubiquitination in DDT was ini-
tially reported in 2002 [33] and subsequently confirmed and ex-
tended to form a paradigm model of DDT (Fig. 1).

4.1. Polg-dependent error-free TLS

Compared with other TLS polymerases, Polg is the most effi-
cient TLS polymerase capable of reading through UV-induced
T<>T dimers in a largely error-free manner [97–99]. Yeast rad30
mutant cells display an increased sensitivity to UV irradiation
[100,101]. Human cells derived from xeroderma pigmentosum var-
iant (XP-V) patients contain a defective mutation in XPV/POLH,
indicating that Polg plays a critical role in preventing onset or
growth of human cancers through promoting error-free TLS in
response to UV irradiation [90,102]. The underlying mechanism
is that in the absence of Polg, cells tend to utilize less efficient
and highly mutagenic means of lesion bypass [78,103].

It is of great interest to understand whether other Y-family
polymerases also have preferred substrates to mediate an error-
free mode of TLS. To this end, a recent study showed that Polj
and Polf coordinated to promote error-free bypass of thymine gly-
col-induced lesions with much higher efficiency than Polg [104].

The activity of Polg is dependent on monoubiquitinated PCNA,
which orchestrates the switch between replicative DNA polymer-
ases and Polg at the lesion sites and possibly stimulates Polg0s
enzymatic activity [105]. One mechanism underlying this switch
is that the conserved Ub-binding domain of Polg enhances its
binding to monoubiquitinated PCNA [81]. In response to DNA dam-
age, Polg forms nuclear foci [106,107] that co-localize with PCNA
[83,107] and other Y-family polymerases [48,108] at the lesion
sites in a Rad18-dependent manner [41]. In an affinity-pulldown
experiment, Polg preferentially binds monoubiquitinated PCNA
from UV-irradiated HeLa cell extract whereas Pold does not [41].
Interestingly, the PCNA-K164R mutation leads to a much higher
UV sensitivity than Polg depletion [46], demonstrating the indis-
pensability of PCNA ubiquitination in response to UV irradiation.
This may be attributed to two factors. Firstly, some other TLS poly-
merases may play redundant roles with Polg [103]. This notion is
supported by findings that Rev1 co-localizes with Polg at DNA-
damage sites in mammalian cells [48,108] and that different TLS
polymerases compete for binding with Rev1 in vitro [87]. Secondly,
PCNA can also be polyubiquitinated at the same residue, which
may lead to an error-free mode of lesion bypass [33].

4.2. Polf-dependent mutagenic TLS

Polf belongs to the B family of polymerases and consists of two
subunits, Rev3 and Rev7 [109]. Different from Polg, Polf was iden-
tified as capable of mediating mutagenic DNA synthesis that by-
passes UV-induced CPDs [109]. The central role of Polf in error-
prone TLS was further confirmed by examining individual yeast
TLS polymerase mutants, in which the rev3 mutation is epistatic
to rev7 and rev1, and is absolutely required for UV-induced muta-
genesis [110]. Human Rev3 protein is twice the size (352 kDa) of
the yeast homolog (Fig. 2), and the two proteins are only 29% iden-
tical in sequence [111]. Nevertheless, antisense suppression of
REV3 in cultured human cells abolished UV-induced mutagenesis,
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similar to what is observed in yeast [111]. The indispensability of
Polf in mutagenesis can be explained by the unique role of Polf
as the mispair extender during TLS, while the role of translesion
insertion can be served by multiple redundant TLS polymerases
[93]. This two-polymerase TLS model becomes a core component
of the polymerase switch model [112].

