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SUMMARY

Understanding the complexity of the human brain
and its functional diversity remain a major challenge.
Distinct anatomical regions are involved in an array
of processes, including organismal homeostasis,
cognitive functions, and susceptibility to neurolog-
ical pathologies, many of which define our species.
Distal enhancers have emerged as key regulatory
elements that acquire histone modifications in a
cell- and species-specific manner, thus enforcing
specific gene expression programs. Here, we survey
the epigenomic landscape of promoters and cis-reg-
ulatory elements in 136 regions of the adult human
brain. We identify a total of 83,553 promoter-distal
H3K27ac-enriched regions showing global charac-
teristics of brain enhancers. We use coregulation of
enhancer elements across many distinct regions of
the brain to uncover functionally distinct networks
at high resolution and link these networks to specific
neuroglial functions. Furthermore, we use these data
to understand the relevance of noncoding genomic
variations previously linked to Parkinson’s disease
incidence.
INTRODUCTION

Understanding the human brain is one of the key challenges of

biology. Over 100 different anatomical structures are connected

by billions of neurons and glia into a functional network that reg-

ulates tissue homeostasis throughout the body while also deter-

mining our cognitive state (Nolte, 2009). Functionally distinct

anatomical regions have evolved in a species-specific manner,

giving rise to the defining physical and cognitive features that

separate humans from other species (Konopka and Geschwind,

2010). Microarray analyses on distinct regions of the human

brain have demonstrated that gene expression profiles vary

significantly across adult brain structures (Colantuoni et al.,

2011; Hawrylycz et al., 2012; Kang et al., 2011). The nature of
C

these variations in gene expression and their implications in

neuronal plasticity are currently subjects of intense investigation.

The epigenetic landscape that imposes these gene expression

programs is regulated by transcription factors that alter local

chromatin state of the genome at functional regulatory elements

(e.g., enhancers and promoters). During development of the

brain, progressive epigenetic alterations of the genome are

involved in establishing specific functional regions (Dulac,

2010). Indeed, variations in the levels of individual transcription

factors that drive these epigenetic alterations can affect func-

tional regionalization as well as the laminar identity of cells within

a given cortical region (Sur and Rubenstein, 2005). As the epige-

nome is influenced by environmental factors, it functions at the

intersection between the genome and its developmental and

environmental history. Charting the epigenome has provided

crucial information on how a cell uses the epigenome to store

memories of environmental events (Ostuni et al., 2013). Further-

more, it allowed the stratification of inactive gene expression

states into primed/poised (ready for activation) or silent (Bern-

stein et al., 2006), which provides unique information on a cell’s

transcriptional potential.

While the core promoter of a gene constitutes the site where

the transcriptional initiation complex is formed, enhancer ele-

ments are defined as regions in the genome that regulate core-

promoter activity independent of distance or orientation (Maston

et al., 2006). The distinction between proximal enhancers that

are often coined as part of the promoter (or proximal promoter)

and enhancers that are more distal is vague, but both can be

considered part of the promoter as a whole. Enhancers in partic-

ular have been shown to support core promoter activity in a tis-

sue- and species-specific manner, thus enforcing specific gene

expression programs that shape the biological state of the cell

(Bulger and Groudine, 2011). Enhancers can be characterized

on a global scale using distinct epigenetic footprints that are typi-

cally found to display this cell type- and species-specific distri-

bution and contain important information on how and why

certain cellular states are reached (Creyghton et al., 2010;

Heintzman et al., 2009; Rada-Iglesias et al., 2011; Visel et al.,

2009). This information is typically missed in genome sequencing

and transcriptomic studies. More recent efforts have also

focused on the identification of enhancers using enhancer

RNAs (eRNAs) (Andersson et al., 2014). However, this analysis
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underrepresents the total amount of enhancers found by an

order of magnitude (Shen et al., 2012; Zhu et al., 2013).

Others have begun to annotate distal enhancers in the mouse

cortex and neural cultures (Meissner et al., 2008; Rada-Iglesias

et al., 2011; Visel et al., 2013). However, most distal elements

identified using these epigenetic footprints are not well

conserved across species(Bernstein et al., 2012; Odom et al.,

2007; Schmidt et al., 2010; Visel et al., 2013). Furthermore, the

in vitro culturing of neuronal cells means replacing their physio-

logically relevant environment with an artificial one, which along

with the unrestricted growth of cultured cells translates into mul-

tiple nonphysiological changes in the epigenetic landscape

(Baylin and Ohm, 2006; Meissner et al., 2008). As such, epige-

nomic analysis of human tissue is currently gaining focus. Recent

analyses have included the epigenetic annotation of enhancers

in seven areas of the human brain and one fetal cortex (Visel

et al., 2013; Zhu et al., 2013). However, as the brain harbors

many functionally distinct anatomical regions, these data sets

are likely an underrepresentation of the total amount of en-

hancers that is active in the brain.

Here we analyze the epigenome of enhancers in 136 samples

covering 87 distinct anatomical regions of the adult human brain.

We generate a large compendium of over 83,000 distal regula-

tory elements (i.e., enhancers) and use these data to analyze

complex coregulated networks of enhancers in heterogeneous

anatomical regions. This greatly increases the resolution of epi-

genomic analyses in complex tissue. Furthermore, we provide

evidence for the involvement of enhancer elements in the a-syn-

uclein and PARK16 loci as contributing factors to Parkinson’s

disease (PD).

