
J. Math. Anal. Appl. 336 (2007) 919–936

www.elsevier.com/locate/jmaa

Fractal Interpolation Surfaces derived from
Fractal Interpolation Functions ✩

P. Bouboulis a,∗, L. Dalla b

a Department of Informatics and Telecommunications, Telecommunications and Signal Processing,
University of Athens, Panepistimiopolis 157 84, Athens, Greece

b Department of Mathematics, Mathematical Analysis, University of Athens, Panepistimiopolis 157 84, Athens, Greece

Received 3 August 2006

Available online 14 March 2007

Submitted by Richard M. Aron

Abstract

Based on the construction of Fractal Interpolation Functions, a new construction of Fractal Interpolation
Surfaces on arbitrary data is presented and some interesting properties of them are proved. Finally, a lower
bound of their box counting dimension is provided.
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1. Introduction

Fractal Interpolation Surfaces (FIS) are usually constructed as graphs of continuous func-
tions with the help of Iterated Function Systems (IFS) or Recurrent Iterated Function Systems
(RIFS). However, their construction encounters some difficulties that have not yet been over-
come. Several constructions have been introduced that confront these problems. Most of them
take the interpolation points on a triangular grid and use affine mappings that define an IFS (see
[11,13,15]), thus the emerging surface is self-affine. In addition, they constrain the interpolation
points (to be coplanar at the boundary of the triangular region) or the contraction factors of the
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affine maps (all contraction factors should be equal). Hence, these constructions lack the flexi-
bility needed to model complex natural surfaces. In [9] and [12] bivariate functions were used to
address the problem on a rectangular grid. This approach was generalized and extensively studied
in [5] and [7] where RIFS were used. In the same paper the box-counting dimension of the FIS
was explicitly computed. The latter construction, however flexible may be, still constrains the
interpolation points and the contraction factors.

In this paper we construct fractal interpolation surfaces as graphs of continuous functions
on arbitrary data points (placed on rectangular grids) using fractal interpolation functions. This
construction enables the control of the box dimension of the fractal surface, giving a lower bound
of it, independently of the interpolation points. One may produce a fractal interpolation surface
as rough as he wants it to be. The mathematical background on IFS, RIFS and FIF together with
a lemma concerning the stability of FIF is given in Section 2. In Section 3 we describe the new
construction in detail and prove some interesting properties. Finally, in Section 4 we give a lower
bound for the box-counting dimension of the FIS produced by the aforementioned construction.

2. Fractal Interpolation Functions

2.1. IFS–RIFS

A hyperbolic Iterated Function System, or IFS for short, is defined as a pair consisted of
a complete metric space (X,ρ) together with a finite set of continuous contractive mappings
wi : X → X, with respective contraction factors si for i = 1,2, . . . ,N (N � 2). The attractor of
a hyperbolic IFS is the unique set E for which E = limk→∞ Wk(A0) for every starting compact
set A0, where

W(A) =
N⋃

i=1

wi(A) for all A ∈H(X),

and (H(X),h) is the metric space of all nonempty compact subsets of X with respect to the
Hausdorff metric h. Iterated Function Systems are able to produce very complicated attractors
using only a handful of mappings.

A more general concept, that allows the construction of even more complicated sets, is
that of the Recurrent Iterated Function System, or RIFS for short, which consists of the IFS
{X;wi, i = 1,2, . . . ,N} (or more briefly {X;w1−N }) together with an irreducible row-stochastic
matrix (pn,m ∈ [0,1]: n,m = 1, . . . ,N), such that

N∑
m=1

pn,m = 1, n = 1, . . . ,N. (1)

The recurrent structure is given by the (irreducible) connection matrix C = (Cnm)N which is
defined by

Cn,m =
{

1, if pm,n > 0,

0, if pm,n = 0,

where n,m = 1,2, . . . ,N . The transition probability for a certain discrete time Markov process
is pn,m, which gives the probability of transfer into state m given that the process is in state n.
Condition (1) says that whichever state the system is in (say n), a set of probabilities is available
that sum to one and describe the possible states to which the system transits at the next step.
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We define mappings

Wi,j :H(X) → H(X), with Wi,j (A) =
{

wi(A), pj,i > 0,

∅, pj,i = 0,
(2)

for all A ∈ H(X) and the metric space

H̃(X) = H(X)N = H(X) ×H(X) × · · · ×H(X)

equipped with the metric

h̃

⎛
⎜⎜⎝

⎛
⎜⎜⎝

A1
A2
...