4.3. Regulation of TLS by monoubiquitinated PCNA

Ubiquitinated PCNA is involved in regulating mutagenic TLS
through coordinating with different TLS polymerases. For example,
Rev1 requires ubiquitinated PCNA to bypass lesions induced by
various DNA-damaging agents, such as MMS, 4NQO, and UV irradi-
ation [113]. Rev1 is capable of directly binding to unmodified and
monoubiquitinated PCNA through its N-terminal BRCA1 C-termi-
nal (BRCT) domain and C-terminal ubiquitin-binding motifs
(UBMs) (Fig. 2), and its affinity to monoubiquitinated PCNA is high-
er than to unmodified PCNA [86,113]. Moreover, monoubiquitinat-
ed PCNA promotes Rev1-mediated DNA synthesis across an abasic
site with about fivefold higher efficiency than unmodified PCNA
[52]. It was found that mutation in the UBMs, but not the BRCT do-
main, abolished the focus formation with monoubiquitinated
PCNA at the DNA-damage site, suggesting that UBMs play a unique
role in the TLS process [113]. On the other hand, the Rev1 enzy-
matic activity is dispensable for TLS [95,114], suggesting that
Rev1 serves as a scaffold to mediate protein interactions in TLS. In-
deed, the C-terminal 100 amino acids of Rev1 is sufficient to
interact with Polg, Poli, Polj as well as Rev7 [82–85], and a
Rev1-interacting motif has been recently defined [115] (Fig. 2). In
undamaged human cells, RAD18 over-expression alone is sufficient
to induce an interaction between monoubiquitinated PCNA and
Polj [44]. Whether this interaction requires additional factors such
as Rev1 remains unclear.

Direct support of the critical role of PCNA ubiquitination in TLS
came from the creation and characterization of the PCNA-K164R
mutants. In budding yeasts, PCNA ubiquitination is essential for
the DNA-damage tolerance pathway, as demonstrated by the
observation that the pol30-K164R mutation is epistatic to muta-
tions in all members of the error-prone and error-free lesion by-
pass pathways [33]. In the chicken DT40 B cell line, the
PCNAK164R mutation renders cells hypersensitive to DNA-damaging
agents and reduces hypermutation at the Ig locus [116], In two
independent PCNAK164R transgenic mouse models, selected reduc-
tion of A/T mutations in B-cell Ig genes were observed [117,118],
which is consistent with the hypothesis that during somatic hyper-
mutation, PCNA ubiquitination is required for the recruitment of
Polg and Polj.

Notably, the model that monoubiquitinated PCNA promotes
mutagenic TLS has been challenged by several observations. Firstly,
in budding yeast, whether the Polg Ub-binding motif plays a role
in cellular response to UV irradiation in vivo [119,120] and
whether monoubiquitinated PCNA stimulates TLS polymerase
activity in vitro [52,121,122] have been subjected to debate. In
vitro reconstitution of the yeast DNA synthesis reaction demon-
strated that PCNA monoubiquitinated on all three monomers does
not enhance affinity for or stimulate the TLS activity of Y-family
polymerases [122]. Secondly, human Polg contains a major and a
minor PIP motif; inactivation of both motifs abolishes its PCNA-
binding activity, its accumulation in UV-induced nuclear foci as
well as the stimulation of DNA synthesis by PCNA. In contrast,
mutations in the UBZ domain have no adverse effect in the above
assays [84]. The physical interaction between Polg and PCNA is
further complicated by a recent finding that Polg itself can be
monoubiquitinated at a C-terminal nuclear localization signal
(NLS) region which directly interacts with PCNA, and that its
monoubiquitination decreases after UV irradiation [123]. Thirdly,
monoubiquitinated PCNA does not seem to be crucial to mutagenic
TLS in chicken DT40 cells. Elevated PCNA monoubiquitination does
not result in the induction of mutagenesis upon DNA damage, indi-
cating that PCNA monoubiquitination may not be sufficient for
mutagenic TLS induction [124]. Although the PCNAK164R mutation
results in an increased sensitivity to DNA-damaging agents and de-
creased mutagenesis at the Ig locus and is epistatic to rad18, it is
not epistatic to rev1 mutation [116,125], nor is rad18 epistatic to
polK [126] or rev1 [127] in response to DNA damage. The rev1
PCNA-K164R double mutant displays sixfold and eightfold decrease
in mutagenesis in comparison with the corresponding single mu-
tants, suggesting that roles of Rev1 and monoubiquitinated PCNA
do not largely overlap, at least in DT40 cells [116]. Consistent with
this notion, it was reported that in DT40 cells, PCNA monoubiqui-
tination and Rev1 function in distinct steps of lesion bypass [125].
Together these findings indicate that covalent modifications of Y-
family polymerases influence their association with PCNA and/or
monoubiquitinated PCNA and that the role of PCNA monoubiquiti-
nation is dispensable in mutagenic TLS in certain eukaryotic
organisms.