RESULTS

Genome-wide Epigenomic Analysis of Active
cis-Regulatory Elements in the Human Brain
To identify distal enhancers in different anatomical regions of the

human brain, we performed ChIP-sequencing (ChIP-seq) anal-

ysis for histone 3 lysine 27 acetylation (H3K27ac) on postmortem

brain tissue. This histone modification was previously shown to

specifically label both active enhancers as well as active pro-

moters (Creyghton et al., 2010; Rada-Iglesias et al., 2011;

Wang et al., 2008). As the resolution of this histone mark lies

within the 1–2 kb range, we defined enhancers as being enriched

regions that completely fall outside of a 2 kb region around

known core promoters or transcriptional start sites (TSSs), which

for simplicity are just referred to as promoters. As individual vari-

ation of donors was recently demonstrated to account for signif-

icant sample to sample variation in epigenetic chromatin profiles

(Kasowski et al., 2013; Kilpinen et al., 2013; McDaniell et al.,

2010; McVicker et al., 2013), we performed most of our experi-

ments using samples collected from two complete left hemi-

spheres from two healthy female donors (hemispheres 1 and 2)

(Figure S1; Table S1), as well as samples obtained from four

additional donors (two male and two female). Hemispheres 1

and 2 were of comparable agonal state and differed only by their

age and postmortem delay (PMD), determined as the time be-

tween death and end of abduction (Table S1). The latter is un-

likely to affect the analysis significantly as data sets generated
768 Cell Reports 9, 767–779, October 23, 2014 ª2014 The Authors
here from frozen rat brain at different PMDs were overall very

similar up to 24 hr after death (Figure 1A for analysis of a 93

and 130 kb genome region; Supplemental Information).

To ensure that our data set would be a good representation of

distal enhancers in the entire human brain, we focused on sam-

pling anatomically distinct regions (Figure S1). We dissected a

total of 136 regions across our donor tissues (Figure S1; Table

S1). In total, 87 anatomically distinct regions were dissected,

with several being sampled multiple times across different do-

nors (Table S1). Cortical regions and subcortical nuclei of the

midbrain were dissected as identified anatomically (Figure S1;

Table S1). We generated 136 ChIP-seq data sets representing

a combined total of 2.5 billion mapped reads (GSE40465). Tech-

nical replicate samples displayed close correlation (0.86–0.99,

Supplemental Information) and were combined when needed

to reach our target threshold of 8 million reads mapped per sam-

ple (Table S1; Supplemental Information).

Principal component analysis (PCA) of the separate data sets

revealed a global stratification of samples based on gross

anatomical location (i.e., cortex, midbrain, cerebellum [CB]) (Fig-

ure 1B; Supplemental Information). However, as anatomical

sections of the brain are expected to harbor a higher degree of

biological similarity to each other as compared with samples

derived from different organs, the percentage of total variation

due to biological variation between the data sets is relatively

lower (Supplemental Information). In total, we identified �2.9

million H3K27ac-enriched regions across all samples analyzed

in the first hemisphere, �1.4 million in the second hemisphere,

and 356,747 in the additional donors. After subtracting regions

overlapping known promoter regions and merging redundant

enhancers between the different data sets, these corresponded

to a total of 122,822: 105,558 and 87,151 nonredundant enriched

regions, respectively (Figure 1C). Plotting the total number of

nonredundant regions identified per hemisphere as a function

of the amount of samples analyzed revealed that we sampled

common H3K27ac-enriched regions in the brain almost to satu-

ration (Figure 1D). Indeed, most enhancers were recovered from

multiple samples with 45,687 enhancers being recovered from

more than 10 anatomical regions (Figure 1E). A total of 83,553

promoter distal H3K27ac-enriched regions were present in at

least two biological replicates (Figures 1C and 1D; Table S2).

Of these, 6,829 were exclusively found in regions of the cortex

(Table S3). While these distal H3K27ac-enriched regions can

be considered putative enhancer elements, a number of these

might still represent unannotated promoters.

Further analysis of these putative enhancers demonstrated an

average size �2.6 kb with 7,043 enhancer regions (8%) being

larger than 5 kb and 731 (0.9%) exceeding 10 kb, which is remi-

niscent of earlier described superenhancers (Lovén et al., 2013)

(Figure 1F). Several known enhancer regions in the brain were

also found to be covered by the current enhancer data set (Fig-

ure 1G, shown for the MECP2 gene; Liu and Francke, 2006),

further confirming the quality of the data. For each distinct brain

region analyzed, enhancer elements were recovered in at least

one other sample from a different individual at an average

coverage per region of �96% (Figure 1H). As multiple data

sets are added, this also results in the accumulation of en-

hancers that are not covered in biological replicates (Figure 1C).
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Figure 1. Promoter Distal H3K27ac-Enriched Regulatory Elements in Regions of the Human Brain

(A) H3K27ac-enriched regions in two genomic loci of whole rat brain sampled at 0, 8, 16, and 24 hr PMD. The data reveal H3K27ac-enriched regions at promoters

(shown for several genes in the bottom panel) as well as at putative upstream enhancers (upper panel 50 distal from the ZFP483 gene) (mapped using rn4). Each

track is normalized for the number of mapped reads per total million reads. Read per million normalized scale is shown ranging from 0 to 7.

(B)PCAcoordinates for each sample from the twoseparate hemispheres. Thedata showoverall variationbasedongross anatomical location.PC1 represents 23%

of variation and discriminates between CB (green) and other samples. PC2 (15%of variation) and PC3 (11%of variation) separate cortex (blue) and nuclei (yellow).

