
Computers and Mathematics with Applications 60 (2010) 1049–1057

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Pattern recall analysis of the Hopfield neural network with
a genetic algorithm
Somesh Kumar a,∗, Manu Pratap Singh b
a Apeejay Institute of Technology, School of Computer Science, Greater Noida, Uttar Pradesh, India
b Department of Computer Science, Institute of Computer & Information Science, Dr. B. R. Ambedkar University, Agra, Uttar Pradesh, India

a r t i c l e i n f o

Keywords:
Hopfield neural network model
Hebbian learning rule
Genetic algorithm
Pattern recalling
Population generation technique

a b s t r a c t

This paper describes the implementation of a genetic algorithm to evolve the population of
weight matrices for storing and recalling the patterns in a Hopfield type neural network
model. In the Hopfield type neural network of associative memory, the appropriate
arrangement of synaptic weights provides an associative function in the network. The
energy function associated with the stable state of this model represents the appropriate
storage of the input patterns. The aim is to obtain the optimal weight matrix for efficient
recall of any prototype input pattern. For this, we explore the population generation
technique (mutation and elitism), crossover and the fitness evaluation function for
generating the new population of the weight matrices. This process continues until the
selection of the last weight matrix or matrices has been performed. The experiments
incorporate a neural network trainedwithmultiple numbers of patterns using the Hebbian
learning rule. In most cases, the recalling of patterns using a genetic algorithm seems to
give better results than the conventional recalling with the Hebbian rule. The simulated
results suggest that the genetic algorithm is the better searching technique for recalling
noisy prototype input patterns.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, two heuristic search techniques have generated interest in the artificial intelligence community: Neural
Networks (NNs) [1] and Genetic Algorithms (GAs) [2]. Both NNs and GAs are based on models from nature. A GA is a model
for genetics and Darwinian evolution, whereas a NN is based on models of human cognition. One common application of
the GA is as a function optimizer and another common application of the GA is for evolving organisms that performwell in a
given environment. In either application, the GA is based on the survival-of-the-fittest (natural selection) tenet of Darwinian
evolution. The NN, on the other hand, appears to be useful as a mechanism of control for the organisms themselves (e.g. an
organism should avoid danger and seek food). These two methods naturally reflect a difference in scale, where a NN can be
used to control a particular organism and a GA can be used to evolve a population of organisms (e.g. NNs) that performwell
in a given environment. The NN is used to encapsulate a particular behavior and the GA can be used to evolve that behavior
by evolving a population of NNs.
One particular approach to the evolution of behavior has been described by Garis [3]. In this approach, a GA has been used

to evolve a population of NNs. Each NN had a set of adjustable weights and was used to encapsulate some desired behavior
(e.g. walking). In other words, once good weights have been found, the NN can adjust itself to perform the desired behavior.

∗ Corresponding author.
E-mail addresses: someshkumarrajput@rediff.com (S. Kumar), manu_p_singh@hotmail.com (M.P. Singh).

0898-1221/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2010.03.061

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82637431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:someshkumarrajput@rediff.com
mailto:manu_p_singh@hotmail.com
http://dx.doi.org/10.1016/j.camwa.2010.03.061

1050 S. Kumar, M.P. Singh / Computers and Mathematics with Applications 60 (2010) 1049–1057

Table 1
Genetic operators used in the experiments.

Training algorithms Genetic operators used

Hebbian rule None
Genetic algorithm Population generation technique (mutation+ elitism), crossover and fitness evaluation technique

However, since a set of good weights are not known in advance, they must be learnt. There are various learning techniques
available by which the network can be trained to adopt a desired behavior [4].
Associative memory is a dynamical system, which has a number of stable states with a domain of attraction around

them [5]. If the system starts at any state in the domain, it will converge to the stable state. In 1982, Hopfield [6] proposed
a fully connected neural network model of associative memory in which we can store information by distributing it among
neurons and recall it from neuron states that are dynamically relaxed.
The dynamical behavior of the neuron states strongly depends on the strength of connection between the neurons. The