Recently, a strategy of artificially fusing PCNA with Ub was uti-
lized to study the role of monoubiquitinated PCNA in DNA-damage
tolerance. In this strategy, a K164R-mutated PCNA is fused to a Ub
at either the N- or C-terminus and expressed in yeast cells. As
expected, expression of the PCNA-Ub fusion genes led to elevated
resistance to UV and MMS compared to the PCNA-K164R trans-
formant; however, conflicting results have been reported as to
whether this resistance is dependent on TLS polymerases
[120,128,129].

4.4. Rad5-mediated error-free lesion bypass pathway

The error-free lesion bypass pathway is thought to utilize
undamaged sister chromatid as the template to carry out limited
DNA replication [25]. It is also responsible for cellular resistance
to chronic low-dose UV treatment in yeast cells [130]. Although
detailed molecular events underlying this pathway are not well
understood, extensive genetic studies in yeast have identified sev-
eral genes that play central roles in this pathway, including MMS2,
UBC13 and RAD5 [63,65,131,132].

Rad5 is a multi-functional protein. Mutations either in the Rad5
ATPase or RING domain cause elevated UV sensitivity [133,134],
suggesting that both the ATPase and ubiquitin ligase activities of
Rad5 are required for DNA-damage tolerance. Rad5 interacts with
both Rad18 and Ubc13 [132] as well as PCNA [33], and these inter-
actions recruit the Ubc13-Mms2 complex to the Rad6–Rad18
complex at the DNA-damage site [132]. It can be envisaged that
the recruited Ubc13-Mms2 complex replaces Rad6 to mediate
K63-linked poly-Ub chain formation on a monoubiquitinated PCNA
substrate. Mutations in either MMS2 or UBC13 result in defective
error-free PRR comparable to that of a Ub-K63R substitution muta-
tion [63,65,131,135]. Ultimate evidence supporting the role of K63-
linked polyubiquitin chain-modified PCNA in the error-free lesion
bypass pathway comes from direct demonstration that deletion
of RAD5, UBC13 or MMS2 abolishes DNA damage-induced PCNA
poly-Ub chain formation without affecting its monoubiquitination
[33].

Polyubiquitinated PCNA was also detected in cultured mamma-
lian cells upon UV irradiation [74]. Similar to yeast, human cells
also employ K63-linked poly-Ub chain-modified PCNA to protect
cells from mutagenesis [74]. Furthermore, two mammalian Rad5
homologs, SHPRH [69,70] and HLTF [72,73], appear to be required
for such a poly-Ub chain formation in cultured human cells. In con-
trast, deletion of both Hltf and Shprh genes in a transgenic mouse
model does not affect PCNA ubiquitination at the K164 residue
[136], suggesting the existence of an alternative E3 ligase.
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Meanwhile, it is noticed that others have reported failure in the
detection of polyubiquitinated PCNA in UV-, HU- [48] or MMS-
treated human cells [33]. Thus, whether polyubiquitination of
PCNA is universally required for DDT in mammalian cells remains
to be elucidated.

Although the detailed mechanism underlying how the PCNA
poly-Ub signals error-free lesion bypass remains unclear, it was
proposed that polyubiquitinated PCNA coordinates with Rad5 to
disrupt the activity of replication inhibitors or replicative polymer-
ase and thus allows error-free DNA synthesis in the presence of
replication-blocking lesions [133]. This may be achieved by one
of two events [25]. Replication fork regression followed by nascent
strand annealing and DNA synthesis (a chicken-foot model) gained
support by the demonstration that the Rad5 helicase activity is re-
quired for fork regression in vitro [137]. On the other hand, it is
generally believed that error-free lesion bypass is mediated by
template switch and Holliday junction resolution. A recent study
[138] demonstrates that the completion of yeast error-free PRR re-
quires the homologous recombination complex including Rad51,
Rad52 and Rad54, as well as the Sgs1 helicase, which provides
strong support for the template switch model [139]. It should be
noted that the above two models are not necessarily mutually
exclusive. It remains plausible that fork regression followed by sis-
ter chromatid invasion and resolution may allow for error-free by-
pass. Alternatively, error-free PRR may employ two parallel modes
of lesion bypass.