(C) Venn diagram showing total overlap of distal H3K27ac-enriched regions between hemisphere specimen 1 (red) and hemisphere 2 (blue), as well as the

additional donor samples (green).

(D) Graph showing the increase in the number of unique H3K27ac-enriched regions identified per hemisphere as a function of the number of samples analyzed.

Blue line depicts the enhancers identified in a single hemisphere. Red line depicts enhancers identified in biological replicates.

(E) Graph indicating the number of 83,533 enhancers enriched as a function of the number of samples they are found enriched in (total 136).

(F) Distribution of the 83,553 nonredundant enhancer sizes recovered in this study.

(G) ChIP-seq read distribution across a 70 kb region spanning the MECP2 gene. Two tracks display enrichment for the cerebellar region (H3K4me3 in green,

H3K27ac in blue). Validated enhancers are indicated (F11 and F17; Liu and Francke, 2006). The scale of the tracks runs from 0 to 7 reads per million normalized.

(H) Percentage of nonredundant enhancers per brain region that are recovered at least once in a biological replicate region analyzed in this study. Coverage for all

136 brain regions analyzed is displayed as a distribution.

See Figure S1.
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These enhancers could therefore represent false positive en-

hancers. However, a percentage of these enhancers (35% for

hemisphere 1 and 24% for hemisphere 2) was recovered from

multiple samples of a single individual. Therefore, it is also

possible that some of these represent interindividual variation.

This is consistent with earlier reports describing the analysis of

H3K27ac in different donors (Kasowski et al., 2013; Kilpinen

et al., 2013; McDaniell et al., 2010; McVicker et al., 2013). Finally,

our data sets closely match recently published records of

H3K27ac enrichment in the brain. Strong overlap was found be-

tween the data sets described here and those previously

analyzed for seven distinct brain regions (Zhu et al., 2013), as

96% of the enhancers recovered in that study was also found

in the larger data set presented here. For p300 data generated

from a single human fetal cortex (Visel et al., 2013), 67% was

found back in these data sets. The latter was expected to be

more divergent, as it involves the comparison between adult

and fetal stages for which significant differences in gene expres-

sion patterns are also found (Colantuoni et al., 2011; Kang et al.,

2011). Taken together, we have identified 83,533 putative en-

hancers, significantly expanding the compendium of putative

enhancers that are found active in the human brain.

Chromatin Dynamics at Distal Enhancers Correlate with
Neuronal GeneExpression Patterns inDifferent Regions
of the Brain
To further assess the validity of the putative active enhancers

identified here, we correlated their genomic position in different

anatomical regions to gene expression data from matched

anatomical regions. The overall genomic distribution of putative

enhancers mapped in the brain was reminiscent of enhancers

(Figure 2A), with preferential clustering near genes (Bernstein

et al., 2012). Of the enhancers present in the intergenic regions,

most (70%) were located >10 kb away from coding gene se-

quences, and �22% exceeded 100 kb in distance. Using RNA

sequencing data for two regions (superior temporal gyrus

[STG] compared with the CB), we found that genes that are

upregulated specifically in one anatomical region over another

(>4-fold) were found to be more frequently associated with a

close enhancer specific for the anatomical region in which the

gene was upregulated (Figures 2B and 2C). This effect was pri-

marily seen within the first 10 kb of the TSS and not for >10 kb,

which is possibly due to more frequent incorrect enhancer-

gene pairing at larger distances (Sanyal et al., 2012).

To further confirm a correlation between enhancer activity and

gene expression in multiple anatomical regions of the brain, we

calculated the Pearson correlation scores between enhancers

present in a 100 kb window around the TSSs of 1,119 genes

that were previously found to be differentially expressed be-

tween different regions of the brain (Hawrylycz et al., 2012) (Fig-

ure 2D; Supplemental Information). Indeed, correlation scores

for enhancers that are close to these differentially regulated

geneswere lower comparedwith enhancers around nondifferen-

tially expressed genes (Figure 2D; p = 2.9E-5). This confirms that

enhancers in regions around differentially expressed genes

show greater variability in H3K27ac enrichment.

Gene ontology (GO) analysis on genes close to enhancers in

the brain confirmed that these were genes involved in neuroglial
770 Cell Reports 9, 767–779, October 23, 2014 ª2014 The Authors
processes (Table S4), consistent with enhancers in the brain

supporting neuronal gene expression networks. For instance,

enhancers found in the pituitary gland were specifically associ-

ated with abnormal pituitary gland development (Table S4).

However, for most neuronal functions and disorders identified,

multiple anatomical regions were found to be associated, sug-

gesting the involvement of more common inter-regional regula-

tory circuits.

To assess the activity of some of our putative enhancer ele-

ments experimentally, we compared our data with the VISTA

enhancer database (Visel et al., 2007). This database comprises

a large collection of DNA elements that were selected, based on

their predicted activity as enhancers and tested in transgenic

mouse assays. As an example, two of our newly identified en-

hancers were tested using this assay and these demonstrated

reproducible staining of neural structures in E11.5 embryos, as

shown in Figure 2E. We next focused on 231 DNA elements

from the VISTA database selected previously by measuring

ultraconservation (Visel et al., 2007) and intersected these re-

gions with our data set. We found that ultraconserved regions

that were also covered by H3K27ac in our data sets were more

frequently active as an enhancer in transgenic experiments

(61% compared with 50%, p < 0.05) (Figure 2F). Furthermore,

their activity also more often localized to forebrain, midbrain, or

hindbrain structures (77% versus 62%, p < 0.05) (Figure 2G).