strength of connection of neuron j to neuron i is called the weight and denoted by wij. When all the weights wij have been
optimized approximately, the network can store some number of patterns as associative memory. Then an input, one of
the stored patterns, including a few errors, will result in the relaxation of neuron states to the initial input state. If the
appropriate optimized weight matrix is used then the network will produce the correct stored information. In this case, a
noisy version of the input should also converge in the attractor. Hopfield used the Hebbian learning rule [7] to prescribe
the weight matrix. Various learning techniques have been proposed besides the Hebbian rule. The pseudo-inverse matrix
method given by Kohonen et al. [8] and the spectral algorithm given by Pancha et al. [9] are examples. It has been realized
by many researchers [10,11] that as the number of input patterns increases, a network can be trapped into false minima
during the recalling process. It can be understood that the problem of false minima can be minimized with the selection of
the correct weight matrix corresponding to the present noisy input pattern for recalling the correct stored pattern. In the
process of determining the correct weight matrix, we use the genetic algorithm technique.
Researchers [12,13] have combined neural networks and genetic algorithms in a number of different ways. Schaffer

et al. [12] have noted that this combination can be classified in two different ways—as supportive combinations in which
the neural network and genetic algorithm are applied simultaneously, and collaborative approaches, where the genetic
algorithm and neural networks are integrated into a single system in which a population of neural networks evolves. Thus,
the goal of a system was to find the optimal neural network solution [14]. The genetic algorithm is applied to optimize a
neural network with the evolution of weights. In this approach, the genetic algorithm is used as the learning rule for the
neural network.
In this paper, we apply a genetic algorithm to Hopfield’s neural network model of associative memory. Our goal is to

obtain the suitable weight matrices for efficient recalling of an input prototype pattern/noisy input prototype pattern. For
this purpose, we explore the population generation technique, the crossover operator and the fitness evaluation function
in order to generate the optimal weight matrix. The experiments consist of neural network training with multiple numbers
of patterns using the Hebbian learning rule. In most cases, the recalling of patterns using a genetic algorithm seems to give
better results than the conventional recalling with the Hebbian rule. The results suggest that the genetic algorithm is the
better searching technique for recalling noisy prototype input patterns.
The next section presents the simulation design of the problem. The algorithmic steps are presented in Section 3. The

experimental results are described in Section 4. Sections 5 and 6 conclude this paper with a summary, the conclusion of this
study and a discussion of future research directions.

2. Simulation design and implementation details

The experiments described in this segment have been designed to evaluate the performance of a neural network with a
genetic algorithm for the pattern recalling.

2.1. Experiments

Two experiments have been run based on different network architectures, i.e. five- and ten-neuron networks. Each
experiment runs with three different numbers of storage of patterns, i.e. N, 2N and 3N patterns, which have been generated
randomly, where N is the number of neurons in the Hopfield neural network. Because of the random generation of the
patterns, the same pattern may be generated multiple numbers of times and will be stored in the Hopfield neural network.
It may also occur that all possible combinations of (1,−1) for a fixed number of neurons which design a pattern cannot be
generated because of the random generation of patterns at storing time; e.g. if the number of neurons in the network is 5,
then the possible number of patterns will be 25. In each experiment, the Hebbian learning rule is used to store the patterns
in the Hopfield neural network and two different algorithms, i.e. the Hebbian rule and the genetic algorithm, are used for
recalling the patterns. The genetic operators used in each experiment are summarized in Table 1.
Descriptions of these genetic operators can be found in Section 2.3.
The parameters used in all three experiments are described in Tables 2 and 3.

S. Kumar, M.P. Singh / Computers and Mathematics with Applications 60 (2010) 1049–1057 1051

Table 2
Parameters used for the Hebbian learning rule.

Parameter Value

Initial state of neurons Randomly generated values between−1 and 1
Threshold values of neurons 0.00

Table 3
Parameters used for the genetic algorithm.

Parameter Value

Initial state of neurons Randomly generated values between−1 and 1
Threshold values of neurons 0.00
Mutation population size N + 1
Mutation probability 0.5
Crossover population size N ∗ N

The task associated with the Hopfield neural networks in all experiments is storing the number of input patterns with
the appropriate recalling of the noisy prototype input pattern.

2.2. The Hopfield neural network

The proposed Hopfield model consists of N neurons and N2 connection strengths. Each neuron can be in one of two
states, i.e.±1, and p bipolar patterns Xµ =

(
xµ1 , x

µ

2 , . . . , x
µ

N

)
,µ = (1, 2, . . . , p), are to bememorized in associativememory.

