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Recently, an algorithm for function minimization was presented, based 
upon an homogeneous, rather than upon a quadratic, model. Numerical 
experiments with this algorithm indicated that it rapidly minimizes the 
standard test functions available in the literature. Although it was proved that 
the algorithm produces function values which continually descend, no proof 
of convergence was supplied. 

In this paper, the homogeneous algorithm is modified primarily by replacing 
the cubic interpolation routine by Armijo’s step size rule. Although not quite 
as fast as the original version on the standard test functions, this modified form 
has the advantage that a proof of convergence follows from a general theorem 
of Polak. 

1. INTRODUCTION 

In [l] a new algorithm for function minimization was presented. This 
algorithm, unlike most other algorithms for function minimization, is based 
upon a homogeneous model rather than on a quadratic. A consequence of this 
is that the algorithm converges under certain conditions [l] to the minimum of 
a homogeneous function (a quadratic function is homogeneous of degree 2) 
in R + 2 steps. On general functions the aIgorithm performed we11 and in 
almost all cases it was markedly superior to that of Fletcher and Powell [2]. 
Although it was proved in [l] that the algorithm descends at each iteration, it 
was not proved that the algorithm actually converges to the minimum of the 
function it is attempting to minimize. 

In this paper we present a modified version of the homogeneous algorithm 
in which the step size selection by cubic interpolation [2] is replaced by 
Armijo’s rule [3]. Although the resulting algorithm is somewhat slower than 
the original version, it is more robust in that a proof of convergence is obtained 
by using a general theorem of Polak [4]. 
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2. PRELIMINARIES 

A function F(x), F: R" --f R1, having a unique minimum at x = B is said 
to be homogeneous of degree y  if it satisfies the equation 

F(x) = $(x - B)Tg(x) + 6, (1) 

and where (ij is the minimum value of the function. Upon defining 21 A xTg(x), 

Equation (1) can be written as 

y=LY = v. (4) 

I f  n + 2 points x, (i = l,..., TZ + 2) and the associated values F(xi) and 
g(xi) (i = I,..., n + 2) are available, then the following relation holds 

(5) 

where 

Ya! = v, 

and V& 

and where 

% [i 1 %+2 

(6) 

and vi = Qg(x,) (i = l,..., n + 2) (7) 

Clearly, if YE R(n+2)X(n+2) is invertible, O( is uniquely obtained from (5) 
so that, for homogeneous functions, the minimizing point j3, the degree of 
homogeneity y, and the scaled minimum value of the function w are found. 

In order to find the minimum of a nonhomogeneous function, successive 
estimates of the minimum are obtained with (5) and the “most recent” 
n + 2 estimates xi , xi-i ,..., xi+-r . See [I] for a complete description of the 
original algorithm. 
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3. MODIFIED ALGORITHM 

We wish to minimize a general, not necessarily homogeneous, function 
F(x), F: Rn -+ R1, with respect to X. The modified version of the homogeneous 
algorithm appropriate for this task is as follows. 

Step 1. Assume x0 , Q , Q , and N to be given; set y,, = 2, w0 = 0, 
and i = 0. 

Step 2. Compute p, A -g(x,) and use Armijo’s subprocedure to 
calculate p. . 

Step 3. Set x1 = x0 + pop, . 

Step4. Set ao’=[~l,~o,~o],Po=I,andj=l. 

Step 5. If  Ilg(x,+,)ll = 0, stop; otherwise, go to step 6. 

Step 6. Calculate yi+i and vi+i . I f  1 yF+,P,q 1 < Q , set x,, = x$+1 
and go to step 1; otherwise, use Eqs. (8) and (9) to calculate Pi+l and 01~+r 
and go to step 7. 

Step 7. Set i = i + 1. If  i = n + 2, reset j = 1; otherwise set 
j=j+ 1. 

Step 8. I f  l(xi - ,QTg(4 < 71~ , set x0 = xi and go to step 1; other- 
wise, go to step 9. 

Step 9. Set pi = ui(xi - pi), where (TV = -sign[(x, - /3JTg(xi)]. 

Step 10. If  II pi // + I yi / < N, use Armijo’s subprocedure to cal- 
culate pi; otherwise, set x,, = xi and go to step 1. 

Step 11. Set xi+i = xi + pipi; go to step 5. 

In the above steps (see [1]), 

p, = p, _ PiehLPi - ei’) 
2+1 z 

YT+lPiej ' 

and 

and 

(10) 

Vi+l = Vi + ej(ai+, - ejTVi), v, = 010 (11) 

where ei is a unit vector whose components are zero except for thejth which 
is unity. 