Collectively, these data provide strong support that our compen-

dium of enhancers comprises bona fide enhancer sequences

that support neuronal gene expression programs in the human

brain.

Enhancer Patterns across Anatomical Regions in the
Brain Allow the Identification of Coregulated Enhancer
Networks across the Genome
A drawback of the analysis above is that the anatomical brain re-

gions analyzed in this study are typically heterogeneous and the

enhancers identified here likely have different cellular specific-

ities within a given anatomical region. This will amplify common-

alities between the different cell types within the anatomical

regions such as their developmental origin and will also dilute

the signal from smaller more specific sets of enhancers that

are only active in select cell types or in response to external

cues. This is consistent with what was found in the GO analysis

for distinct anatomical samples, in which very similar GO terms

were associated with data sets from different anatomical areas

(Table S4). Similarly, the majority of DNA motifs identified at

enhancer regions represented transcription factor binding sites

that were found enriched at enhancers in most anatomical re-

gions (Figure S2).

To identify more specific sets of enhancers (networks) that are

functionally linked in a cell- or context-specific manner, we used

a new strategy to analyze the data. We aligned H3K27ac-enrich-

ment tracks from the different anatomical regions at fixed

genomic positions (Figure 3A) and searched for groups of en-

hancers with the same enrichment profile across the brain

regions (Figure 3B). We used two distinct enhancer states (i.e.,

enriched in a single sample or enriched in multiple samples) as

viewpoints (reference enhancers) to scan the genome in order

to find enhancers that were closely coregulated (showing the
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Figure 2. Chromatin Dynamics at Distal Enhancers Correlate with Neuronal Gene Expression Patterns

(A) Distribution of identified promoter distal H3K27ac-enriched regions shared between replicates across the genome.

(B) Heatmap of putative enhancers shared between or specific to the STG (Region_13_STGm, red) and CB (Region_40_CB, blue) for segments of 8 kb sur-

rounding enhancers. Both colors represent H3K27ac-enrichment reads normalized per million.

(C) Graphs based on genes upregulated at least 4-fold with a q value of 1E-5 in Region_13_STGm (upper graph) over Region_40_CB or vice versa (lower graph).

The closest distal elements found near these gene promoters are counted for both Region 40 (blue bars) and Region 13 (red bars) and allocated to different

distance intervals shown on the x axis.

(D) Four examples of comparisons between two given anatomical regions for differentially expressed genes between those regions (Hawrylycz et al., 2012). For

each region (in pairs), the level of H3K27ac enrichment (from low/yellow to high/blue) is shown (displaying 100 kb sequence centered at TSSs). Scale bars indicate

read count normalized per million reads. Comparisons in the violin plot were done by calculating a Pearson correlation score for each enhancer between all data

sets based on quantile normalized counts in a 2 kb window around the center of the enhancer. The violin plot shows the distribution of correlations found for all

enhancers across all samples. (All) compared with those found within 100 kb of a differentially expressed gene across all samples (Diff). Dissimilarity between

distributions was calculated using a Mann-Whitney U test.

(E) Two transgenic mice at E11.5 showing enhancer-driven expression of a LacZ reporter construct in neuronal structures.

(F) The top graph indicates comparison of the human enhancer data set generated here to 231 ultraconserved elements that were tested in the same transgenic

assay and deposited in the VISTA enhancer database by others (Visel et al., 2007). The percentage of enhancers with activity in transgenic animals is shown for

conserved elements that overlap H3K27ac in the brain (n = 49) versus those that do not.

(G) The same analysis is shown for 115 ultraconserved elements that were active in transgenic animals as a function of the percentage that was active in forebrain,

midbrain, or hindbrain. Cumulative probabilities of the differences seen in both graphs are indicated (*p < 0.05).

Also see Figure S2.
same pattern of enrichment across samples). We identified

distinct groups of coregulated enhancers for both separate

states. For instance, two viewpoint enhancers that were en-

riched in multiple samples yielded 495 and 442 coregulated en-
C

hancers (Figures 3C and 3D). In contrast to the analysis of the

whole data set, these smaller networks were associated with

very specific gene functions, supporting either neuronal or glial

cell states (Figures 3C and 3D). Similarly, using an enhancer
ell Reports 9, 767–779, October 23, 2014 ª2014 The Authors 771
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Figure 3. Enhancer Patterns across Anatomical Regions in the Brain Allow the Identification of Coregulated Enhancer Networks across the

Genome

(A) H3K27ac-enrichment tracks for all regions from hemisphere 1 merged into one heatmap for a 470 kb segment overlapping the RCN1 andWT1 genes. Several

putative enhancers are present, three of which are indicated by arrows and show a distinct pattern of enrichment across all samples.

(B) Cartoon indicating how distinct networks of enhancers can be extracted from heterogeneous samples by considering coregulation across the genome.