Hopfield employed a discrete-time, asynchronous update scheme. Namely, each neuron updates its states, one at a time, as

Si (t + 1) = f

(
N∑
i6=j

wijSj (t)

)
(2.2.1)

where Si (t) is the state of the ith neuron at time t ,wij is a synaptic weight, for the connection between neuron j and neuron
i, and f (z) = 1 if z ≥ 0 and−1 otherwise, where z =

∑N
i6=jwijSj (t).

The behaviors of the collective states of individual neurons are characterized by the synaptic weights. When these
synaptic weights are determined appropriately, the networks store some number of patterns as fixed points. Hopfield
specified thewij’s by using the Hebbian rule [7], i.e.

wij =

p∑
µ=1

xµi x
µ

j (i 6= j) ; wii = 0. (2.2.2)

Hopfield associated an energy function [6] with the state of the network at equilibrium in order to represent the stored
pattern as minima of the energy landscape. The energy function has been considered as

Eµ (S) = −
1
2

∑
i

∑
j6=i

wij (t) S
µ

i (t) S
µ

j (t) . (2.2.3)

So for storing a pattern, the energy function of Eq. (2.2.3) should be minimized. Thus, Eq. (2.2.3) will be minimized only
for

wij (t) = S
µ

i (t) S
µ

j (t) . (2.2.4)

Therefore, from Eq. (2.2.3) we have

Eµ (S) = −
1
2

∑
i

∑
j6=i

S2µi (t) S2µj (t) . (2.2.5)

Here, Si (t) and Sj(t) are the output states of the units ith and jth in the bipolar pattern, i.e. {−1, 1}. Thus, to store the p
input patterns the optimized weight matrixW is constructed using Eq. (2.2.4):

W p =

0 S1S2 S1S3 . . . S1SN
S2S1 0 S2S3 . . . S2SN
...

...
...

...
...

SNS1 SNS2 SNS3 . . . 0

N×N

. (2.2.6)

This squarematrix is known as the parent weight matrix for storing the given input patterns. Thus, on introducing one of
thememorized patterns, including a few errors, into the network, an initial state will result as the stable state after a certain

1052 S. Kumar, M.P. Singh / Computers and Mathematics with Applications 60 (2010) 1049–1057

Fig. 1. Chromosome representation.

number of iterations. Hopfield [6] suggested that the maximum limit for the storage is 0.15N in a network with N neurons
if a small error in recalling is allowed. It has also been observed that the possibility of false minima may occur during the
recalling of memorized patterns.
Efficient recalling depends strongly on how synaptic strengths are specified. The specification of the synaptic strengths

is conventionally known as learning.

2.3. The GA implementation

In this simulation, a population of weight matrices is produced randomly when the GA starts. In each generation, the
matrices of this population have been modified through discrete crossovers and uniformly random mutations, and their
fitness values have been evaluated. According to the fitness values, individuals of the next generation are selected, using a
(µ+ λ)-strategy in ES terminology. The cycle of reconstructing the new population with better individuals and restarting
the search is repeated until a perfect solution is found. The Hopfield energy function is used for selecting the most suitable
weight matrices, as the second fitness evaluation function.
The population generation technique
The weight matrixW p and associated energy functions, from Eq. (2.2.5), E1, E2, . . . , Ep, have been determined by using

the Hebbian rule for storing the p bipolar patterns. Each component of the weight matrixwij has been determined from Eq.
(2.2.2).
The population generation technique produces the population of N weight matrices of the same order as the original

parentweightmatrix. The original weightmatrix remains unchanged during the evaluation. The total numberM (i.e.N+1)
of chromosomes are produced after using the mutation and elitism. Each chromosome has a fixed length of N × N alleles.
Each component of the original weight matrix, wij, i.e. SiSj, is multiplied by one of these alleles. We denote the ith allele

of the nth chromosome as Ani . Each chromosome modifies the original weight matrixW
P and produces N weight matrices

slightly different fromW P . The modifications can be represented as

wnij = SiSjA
n (N.i+ j) (i, j = 1, 2, . . . ,N) , (n = 1, 2, . . . ,M) , (2.3.1)

wherewnij denotes the i–j component of the nth weight matrix in the population.
The pseudo-code for the population generation technique
Step 1: Generate the mutation positions in the chromosome randomly.
Step 2: Modify the parent chromosome shown in Fig. 1 at the positions generated in step 1, using Eq. (2.3.1) and {1,−1}.
Step 3: Repeat steps 1 and 2 until a number N of mutated chromosome populations have been created.
Step 4: Apply elitism to include the parent chromosome in the mutated populations, which makes the population count
M (i.e. N + 1).
The first fitness evaluation
Now for selecting a good or efficient next generation of weight matrices, the first fitness evaluation function (f) is used.