AN

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

B1
B2
...

BN

⎞
⎟⎟⎠

⎞
⎟⎟⎠ = max

{
h(Ai,Bi); i = 1,2, . . . ,N

}
.

Easily we can prove that 〈Ĥ , ĥ〉 is a complete metric space. Now, we define the map

W : H̃(X) → H̃(X): W

⎛
⎜⎜⎝

A1
A2
...

AN

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

W11 W12 . . . W1N

W21 W22 . . . W2N
...

...
. . .

...

WN1 WN2 . . . WNN

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

A1
A2
...

AN

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎝

⋃
j∈I (1) w1(Aj )⋃
j∈I (2) w2(Aj )

...⋃
j∈I (N) wN(Aj )

⎞
⎟⎟⎟⎠ ,

where I (i) = {j : pj,i > 0}, for i = 1,2, . . . ,N . If all wi are contractions, then W is a contraction
and there is an E = (E1,E2, . . . ,EN)t ∈ H̃(X) such that W (E) = E and Ei = ⋃

j∈I (i) wi(Ej ),

for i = 1,2, . . . ,N .
Let A ∈ H(X). We define sequences {An}n∈N in H̃(X) and {An}n∈N in H(X) as follows:

A0 = (A,A, . . . ,A)t , An = W (An−1) and An = ⋃N
i=1(An)i , for n ∈ N where An = ((An)1,

(An)2, . . . , (An)N). Then, the set G = ⋃N
i=1 Ei is called the attractor of the RIFS {X,w1−N,P }.

Evidently

G = lim
n

An.

2.2. Fractal Interpolation Functions and their stability

Barnsley in [3] was the first to introduce Fractal Interpolation Functions (FIFs) that are
derived as attractors of IFSs or RIFSs and interpolate given data points. Here we briefly de-
scribe this construction based on RIFSs as we will use it in our method (for further details
see [1–3]). Let X = [0,1] × R and Δ = {(xi, yi): i = 0,1, . . . ,N} be an interpolation set with
N + 1 interpolation points such that 0 = x0 < x1 < · · · < xN = 1. The interpolation points di-
vide [0,1] into N intervals Ii = [xi−1, xi], i = 1, . . . ,N , which we call domains. In addition, let
Q = {(x̂j , ŷj ): j = 0,1, . . . ,M} be a subset of Δ, such that 0 = x̂0 < x̂1 < · · · < x̂M = 1. We,
also, assume that for every j = 0,1, . . . ,M − 1 there is at least one i such that x̂j < xi < x̂j+1.
Thus, the points of Q divide [0,1] into M intervals Jj = [x̂j−1, x̂j ], j = 1, . . . ,M , which we
call regions. Finally, let J be the labelling map such that J : {1,2, . . . ,N} → {1,2, . . . ,M} with
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(pnm) =
⎛
⎜⎝

1/2 0 0 1/2
1/2 0 0 1/2
0 1/2 1/2 0
0 1/2 1/2 0

⎞
⎟⎠, (cnm) =

⎛
⎜⎝

1 1 0 0
0 0 1 1
0 0 1 1
1 1 0 0

⎞
⎟⎠, V = (1,2,2,1)

Fig. 1. In the above figure, the set Δ consists of five interpolation points, while the set Q consists of three points. The
stochastic matrix, the connection matrix and the connection vector are shown below the figure.

J(i) = j . Let xi − xi−1 = δi , i = 1,2, . . . ,N , and x̂j − x̂j−1 = ψj , j = 1,2, . . . ,M . It is ev-
ident that each region contains an integer number of domains. In the special case where the
interpolation points are equidistant (that is xi − xi−1 = δ, i = 1,2, . . . ,N , and x̂j − x̂j−1 = ψ ,
j = 1,2, . . . ,M), each region contains exactly α = ψ/δ ∈ N domains.

We define N mappings of the form:

wi

(
x

y

)
=

(
Li(x)

Fi(x, y)

)
, for i = 1,2, . . . ,N, (3)

where Li(x) = aix + bi and Fi(x, y) = siy + qi(x) where qi(x) is a polynomial. Each map wi

is constrained to map the endpoints of the region JJ(i) to the endpoints of the domain Ii (see
Fig. 1). That is,

wi

(
x̂j−1
ŷj−1

)
=

(
xi−1
yi−1

)
, wi

(
x̂j

ŷj

)
=

(
xi

yi

)
, for i = 1,2, . . . ,N. (4)

Vertical segments are mapped to vertical segments scaled by the factor si . The parameter si is
called the contraction factor of the map wi .