(C–F) H3K27ac-enrichment patterns Z score normalized across 75 ChIP-seq samples derived from a single hemisphere ordered in a fixed position. Samples are

ordered vertically. Each horizontal line is an enhancer that correlates with the viewpoint enhancer. The color scale (yellow to blue) ranges 3 SDs above and below

the mean enrichment (black) over the 75 regions per single genomic region. The number of lines (enhancer regions) is (C) n = 495 with 0.83 mean correlation, (D)

n = 442 with 0.76 mean correlation, (E) n = 154 with 0.90 mean correlation, and (F) n = 1424 with 0.90 mean correlation. Distinct network functions are derived

using GREAT analysis and are shown for each coregulated enhancer set

Also see Figure S3.
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enriched selectively in the pituitary gland or CB as a viewpoint

yielded coregulated enhancers (Figures 3E and 3F) that were

also found selectively enriched in these regions. These two net-

works were specifically linked to genes that function in pituitary

and cerebellar specific processes. This demonstrates that core-

gulated enhancers can be identified and grouped into specific

networks using both single sample-enriched as well as multiple

sample-enriched enhancer states as a viewpoint (Figures 3E

and 3F). Using this analysis for an enhancer selectively enriched

in the pineal gland, we identified 334 enhancers that were en-

riched for the CRX transcription factor binding site, which is a

master regulator of pineal specific gene expression patterns

(Figure S3) (Rovsing et al., 2011). Thus, our analysis of coregu-

lated enhancer networks over a large number of brain regions

allows us to substantially increase the resolution of enhancer

analysis in heterogeneous tissue compared with the analysis of

single data sets.

Global Network Analysis Identifies Distinct Enhancer
Modules in the Human Brain
To get a sense of the total amount of networks active in the hu-

man brain, we employed a more global analysis that was not

dependent on the prior selection of viewpoint enhancers. The

total number of networks in the brain is both a function of the

minimal correlation score used between its resident enhancers

as well as the minimal number of enhancers allowed in the

network (network size; Figure S4A). Further analysis showed

that 77.08% of all enhancers was in a network of at least 100

or more enhancers following a minimal correlation threshold of

0.7 and using each individual enhancer as a separate viewpoint

(Figure S4A). This resulted in a fraction of enhancers appearing in

multiple networks potentially indicating clusters of enhancers

active in more than one network (multimodal enhancers; Figures

S4B–S4D). To assign enhancers into separate networks, we

correlated all enhancers to each other and used a dynamic

tree cutting algorithm (Langfelder et al., 2008) to identify distinct

coregulated enhancer networks on a global scale (Figure 4A).

While providing a more global overview of the networks present

in the brain, the disadvantage of this approach is that it ignores

the biological implications of overlap between the different net-

works (Figure S4), as these could represent clusters of different

enhancers.

Two hundred eighty-eight distinct coregulated enhancer net-

works were identified with a size of between 100 and 865 en-

hancers (average enhancer content 228; Figure 4B). With this

analysis, 93% of all enhancers could be placed in separate mod-

ules, while a total of 5,177 enhancers was not assigned. These

coregulated enhancer networks could again be linked to very

distinct gene functions that represented specific neuronal pro-

cesses such as shown for module 280, 14 (Figures 4C and 4D),

and many other examples (Table S5). In addition, context-spe-

cific modules were also found such as those involved in tissue

responses to external cues. For instance, module 34 was linked

to hypoxia-related processes consistent with our samples being

derived from a recently deceased brain (Figure 4E), whereas

module 200 was clearly linked to immune responses and inflam-

matory processes that could be associatedwith activity inmicro-

glial cells of the brain (Figure 4F). Therefore, many of these
C

networks could represent cell type-specific information within

a heterogeneous tissue sample.

This functional variation between networks was also reflected

in the diversity of transcription factor binding motifs found at the

H3K27ac-enriched regions comprising a single module (Fig-

ure S4E). This is consistent with distinct transcription factors

governing the activity of specific enhancer sets in response to

external cues. Notably, enhancer networks linked to genes

involved in diseases of the brain, such as schizophrenia, were

also linked to synaptic transmission (Figure 4C). Similarly net-

works linked to cancers of the brain were also associated with

developmental processes in the early embryo (Figure 4D). As

over 85% of polymorphisms that associate with altered disease

susceptibility occur in introns or intergenic regions of the

genome, enhancers in such networks likely account for the asso-

ciation between noncoding elements and disease susceptibility

(Bernstein et al., 2012; Maurano et al., 2012; Ward and Kellis,

2012). This suggests that SNPs at enhancers potentially affect

gene expression in an organ-specific fashion, leading to specific

disease phenotypes.

Noncoding PD-Associated SNPs in the PARK16 and
a-Synuclein Loci Alter Transcription Factor Binding
Sites at Enhancers in the Human Brain
To determine whether we could identify disease associated var-

iations at candidate enhancers in the human brain, we focused

on the neurodegenerative disorder PD. To demonstrate the pref-

erential association between PD-associated SNPs and enhancer

sequences detected in the brain, H3K27ac-enriched enhancer

regions were compared with SNPs from the HaploReg

genome-wide association database (Ward and Kellis, 2012).

Nine unrelated cell types were used as a control (Ernst et al.,

2011). Overall, enhancer data sets represent a similar number

of distal enriched regions, with 107,407 nonredundant putative

enhancers in the nine cell types compared with 122,882 and

105,558 regions identified in each hemisphere separately.

When comparing the percentage of SNPs associated with PD

located within enhancers, given as a function of their signifi-

cance, we observed an overrepresentation of highly significant

SNPs located in enhancer sequences from both brain speci-

mens compared with the nine control cell types (Figure 5A).