Evaluation of f for each individual weight matrix is carried out with a set of randomly pre-determined patterns Xµ. When
one of stored patterns Xµ is given to the network as an initial state, the state of neurons varies over time until Xµ is a fixed
point. In order to store the pattern in the network, these two states must be similar. The similarity as a function of time is
defined by

zµ (t) =
1
N

N∑
i=1

xµi S
µ

i (t) . (2.3.2)

Here Sµi (t) is the state of the ith neuron at time t . In evaluating the fitness value, the temporal average overlap 〈z
µ〉 is

calculated for each stored pattern, as follows. First the total of the inner products of the initial states and states is calculated
at each time of update not greater than a certain time t0. After that, these are summed up over whole set of initial patterns,
i.e.,

f =
1
t0p

t0∑
t=1

p∑
µ=1

zµ (t) . (2.3.3)

Here t0 has been set to N (the number of processing units). We must note that fitness 1 implies that all the initial
patterns have been stored as fixed points. Thus, we consider only those generated weight matrices that have the fitness
evaluation value 1. Hence, all the selected weight matrices will be considered as the new generation of the population.

S. Kumar, M.P. Singh / Computers and Mathematics with Applications 60 (2010) 1049–1057 1053

This new population will be used for generating the next better population of weight matrices with the recombination or
crossover operator.

The crossover operator
Crossover is an operation which may be used to combine multiple parents and make offspring [15]. This operator is

responsible for the recombination of the selected population of weight matrices. This operator forms a new solution by
taking some parameters from one parent and exchanging themwith ones from another at the very same point. Here, we are
applying the recombination with the uniform crossover. In this process, the network selects randomly a string of non-zero
chromosomes from a selected weight matrix and exchanges it with string of non-zero chromosomes from another selected
weightmatrix. Thus, a large population of the weightmatrices will be generated. Hence, on applying this crossover operator
with the constraint that the numbers of chromosomes or components selected for exchange should be equal for the two
weight matrices, the modification has been made in the selected weight matrices as follows:

N×N∑
r

wnij =

N×N∑
r

SiSjAk (N.i+ j)

and

N×N∑
r

wkij =

N×N∑
r

SiSjAn (N.i+ j) (i, j = 1, 2, . . . ,N; k, n = 1, 2, . . . , T ; n 6= k) . (2.3.4)

Here T is the selected weight matrix forM generated matrices, r = 1 to N × N , only for non-zero elements, andwnij and
wkij denote the i–j components of the nth and kth weight matrices in the population. Thus, we have a new large population
of K weight matrices from the crossover operator as follows:{

wnew1N×N , w
new
2N×N , . . . , w

new
KN×N

}
. (2.3.5)

The pseudo-code for the crossover operation
Step 1: Initialize the crossover population size limit with value N ∗ N .
Step 2: Extract two chromosomes from among theM (i.e. N + 1) chromosomes randomly.
Step 3: Obtain a random position in each extracted chromosome for exchanging the values.
Step 4: Exchange the values between the chromosomes.
Step 5: Include both chromosomes in the crossover population.
Step 6: Check whether the population size is equal to N ∗ N . If not, go to step 2 again.

The second fitness evaluation
In the process of recalling the stored pattern, corresponding to a noisy prototype input pattern, the most suitable

weight matrix or matrices will be selected from the generated population K of weight matrices. Our genetic algorithm
implementation will use the Hopfield energy function analysis as the second fitness evaluation. Hence, in this process,
the network uses the energy function for representing each stored input pattern from Eq. (2.2.5) and the energy function
estimation fromeach of the generatedweightmatriceswith the state of the network onpresenting a prototype input pattern.
Let the energy functions from Eq. (2.2.5) be represented as Eµ (S), where µ = 1, 2, . . . , p (the number of patterns), and the
energy function corresponding to the generated weight matrices for the input pattern Xµ be represented as EµN (S), where
N = 1, 2, . . . , K . Now, for a noisy prototype input pattern, say (Xµ+ ∈), the energy function for the generated weight
matrices is given as