4.5. Regulation of different modes of lesion bypass

One interesting question is how eukaryotes manage the muta-
genic TLS and error-free bypass process when facing DNA damage.
Clearly different lesions induced by DNA-damaging agents may
play a critical role in determining the means of lesion bypass. For
example, Polg is a preferred error-free bypass pathway for UV-in-
duced thymine dimers, but it plays little if any role in bypassing
other types of DNA damage. In mammalian cells, it has been
debated whether Polg and Polf constitute two separate TLS path-
ways, since conflicting observations have been reported as to
whether the Rev1 nuclear focus formation is dependent on Polg
[48,108]. In chicken DT40 cells, deletion of the POLg gene rescues
the severe sensitivity to a broad range of DNA-damaging agents as
well as a growth defect in the polf null cells [140], which is appar-
ently different from that of yeast [100] and mammalian cells [103].

Early studies have clearly demonstrated that yeast Polf and
Mms2-Ubc13 mediate two alternative pathways and respond to
a broad range of DNA damage; simultaneous inactivation of the
two pathways results in very strong (103–104 fold) synergistic ef-
fects [63,131,135]. Surprisingly, it was recently found that Rad5
is also required for Polf-dependent TLS [141], suggesting a cross-
talk between TLS and error-free PRR pathways.
5. Perspective

Investigation of roles of PCNA ubiquitination in DDT is critical to
our understanding of cellular responses to DNA damage and to cor-
relate with disease development, particularly cancer. Recent years
have witnessed great advances on this front; however, a number of
questions remain to be answered. For example, what determines
the ubiquitination mode of PCNA upon DNA damage, and how does
polyubiquitinated PCNA mediate the error-free DDT process?
Although sequential PCNA ubiquitinations have been reconstituted
in vitro [34], a reliable in vivo model to study PCNA-mediated DDT
remains elusive. Nevertheless, by demonstrating in a yeast model
that RAD18-mediated DDT can function in G2 [49] and be sepa-
rated from genome replication [142], recent studies have success-
fully challenged a conventional belief that DDT acts at the
replication fork and suggest that the postreplicative ssDNA gaps
may be preferred substrates for DDT.

Surprisingly, the PCNA-K164 residue is not the only site for
ubiquitination. It was recently reported [143] that yeast PCNA
can be ubiquitinated at the K107 residue in response to DNA ligase
I deficiency, and that this ubiquitination is dependent on Rad5,
Mms2 and Ubc4, but independent of Rad6, Rad18 and Ubc13. Fur-
thermore, yeast PCNA can also be sumoylated at two residues.
Sumoylation at K164 occurs in untreated cells and is dependent
on the Ubc9-Siz1 complex [33,35], which helps to recruit a Srs2
DNA helicase [144,145] and inhibit unwanted homologous recom-
bination [146,147], while sumoylation at K127 prevents binding of
an essential cohesion factor Eco1 (Ctf7) to PCNA [148]. It is of great
interest to understand how the above PCNA modifications are
orchestrated in model organisms and whether these mechanisms
are conserved in humans. It is noted that several studies reported
the detection of an elevated PCNA level in human cancers [149–
151] and PCNA has been deemed a target of autoimmune diseases,
such as systemic lupus erythematosus (SLE) [152–154]. Since UV
irradiation and treatment with other DNA-damaging agents have
been known to contribute to the onset of human cancers and
SLE, the involvement of PCNA in DNA-damage response may pro-
vide underlying mechanisms for these diseases.
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