This correlation was specific to the brain and not recovered

when comparing SNPs associated with other traits not directly

related to this organ (heart failure, obesity). No single brain region

had significantly more PD-associated SNPs located within

H3K27ac-enriched sequences, consistent with PD globally

affecting many brain regions and individual neuronal types

(Mattson and Magnus, 2006). Importantly, putative enhancer

sequences were found in genetic loci spanning major PD-asso-

ciated polymorphisms, including the PARK16 locus and a locus

containing the a-synuclein (SNCA) gene, which is mutated in

familial cases of PD (Satake et al., 2009; Simón-Sánchez et al.,

2009). In both cases, the associated SNPs appear in noncoding

sequences, and their functional relevance for differential suscep-

tibility to PD is not yet understood.

The a-synuclein locus contains some of the most significant

PD-associated SNPs (Satake et al., 2009; Simón-Sánchez

et al., 2009), two of which were identified in separate population
ell Reports 9, 767–779, October 23, 2014 ª2014 The Authors 773
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Figure 4. Global Network Analysis Identifies 288 Distinct Enhancer Modules in the Human Brain

(A) Assignment of enhancers to separate modules using average linkage followed by a dynamic tree-cutting algorithm (Langfelder et al., 2008).

(B) Boxplot showing the distribution of module sizes bases on the number of enhancers present in each module.

(C–F) Single modules derived from the dynamic tree-cutting algorithm in (A) showing H3K27ac-enrichment patterns Z score normalized across 75 ChIP-seq

samples from hemisphere 1 ordered in a fixed position. Samples are ordered vertically. Each horizontal line is an enhancer that was assigned to the indicated

module. The color scale (yellow to blue) ranges 3 SDs above and below the mean enrichment (black) over 75 regions per single genomic region. A selection of

functional annotations for genes linked to enhancers in a module is shown below each module. Enhancer-gene links were determined using GREAT (McLean

et al., 2010).

Also see Figure S4.
studies (one of Japanese ancestry and one of European). These

span a 50 kb haplotype block on the distal half of the gene (Fig-

ure 5B, red arrows) (http://www.hapmap.org). Within this chro-

mosomal segment, two SNPs are found 20 bp apart at a putative

enhancer, with each appearing to be in perfect linkage disequi-

librium (LD = 1) with the disease-associated SNPs of matching

minor allele frequency derived from the two studies (Figure 5B,
774 Cell Reports 9, 767–779, October 23, 2014 ª2014 The Authors
purple arrow). Hence, while not corresponding to SNPs present

on the array, this represents a clear association between

sequence alterations within a putative enhancer and increased

PD incidence.

To demonstrate that this region can function as an enhancer

in vivo, we generated transgenic mice for this enhancer using a

LacZ reporter construct (Visel et al., 2007). Reproducible LacZ

http://www.hapmap.org
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Figure 5. Association between cis-Regulatory DNA Elements and PD-Associated SNPs

(A) Percentage of SNPs associated with each disorder (as a function of their respective p value) is represented for SNPsmapping to enhancer sequences found in

either nine unrelated cell lines (blue line) or the two hemispheres examined (red and yellow line).

(B) H3K27ac-enrichment tracks for all regions from brain 1merged into one heatmap for a 140 kb region spanning the SNCA gene. Two different SNPswere found

in separate studies as influencing PD incidence (red arrows). For each disease-associated SNP found on the genotyping array, an additional SNP can be found in

perfect LD (LD = 1, purple arrows), both of which (rs3756054 and rs356168, 20 bp apart) also overlap a single putative enhancer region. An inset below shows the

location of the SNP at higher resolution (2 kb) for all tracks (heatmap), being at the center of the enriched region). The bottom track of the inset (peaks) shows as an

example H3K27ac enrichment in the temporal pole (range, 0–3 reads per million normalized).

(C) Transgenic mouse at E11.5 showing reproducible SNCA enhancer driven LacZ expression in posterior hindbrain and midbrain boundary (phmb) and dorsal

root ganglion (drg) (4/7).

(D) Track showing 1 Mb around the SNCA gene showing chromosome conformation capture results using the SNCA enhancer as a viewpoint (bottom panel in

red). The large peak shows enrichment at the viewpoint (viewpoint enhancer indicated by red arrow above H3K27ac panel). Enrichment at other regions

demonstrates looping of the viewpoint to those regions such as the SNCA promoter (black arrowhead) as well as the GPRIN3 and CCSER genes. H3K27ac

enrichment is shown in blue above the 4C tracks. Genes (black boxes) are at the bottom of the panel (biological replicate 4C for hemisphere 2).

See Figure S5.
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staining of the hindbrain and midbrain boundary and dorsal root

ganglion was seen, consistent with the human sequence acting

as an enhancer (Figure 5C). As moderate alteration of a-synu-

clein expression leads to familial PDwith high penetrance (Stefa-

nis, 2012), these data suggest that variations at this particular

enhancer sequence in the brain could explain the association

with PD incidence.

To further confirm that this region functions as an enhancer in

the human brain, as well as to identify its target gene(s), we per-

formed chromosome confirmation capture combined with

sequencing (4C-Seq) analysis (van de Werken et al., 2012) using

the putative a-synuclein enhancer as a viewpoint. This technique

identifies genomic locations with which the viewpoint is physi-

cally connecting. As enhancers function by looping to their target

promoters, this method therefore represents ameasure of in vivo

enhancer activity as well as a method to identify their target

genes. A robust interaction between the enhancer and the a-syn-

uclein promoter region was observed (Figures 5D and S5)

demonstrating that the enhancer forms a loop to its presumed

target promoter in a relevant environment. A second interaction

of the enhancer with GPRIN3, a nearby gene that is a subunit of

the NMDA glutamate receptor complex was also observed.