536 JACOBSON AND PELS 

The Armaj’o subprocedure is as follows 

Step 1. Set k(q) = 0 and p,(k(x,)) = 1. 

Step 2. If 

set pc = pi(R(xi)) and returnl; otherwise, set &xi) = k(xJ + 1 and go to 
step 3. 

Step 3. Set p,(k(x,)) = pi(k(xi))/2k(xi) and go to step 2. 

4. COMPUTATIONAL RESULTS 

The modified algorithm was tested on three functions, given in Tables 
I-III. In each case computation was terminated when 1) g(xi)ll < lOA. N was 
chosen to be 1012. 

TABLE I 

Rosenbrock’s Functiona (Fletcher and Powell [2]) 

Algorithm Number of Evaluations of F(x) 

Homogeneous Algorithm 69 

Modified Algorithm 80 

Fletcher and Powell’s Algorithm 167 

OF(x) = 100(x,2 - x.# + (1 - x,)“. The starting point was (- 1.2, 1). 

TABLE II 

Quartic with Singular Hessian [2]” 

Algorithm Number of Evaluations of F(x) 

Homogeneous Algorithm 64 

Modified Algorithm 75 

Fletcher and Powell’s Algorithm 80. 

‘F(x) = (x1 + 103~,)~ + 5(x3 - .x4)2 + (xz - 2x,)* + 10(x, - x*)~. The starting 
point was (3, -1, 0, 1). 

1 In our Theorem, this k(x$) is referred to as &xi , pi , n). 
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TABLE III 

Four-Dimensional Banana [.5]” 

Algorithm Number of Evaluations of F(x) 

Homogeneous Algorithm” 192 

Modified Algorithmb 270 

Fletcher and Powell’s Algorithm” 648 

Homogeneous Algorithm’ 154 

Modified AlgorithmC 263 

Fletcher and Powell’s Algorithm” 595 

“F(x) = 100(x,2 - -%Y + (1 - x1)2 + 90(x,2 - xpy + (1 - x3)2 
+ lo.l[(x, - 1)’ + 6% - 1)2] + 19.8(x, - 1)(x, - 1). 

1, The starting point was (- 1.2, 1, - 1.2, 1). 
’ The starting point was (-3, 1, - 3, 1). 

Note. Both the homogeneous algorithm and Fletcher and Powell’s 
Algorithm require evaluation of g(x) each time F(x) is calculated (this is 

required by the cubic interpolation step size routine). In our modified 
algorithm, evaluation of g(x) is not required by the Armijo rule, so that, 
although our function evaluation counts are higher than those of the homo- 
geneous algorithm, the net computational work done is less. 

5. POLAK'S ALGORITHM MODEL [4] 

The algorithm model searches for a point with a given desirable property +. 

We have 

(i) an operator A: R" + {all subsets of Rn} and 

(ii) a stop rule c: Rn + RI. 

Desirable points are those with property 4. 
The algorithm model is as follows 

Step 1. Select an x0 E Rn. 
Step 2. Set i = 0, 

Step 3. Compute a pointy E A(xJ. 

Step 4. Set xi+r =y. 

Step 5. If  c(++i) > c(xJ, stop; th o erwise, set i = i + 1 and go to 
step 2. 
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THEOREM (POLAK'S). Suppose (i) c( .) is either continuous at all nondesirable 
points x E R” or else c(x) is bounded from below in Rn and (ii) for every x E Rn 
which is not desirable, YE(X) > 0 and 6(x) < 0, such that 

c(x”) - c(x’) < S(x) < 0 for all x” E A(x) and x’ E R”, 

where 11 x’ - x 11 < E(X). Th en either the sequence {xi} is$nite and its next to last 
element is desirable or else it is infinite and every accumulation point is desirable. 

Proof. See Polak [4]. 
To apply this theorem to our algorithm, we make the following definitions 

and assumptions: 

(i) xi is desirable iff [/ g(x,)iI = 0. 

(ii) Let F(.) correspond to c(.) in the model. 

Let F(.) be continuously differentiable in Rn and assume that there exists an 
x,, E R” such that the set (x j F(x) < F(x,)} is compact. This compactness 
assumption, together with the fact that because of Armijo’s rule 
F(x,+~) <F(xi) (as we shall see below), implies that {xi} is bounded and 
therefore has accumulation points. 

(iii) Let N > 0 be such that 

N - 2 3 “?P II g(x)ll for x E {x ] F(x) < F(x,)}. (13) 

MAIN THEOREM. Let (xi> be a sequence in Rn generated by the algorithm. 
Then either the sequence is finite and terminates at a desirable point or else it is 
infinite and every accumulation point x* of {xi} is desirable. 