EµN (S) = −
1
2

∑
i

∑
j6=i

wnewi (t) Sµ+∈i (t) Sµ+∈j (t) , where N = 1, 2, . . . , K . (2.3.6)

Hence, the fitness evaluation of these weight matrices for the presented input pattern (Xµ+ ∈) is defined as

F i =
[
Eµi (S)− E

µ (S)
]
= 0; i = 1, 2, . . . , K . (2.3.7)

Hence, we select only thoseweightmatrices for which F i is zero. Thus, these energy functions are the same and represent
the sameminima of the energy landscape. Hence, the pattern that is stored at that minimumwill be recalled as the network
settles into these minima. The selected weight matrices will be used as the final weight matrices for recalling an input
pattern efficiently. In this manner, the proposed method finds a useful technique for efficient recalling of a given input
pattern corresponding to the noisy prototype input pattern. The following are the algorithmic steps of the above described
technique.

1054 S. Kumar, M.P. Singh / Computers and Mathematics with Applications 60 (2010) 1049–1057

3. The algorithm

1. Initialize the network states, weights, and threshold randomly to keep the network at a stable state.
2. Present the input pattern Xµ =

(
xµ1 , x

µ

2 , . . . , x
µ

N

)
to the network and store it as [where µ = (1, 2, . . . , p)]

Si (t + 1) = f

(
N∑
i6=j

wijSj (t)

)
and

wij =

p∑
µ=1

xµi x
µ

j (i 6= j) ; wii = 0.

The energy function associated with the state of the network at stability is given as

Eµ (S) = −
1
2

∑
i

∑
j6=i

wij (t) S
µ

i (t) S
µ

j (t) .

3. Determine the parent weight matrix for storing the input patterns using

wij (t) = S
µ

i (t) S
µ

j (t)

and

W p =

0 S1S2 S1S3 . . . S1SN
S2S1 0 S2S3 . . . S2SN
...

...
...

...
...

SNS1 SNS2 SNS3 . . . 0

N×N

.

4. Generate the population of weight matrices from the parent weight matrix using the population generation technique.
Each chromosome modifies the original weight matrix to

wnij = SiSjA
n (N.i+ j) (i, j = 1, 2, . . . ,N) , (n = 1, 2, . . . ,M) .

The best population of the weight matrices can be selected as

f =
1
t0p

t0∑
t=1

p∑
µ=1

zµ (t)

and

zµ (t) =
1
N

N∑
i=1

xµi S
µ

i (t) .

Here xµ is the pattern given to the network as an initial state, Sµi (t) is the state of the ith neuron at time t and t0 is set to
the number of processing units in the network, i.e. N . The weight matrices selected from the population must have the
fitness evaluation value 1.

5. The next generation population of the weight matrices will be generated by using the crossover operator among the
selected weight matrices of step 4. The numbers of chromosomes or components selected for exchange should be equal
for the two weight matrices. The modification or recombination is made as follows:

N×N∑
r

wnij =

N×N∑
r

SiSjAk (N.i+ j)

and
N×N∑
r

wkij =

N×N∑
r

SiSjAn (N.i+ j) .

Here i, j = 1, 2, . . . ,N; k, n = 1, 2, . . . , T ; n 6= k; r = 1 to N × N , only for non-zero elements.
6. wnij andw

k
ij denote the i–j components of the nth and kth weightmatrices in the selected population of T weightmatrices.

The new large population of K weight matrices is given as follows:{
wnew1N×N , w

new
2N×N , . . . , w

new
KN×N

}
.

S. Kumar, M.P. Singh / Computers and Mathematics with Applications 60 (2010) 1049–1057 1055

Table 4
Results for recalling patterns which involve zero-bit error from the stored patterns.

S. No. Number of stored patterns in the
network

No. of patterns recalled using the Hebbian rule
(%)

No. of patterns recalled using
the genetic algorithm (%)

1 5 1 59
2 10 1 50
3 15 6 53

Table 5
Results for recalling patterns which involve one-bit error from the stored patterns.

S. No. Number of stored patterns in the
network

No. of patterns recalled using the Hebbian rule
(%)

No. of patterns recalled using
the genetic algorithm (%)

1 5 2 50
2 10 4 36
3 15 0 54

Table 6
Results for recalling patterns which involve two-bit error from the stored patterns.

S. No. Number of stored patterns in the
network

No. of patterns recalled using the Hebbian rule
(%)

No. of patterns recalled using
the genetic algorithm (%)

1 5 6 38
2 10 2 49
3 15 0 19

Table 7
Results for recalling patterns which involve zero-bit error from the stored patterns.