It is easy to show that if |si | < 1, then there is a metric d equivalent to the Euclidean metric,
such that wi is a contraction (i.e., there is ŝi : 0 � ŝi < 1 such that d(wi(	x),wi(	y)) � ŝid(	x, 	y),
see [4]).

The N × N stochastic matrix (pnm)N is defined by

pnm =
{

1
γn

, if In ⊆ JJ(m),

0, otherwise,

where γn is the number of positive entries of the line n, n = 1,2, . . . ,N . This means that pn,m

is positive, iff there is a transformation Lm, which maps the region containing the nth domain
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(i.e. In) to the mth domain (i.e. Im). Let us take a point in In × R, i = 1, . . . ,N . We say that we
are in state n. The number pnm shows the probability of applying the map wm to that point, so
that the system transits to state m. Sometimes, it is more efficient to describe the matrix (pnm)N

through the connection matrix C = (cnm)N or the connection vector V , which is defined as
follows:

cnm =
{

1, pmn > 0,

0, otherwise,

V = (
J(1),J(2), . . . ,J(N)

)
.

Next, we consider 〈C([x0, xN ]),‖ · ‖∞〉, where ‖φ‖∞ = max{|φ(x)|, x ∈ [x0, xN ]} and the
complete metric subspace FΔ = {g ∈ C([x0, xN ]): g(xi) = yi, for i = 0,1, . . . ,N}. The Read–
Bajraktarevic operator TΔ,Q : FΔ →FΔ is defined as follows

(TΔ,Qg)(x) = Fi

(
L−1

i (x), g
(
L−1

i (x)
))

, for x ∈ [xi−1, xi], i = 1,2, . . . ,N.

It is easy to verify that TΔ,Qg is well defined and that TΔ,Q is a contraction with respect to the
ρ := ‖ · ‖∞ metric. According to the Banach fixed-point theorem, there exists a unique f ∈ FΔ

such that TΔ,Qf = f . If f0 is any interpolation function and fn = T n
Δ,Qf0, where T n

Δ,Q = TΔ,Q ◦
TΔ,Q ◦ · · · ◦ TΔ,Q, then (fn)n∈N converges uniformly to f . The graph of the function f is the
attractor of the RIFS {X,w1−N, (pij )

N } associated with the interpolation points (see [4]). Note
that f interpolates the points of Δ for any selection of the parameters of the polynomials pi that
satisfies (4). We will refer to a function of this nature as Fractal Interpolation Function (FIF). In
[14] it is shown that FIFs (based on IFS) generalize the Hermite-type interpolation functions.

Let us consider the case where the wi are affine:

wi

(
x

y

)
=

(
Li(x)

Fi(x, y)

)
=

(
ai 0
ci si

)
·
(

x

y

)
+

(
ei

fi

)
, for i = 1,2, . . . ,N. (5)

Here, pi(x) = cix + fi . The FIF that corresponds to the above RIFS is called affine FIF.
From Eq. (4) four linear equations arise, which can always be solved for ai, ci, ei , fi in terms

of the coordinates of the interpolation points and the vertical scaling factor si . Thus, once the
contraction factor si for each map has been chosen, the remaining parameters may be easily
computed (see [4]). Figures 2 and 3 show some examples of affine FIF.

We will prove that if the interpolation points of two distinct FIFs are “almost equal,” then the
values of the corresponding FIFs will, also, be “almost equal.”

Lemma 1. Consider X = [0,1] × R, the sets Δ1 = {(xi, yi), i = 0,1, . . . ,N}, Δ2 = {(xi, ỹi ),

i = 0,1, . . . ,N} and the corresponding sets Q1 = {(x̂j , ŷj ), j = 0,1, . . . ,M}, Q2 = {(x̂j , ˆ̃yj ),
j = 0,1, . . . ,M}. In addition, let f , g be the attractors of the RIFSs associated with
the points Δ1, Q1 and Δ2, Q2, respectively, with the same choice of contraction factors
|s1|, |s2|, . . . , |sN | < 1 and stochastic matrix (pnm)N . If |ỹi − yi | < ε, i = 0,1, . . . ,N , for some
ε > 0, then

‖g − f ‖∞ � ε(1 + smax)

(1 − smax)
,

where smax = max{|si |, i = 1,2, . . . ,N}.