Proof. If the sequence is finite, the test at Step 5 ensures that the last 
point is desirable. In the case of an infinite sequence, we need to prove that 
conditions (i) and (ii) of Polak’s theorem are satisfied. Clearly, (i) is satisfied 
by the assumption that F(m) is continuous. 

To prove (ii) satisfied, we note that either 

(a) pi = ui(xi - isi) or 

(b) pi = -gW 

When (a) occurs, 1(x6 - /3$g(x,)l > na , and choosing Ed > 0 [this can 
always be done because of (1311 so that cl J]g(xJ12 < 7)s gives 

For (b), 

-pi’s(%) 3 772 2 3 II &i)lP- 

-pi’&) = II &#. 
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In either case, there is an E > 0 such that 

-Pi=&) > E II d%)l12. 

Note also that !Ipi jl + 1 yi I < N. 
Define 

44 !2 {Y = x + PF(X> P, r)l P I P E Wh 
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(14) 

where P[&, P, r)l is the largest p, 0 < p ,( 1, generated by the Armijo 
subprocedure, to satisfy 

F(x + p[k(x, $5 y)] p) - F(x) - p[k(xi ;~lyyx) < 0 (15) 

and where 

D(x) A (P I II P II + I Y I < N and -F&) 3 6 II &)l121. (16) 

For x nondesirable we define 

4(x, P9 r)l ii F(x + e, p, Y) P> - w+ - I y 2 G, P, Y) PW> 

= - +, P9 r> [P’W) - &31 - (1 - I y ,I+ 2 ) P%c4) (17) 

< - +, P, Y) {P’W) - km + (1 - 9 E II &w/12~ (18) 

for 6 E [x, x + /\(x, p, y) p] and for all p E D(X). 
Consider now the expression 

44 = - G, P, r> jP’M4 - ‘d&l + *II gw j 9 (1% 

where 

~~fj&.(~:ll~lI+ IYI GW 
and 

&hX++&Y)p”l for x E Rn. 

Now since II p” j] is bounded and g(x) is continuous, we have that there exists a 
x(x) > 0 of form l/25!, such that 

o”A(x)] < S(x) < 0 for all p” 6 D. (20) 

A fortiori this implies that 

4Wl < q4 < 0 VP E W), (21) 

which implies the existence of p&x, p, r)]. 
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By continuity of g(x), 

-Jqx){PT[&+‘) - &?‘)I + 8 II &‘)I!“) G %4/2 
V$“ED and Vx’ E {x’: // x - x’ 11 < e(x)} 4 qx, +x)). 

This implies, again a fortiori, that 

qx + X(x) p) - F(x’) - X(x) * 44 
, y  ,I+ 2 P’gW) G 2 Y 

‘dx’ E B(x, c(x)) and V$ E D(x’). 
Clearly, we have p[h(x’, p, r)] > x(x), where 

F(x’ + P[&‘, P, r)l P> - F(x’) - PW, P, r>l , y \l+ 2 P%(X’) G 09 

which is 

F(x’ + PNX’, P, r)l P) - W) G dfw7 PY r>l , y ,I+ 2 P’&‘) 

(22) 

(23) 

(24) 

‘-N+2’ 
* II g(x’p 

l x) 
’ - 2(N + 2) 

I/ g(x)112 

Vx’ E B(x, c(x)) and VP E %a 

which satisfies the conditions of POWS theorem. 

6. CONCLUSION 

The homogeneous algorithm presented in [l] has been modified by replac- 
ing the cubic interpolation subprocedure with Armijo’s subprocedure. The 
performance of this modified algorithm is slightly inferior to that of the 
original algorithm on the standard test functions, but the modifications make 
it possible to prove convergence of the method with a general theorem of 
Polak. 

REFERENCES 

1. D. H. JACOBSON AND W. OKSMAN, An algorithm that minimizes homogeneous 
functions of N variables in N + 2 iterations and rapidly minimizes general functions 
J. Math. Anal. A& 38 (1972), 535. 



MODIFIED HOMOGENEOUS ALGORITHM 541 

2. R. FLETCHER AND M. J. D. POWELL, A rapidly convergent descent method for 
minimization Comput. 1. 6 (1963), 163. 

3. L. ARMIJO, Minimization of functions having continuous partial derivatives, 
Pacific /. Math. 16 (1966), l-3. 

4. E. POLAK, Computational Methods in Optimization: A Unified Approach, Academic 
Press, New York, 1971. 

5. A. R. COLVILLE, A Comparative Study of Nonlinear Programming Codes, Technical 
Report No. 320-2949, IBM New York Scientific Center, New York, 1968. 