S. No. Number of stored patterns in the
network

No. of patterns recalled using the Hebbian rule
(%)

No. of patterns recalled using the genetic
algorithm (%)

1 10 0 17
2 20 0 22
3 30 6 23

7. Calculate the energy function corresponding to the generated weight matrices on presenting a noisy prototype input
pattern (Xµ+ ∈) as follows:

EµN (S) = −
1
2

∑
i

∑
j6=i

wnewi (t) Sµ+∈i (t) Sµ+∈j (t) ; N = 1, 2, . . . , K .

The fitness evaluation of the new population of K weight matrices for selecting them for recalling is given as

F i =
[
Eµi (S)− E

µ (S)
]
= 0; i = 1, 2, . . . , K .

Then, we select only those weight matrices for which F i = 0.
8. Stop.

4. Results

4.1. Experiment 1 (N = 5)

See Tables 4–6.

4.2. Experiment 2 (N = 10)

See Tables 7–9.

5. Discussion

The results of the previous section demonstrate that, within the simulation framework and selected training data sets, a
large significant difference exists between the performance with the conventional Hebbian rule and the GA when applied
to the Hopfield neural network model for the recalling of presented prototype noisy input patterns.
We have considered training data sets for two different numbers of neurons, i.e. 5 and 10, in the Hopfield neural network

and executed a separate experiment for each, i.e. experiments 1 and 2.We have obtained three different numbers of storage

1056 S. Kumar, M.P. Singh / Computers and Mathematics with Applications 60 (2010) 1049–1057

Table 8
Results for recalling patterns which involve one-bit error from the stored patterns.

S. No. Number of stored patterns in the
network

No. of patterns recalled using the Hebbian rule
(%)

No. of patterns recalled using the genetic
algorithm (%)

1 10 1 7
2 20 0 27
3 30 0 15

Table 9
Results for recalling patterns which involve two-bit error from the stored patterns.

S. No. Number of stored patterns in the
network

No. of patterns recalled using the Hebbian rule
(%)

No. of patterns recalled using the genetic
algorithm (%)

1 10 0 5
2 20 0 10
3 30 0 6

of patterns randomly for each experiment, i.e. numbers N , 2N and 3N of storage patterns, where N is the number of neurons
in the Hopfield neural network. This can be understood as us obtaining a maximum of 2N patterns for the number N of
neurons. We are storing the numbers N , 2N and 3N of patterns in the Hopfield model among the 2N patterns, where N
represents the total number of neurons in the network. Because of the random generation of patterns, a similar patternmay
be generated several times.
At the time of recalling also, the pattern has been generated randomly. So, any pattern can be obtained among the

maximum of 2N patterns. This pattern may not exist in the stored pattern list of the network and then does not have
zero-, one-, and two-bit errors from them. Therefore, it will not be recalled in both the experiments, because we have only
considered the zero-, one-, and two-bit error cases. We obtain a total of 1000 patterns for recalling and distribute them
according to the error from stored patterns in the network. After that, we applied both recalling techniques to them and got
the simulation results shown in Tables 4–9.
As far as the probability of a mutation operator of a genetic algorithm is concerned, we have set it as 0.5 to avoid

randomness in the search process. This probability is set as a constant for every experiment.
Tables 4–6 have been designed for experiment 1 in which the network consists of five neurons. The tables have been

separated on the basis of bit errors between the presented prototype patterns and training set patterns. Each table contains
three entries based on the number of stored patterns in the network, i.e. numbers N , 2N and 3N of storage patterns. The
tables also contain the experimental results, which are obtained by applying the Hebbian rule and the genetic algorithm
for recalling the patterns. Tables 7–9 are constructed by using the same concept but these tables are for ten neurons in the
Hopfield network.
The simulation programs have been developed in MATLAB 6.5, for testing the performance of the Hebbian rule and the

genetic algorithm in the recalling of patterns stored in a Hopfield neural network. Due to the limitation of resources, we
could only run two experiments and could not go beyond that. However, on the basis of the given simulation results we can
say that the genetic algorithm is more efficient and consistent for recalling the patterns/noisy patterns in comparison with
the Hebbian rule.