Interestingly, these receptors are considered potential therapeu-

tic targets for the disease (Johnson et al., 2009), raising the pos-

sibility that in addition to SNCA, variations in the regulation of this

gene are also involved in altered disease susceptibility to PD.

In contrast to the SNCA enhancer that is enriched for H3K27ac

in multiple regions throughout the brain, we found that the

enhancer in the PARK16 locus, covering themost significant dis-

ease-associated SNP, was more selectively active in the CB

(Figure 6A). Interestingly, the CB is currently gaining attention

as being structurally altered and directly involved in the patho-

physiology of PD (Wu and Hallett, 2013). Analysis of this

sequence in transgenic mice confirmed reproducible staining

of midbrain and neural tube consistent with the human sequence

acting as an enhancer element (Figure 6B).

Recent work has demonstrated that deficiency of the RAB7L1

gene, which is one of the genes in the PARK16 locus, can lead to

neurodegeneration similar to mouse models of PD (MacLeod

et al., 2013), and thus, this gene was believed to contribute to

the association between PD and this locus. In order to determine

whether the enhancer associated to the PARK16 locus directly

explains this by regulating the RAB7L1 gene, we performed

4C-Seq analysis using the PARK16 enhancer sequence as a

viewpoint in human CB. The analysis demonstrated no clear

evidence for looping between the enhancer and the promoter

of the RAB7L1 gene. However, the resolution of the 4C analysis

also does not exclude its involvement. We did find interactions

with several other distal genes, some of which have been simi-

larly implicated in neuronal degeneration but are located further

away (Figure 6C). For example, MK2 (MAPKAPK2) promotes

neurodegeneration in PDmodels (Thomas et al., 2008). This sug-

gests that the activity of this enhancer is much more complex

than the regulation of a single gene. Altogether, with 53 PD-asso-

ciated SNPs being covered by enhancers in the brain (Table S6),

these results demonstrate that genomic variations within

enhancer sequences could collectively explain variable suscep-

tibility to PD in the human population by differentially regulating
776 Cell Reports 9, 767–779, October 23, 2014 ª2014 The Authors
either specific or larger sets of genes. Furthermore, we demon-

strate how these can be identified using the data sets generated

in this study.

DISCUSSION

While gene expression analysis specifies active and inactive

genes,mapping the epigenome provides important complemen-

tary information by explaining why certain genes are active or

inactive andwhich genes have the potential to become activated

in response to external cues. Furthermore, it allows the identifi-

cation of the genomic elements responsible for this regulation

on a large scale as well as the identification of the master regu-

latory factors that control these genomic elements. In this work,

we have generated a large data set that allows the annotation of

cis-regulatory genomic elements in different regions of the hu-

man brain. Given the diversity of neuronal subtypes in the brain

and the plethora of signals a cell needs to be poised to respond

to, regional variation in enhancer patterns reflects both changes

in cellular heterogeneity in distinct anatomical regions, as well as

technical variation inherent to ChIP-Sec. This generates noise

that complicates the regional interpretation of specific sets of en-

hancers within complex heterogeneous tissues such as the

brain. This noise is less obvious when comparing the global

epigenetic state of tissues that are biologically distinct (i.e.,

whole liver and muscle), as it will uncover the common develop-

mental features of its resident cells (Creyghton et al., 2010; Zhu

et al., 2013). However, within a complex tissuewith a high degree

of biological similarity and a fair amount of heterogeneity, the

distillation of select enhancer networks that follow specialized

functions has been problematic.

Using these variations as an advantage, we show how the

analysis of enhancer patterns across many anatomical regions

of the brain can lead to the identification of coregulated enhancer

networks that appear functionally distinct. These networksmight

in some cases represent cell type-specific enhancer networks

but can also represent common enhancer networks used by

several neuronal subtypes throughout the brain. The distinction

between separate networks is of particular importance, as

even single cell types contain separate functional networks

that regulate the diverse cellular responses to external cues.

These typically stay hidden in global analyses, especially when

using homogeneous culture systems. These context-specific

networks that are activated in response to external cues can

either be regionalized or more widespread in nature, such as

those involved in modulating responses to hypoxia or infection.

Thus, analyzing coregulation significantly increases the resolu-

tion at which enhancers in complex tissues can be annotated

and represents an important step to uncover the complexity of

enhancer networks within the brain.

Additionally, these data, in contrast to gene expression

studies, are particularly useful for understanding the persistent

correlation between noncoding regions in the genome and dis-

ease susceptibility. As such, we find indications of the involve-

ment of noncoding genomic alterations at putative enhancer

elements associated with increased susceptibility to PD,

including a new enhancer at the a-synuclein gene, which is found

mutated in familial forms of PD. We demonstrate that enhancers
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Figure 6. Association between a cis-Regulatory DNA Element in CB and a PD-Associated SNP in the PARK16 Locus
(A) H3K27ac-enrichment tracksmerged into one heatmapwhere color intensities per lane represent the intensity of the peaks in each sample (both hemispheres).

A 140 kb region is shown for the PARK16 locus, where H3K27ac-enriched regions and position of a PD-associated SNP (red arrow) are represented. An inset

below shows the location of the SNP at higher resolution (2 kb) for all tracks (heatmap), being at the center of the enriched region. The bottom track of the inset

(peaks) shows as an example H3K27ac-enrichment in the CB (range, 0–5 reads per million normalized).

(B) Transgenic mouse at E11.5 showing reproducible PARK16 enhancer driven LacZ expression in midbrain and neural tube (4/5).