6. Conclusion

The simulation results of in this paper indicate that the genetic algorithm is a better searching technique for recalling
noisy prototype input patterns in comparison to the Hebbian rule for the Hopfield type neural network model.
The simulation results, i.e. Tables 4–9, indicate that the genetic algorithm has a greater success rate than the Hebbian

rule as regards recalling the patterns containing zero-, one- and two-bit errors from stored patterns in the Hopfield neural
network. Sometimes it has also been observed that the performance of the GA is less than the expected percentage. Thismay
happen because of the storage of more than one pattern in the same energy minimum or equilibrium. The recalled pattern
can be any pattern stored in the minimum, not necessarily the corresponding right pattern. However, it is certain that the
patterns are selected from the correct energy minimum. Another reason for the occurrence of this is the large amount of
patterns stored from the random generation in the network.
We found that the genetic algorithm is more consistent than the Hebbian rule in recalling the pattern. Say we have

obtained the same pattern, which has already been stored in the network multiple numbers of times for recalling, and
applied both techniques for recalling the corresponding stored pattern. Then the GA gives the same results every time
whereas the Hebbian rule gives different results every time in the recalling process.
The direct application of the GA to the pattern association has been explored in this research. The aim is to introduce the

GA as an alternative approach for solving the pattern association problem. The results from the experiments conducted on
the algorithm are quite encouraging. Nevertheless more work needs to be performed, especially on tests for large complex
patterns. Some futurework should also be carried out. For instance, currentwork shows theperformance of theGAexceeding
that of the Hebbian rule in recalling processes when up to ten neurons exist in the network, but we can proceed further and

S. Kumar, M.P. Singh / Computers and Mathematics with Applications 60 (2010) 1049–1057 1057

use this idea for more neurons. We can also use this concept for any pattern recognition/association problem to obtain
efficient and consistent results in the future.

References

[1] S. Amari, Learning and statistical inference, in: M.A. Arbib (Ed.), The Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, MA, 1993,
pp. 522–526.

[2] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1996.
[3] H. de Garis, Genetic programming: building nanobrains with genetically programmed neural network modules, in: Proceeding of the International
Joint Conference on Neural Networks, San Diego, CA, June 1990.

[4] J.M. Zurada, Introduction to Artificial Neural Systems, Info Access and Distribution, Singapore, 1992.
[5] A. Imada, K. Araki, Basin of attraction of associative memory as it is evolves from random weights, in: Proc. of the 1st Asia–Pacific Conf. on Simulated
Evolution and Learning, 1996, pp. 271–278.

[6] J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proceedings of The National Academy Sciences,
USA 79 (1982) 2554–2558.

[7] D. Hebb, The organization of behaviour, in: A Neuropsychological Theory, Wiley, New York, 1949.
[8] T. Kohonen, M. Ruohonen, Representation of associated data by matrix operators, Institute of Electrical and Electronics Engineers. Transactions on
Computers C 22 (7) (1973) 701.

[9] G. Pancha, S.S. VenKatesh, Feature and memory-selective error correction in neural associative memory, in: M.H. Hassoun (Ed.), Associative Neural
Memories: Theory and Implementation, Oxford University Press, 1993, p. 225.

[10] A. Imada, K. Araki, Genetic algorithm enlarges the capacity of associativememory, in: Proc. of the 6th International Conf. on Genetic Algorithms, 1995,
pp. 413–420.

[11] M. Morita, Associative memory with non-monotone dynamics, Neural Networks 6 (1993) 115–226.
[12] J.D. Schaffer, D. Whitley, L.J. Eshelman, Combinations of genetic algorithms and neural networks: a survey of the state of the art, in: Proceedings of

the Workshop on Combinations of Genetic Algorithms and Neural Networks, 1992, pp. 1–37.
[13] X. Yao, A review of evolutionary artificial neural networks, International Journal of Intelligent Systems 8 (1993) 539–567.
[14] J. Branke, Evolutionary algorithms for neural network design and training, in: 1st NordicWorkshop on Genetic Algorithms and its Applications, Vaasa,

Finland, 1995.
[15] D. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning, Addison-Wesley, 1989.

	Pattern recall analysis of the Hopfield neural network with a genetic algorithm
	Introduction
	Simulation design and implementation details
	Experiments
	The Hopfield neural network
	The GA implementation

	The algorithm
	Results
	Experiment 1 (N= 5)
	Experiment 2 (N= 10)

	Discussion
	Conclusion
	References