(C) Track showing 4Mb around the PARK16 locus showing chromosome conformation captures results using the PARK16 enhancer as a viewpoint (bottom panel

in red). The large peak shows enrichment at the viewpoint (viewpoint enhancer indicated by red arrow above H3K27ac panel). Enrichment at other regions

demonstrates looping of the viewpoint to those regions (black arrows). H3K27ac enrichment is shown in blue above the 4C tracks. Genes (black boxes) are at the

bottom (zoom in for viewpoint for both biological replicates, see Figure S6).
at PD associated SNPs can either be active in many anatomical

regions as shown for SNCA or in more specific regions such as

shown for the PARK16 locus. This emphasizes the importance

of investigating these enhancer variations in a relevant biological

context. We demonstrate how our analysis leads to the identifi-

cation of potential target genes by using these distal regulatory

elements for chromosome confirmation capture in postmortem

tissue. With multiple PD-associated SNPs occurring in en-

hancers in the brain, these data suggest that fluctuations in the

expression of several genes, caused by variations at multiple en-

hancers, collectively set the stage for PD penetrance.
C

Following the identification of a large portion of the noncoding

regulatory elements in the brain, it will now be possible to employ

large-scale chromatin conformation assays to pair enhancer re-

gions to their correct target promoters. This will be crucial to

generate a complete picture of the gene regulatory landscape,

as many enhancers are regulating genes that are not their near-

est neighbor (Sanyal et al., 2012). In this light, it will be important

to correctly match anatomical and functional regions of the brain

between different data sets from different studies and to account

for interindividual variations. Furthermore, it will be important to

start to ascertain the role of enhancers in the regulation of
ell Reports 9, 767–779, October 23, 2014 ª2014 The Authors 777



gene expression networks the brain in the context of single cell

types. Analyzing enhancers by coregulation might represent a

step in this direction. As more specimens are processed, these

experiments pave the way toward a full understanding of the

epigenetic complexity of the human brain.

EXPERIMENTAL PROCEDURES

Full methods accompany this paper (Supplemental Information). Briefly, two

adult nondemented control female human hemispheres were obtained from

the Netherlands Brain Bank (http://www.brainbank.nl/) as well as several

separate regions stemming from different donors (Table S1; Supplemental In-

formation). Informed consent was acquired meeting all ethical and legal re-

quirements for autopsy, tissue storage, and use of tissue and clinical data

for research. Tissue was flash frozen in liquid nitrogen and stored at �80�C.
Neuropathological examination revealed no significant abnormalities in either

specimen, although partial age-related neuronal atrophy is more likely to have

occurred in specimen 2 given the advanced age (Supplemental Information).

Frozen tissue was dissected at �20�C, added to precooled DAG medium

(phenol-red free Dulbecco’s modified Eagle’s medium [Gibco] and BSA 1 g

per 0.5 L) and immediately homogenized on ice using a cold 2 ml Dounce

homogenizer. This was followed by chemical crosslinking using a 103 cross-

linking solution containing 11% formaldehyde (Supplemental Information).

Samples were further processed for ChIP-seq as described previously

(Creyghton et al., 2010; Supplemental Information) using the following anti-

bodies: H3K4me3 (07-473) and abcam H3K27ac (ab4729) (Millipore/Upstate).

Shearing was done on the Covaris S Series sonicator. Samples for Solexa

sequencing were run using the HiSeq 2000 genome sequencer (SCS v.2.6,

pipeline 1.5) at the MIT BioMicroCenter. SOLiD based sequencing was done

on the SOLiD 5500 xl and xlw genome sequencers (http://ngs.hubrecht.eu/).

SequenceswerealignedusingBowtie softwareon themurine (mm9), rat (rn4),

and human (hg19) genomes (https://www.genome.ucsc.edu), excluding reads

with either more than one mismatch (three for color space) or with multiple

alignments. Reads that had more than two exact matches were also excluded

to correct for sequence bias. For all entered samples, between 8 to 20 million

reads were successfully mapped in order to be included in data sets, and

fragment in peak (FRiP) scores all well exceeded the 1% threshold used by

ENCODE (Table S1; Landt et al., 2012). Statistically significant enriched

regions for H3K27ac were identified using MACS2 v.2.0.8. Whole-cell extract

controls were generated for a number of regions but not used in the analysis

since the internal lambda control from the MACS algorithm proved a more

stringent correction (see Supplemental Information). Animal experiments

were approved by the Animal Experiments Committee (Dier Experimenten

Commissie [DEC]).

Enhancer Network Analysis

Enhancer tracks for all regions analyzed in hemisphere 1 were ordered in a

fixed position grouping cortical and noncortical regions together. Each single

enhancer was Z score normalized to indicate variation from the mean enrich-

ment score across all regions for the enhancer analyzed. The resulting

sequence of enrichment across the region was compared with that of all other

enhancer regions using the same fixed order of individual anatomical regions.

Pearson correlations between all enhancer pairs were calculated and used for

network identification. Viewpoint enhancers were manually selected, and cor-

egulated enhancers were identified at a selected correlation cutoff. This anal-

ysis was then repeated in the second hemisphere, and only enhancers that

correlated in both hemispheres analyzed separately were admitted to the

network. For global network analysis, Pearson correlations identified above

were allocated to a matrix containing all �5 billion correlations. The matrix

was then clustered using average linkage, and separate modules were identi-

fied using a dynamic tree cutting algorithm (Langfelder et al., 2008).
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