Proof. For x ∈ Ii we have that
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Fig. 2. The two FIFs shown above interpolate the points of the same set Δ (consisting of six points). The difference is
due to the selection of two distinct stochastic matrices.

∣∣g(x) − f (x)
∣∣ = ∣∣(TΔ2,Q2g)(x) − (TΔ1,Q1f )(x)

∣∣
= ∣∣sig(

L−1
i (x)

) + p̃i ◦ L−1
i (x) − sif

(
L−1

i (x)
) − pi ◦ L−1

i (x)
∣∣

� |si |
∣∣g(

L−1
i (x)

) − f
(
L−1

i (x)
)∣∣ + ∣∣p̃i ◦ L−1

i (x) − pi ◦ L−1
i (x)

∣∣.
The functions pi ◦ L−1

i , p̃i ◦ L−1
i are polynomials of degree one defined on Ii , where

pi(x̂j−1) = yi−1 − si ŷj−1,

pi(x̂j ) = yi − si ŷj ,

p̃i(x̂j−1) = ỹi−1 − si ˆ̃yj−1,

p̃i(x̂j ) = ỹi − si ˆ̃yj .
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(a)

(b)

(c)

Fig. 3. The sequence fn for the RIFS associated with the interpolation points Δ = {(0,12), (0.6,10), (1,11)},
Q = {(0,12), (1,11)} and the contraction factors s1 = −0.4, s2 = 0.7. (a) f0, (b) f1, (c) f6.
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Therefore, we may easily deduce that∣∣p̃i ◦ L−1
i (x) − pi ◦ L−1

i (x)
∣∣ �

(
1 + |si |

)
ε,

for x ∈ Ii . Hence,∣∣g(x) − f (x)
∣∣ � |si |

∣∣g(
L−1

i (x)
) − f

(
L−1

i (x)
)∣∣ + ε

(
1 + |si |

)
,

for x ∈ Ii . From this relation we deduce the result. �
3. Fractal Interpolation Surfaces derived from Fractal Interpolation Functions

3.1. The construction

In this section we give a new construction that uses FIF to construct FIS on a rectangular
grid of arbitrary interpolation points. We prove that the constructed surface is the graph of a
continuous function.

Consider the interpolation points Δ = {(xi, yj , zij ): i = 0,1, . . . ,N; j = 0,1, . . . ,M} ⊆
[0,1] × [0,p] × R with 0 = x0 < x1 < · · · < xN = 1, 0 = y0 < y1 < · · · < yM = p and
xi −xi−1 = δi , i = 0,1, . . . ,N −1, yj −yj−1 = δ̃j , j = 0,1, . . . ,M −1. Let S = {s1, s2, . . . , sN },
S̃ = {s̃1, s̃2, . . . , s̃M } be two sets of contraction factors and let P = (pnm)N , P̃ = (p̃nm)M be
two stochastic matrices with dimensions N × N and M × M , respectively. Also, let Q =
{(x̂k, ŷl, ẑkl): k = 0,1, . . . ,K; l = 0,1, . . . ,L} be a subset of Δ such that x̂0 = 0, x̂K = 1, ŷ0 = 0,
ŷL = p and x̂k − x̂k−1 = ψk , ŷl − ŷl−1 = ψ̃l , k = 0,1, . . . ,K , l = 0,1, . . . ,L. Let J and J̃ be
defined as in Section 2.2 associated with the matrices P and P̃ , respectively, with J(i) = k,
J̃(j) = l. The points {x0, x1, . . . , xN } divide [0,1] into N domains I1, I2, . . . , IN , while the
points {y0, y1, . . . , yM} divide [0,p] into M domains Ĩ1, Ĩ2, . . . , ĨM . Consequently, the points
{x̂0, x̂1, . . . , x̂K} divide [0,1] into K regions J1, J2, . . . , JK , while the points {ŷ0, ŷ1, . . . , ŷL}
divide [0,p] into L regions J̃1, J̃2, . . . , J̃L. In addition, we define the mappings

I : {0,1, . . . ,K} → {0,1, . . . ,N},
Ĩ : {0,1, . . . ,L} → {0,1, . . . ,M}

such that x̂k = xI(k) and ŷl = y
Ĩ(l)

.

We consider arbitrary continuous functions ui , that interpolate the sets Δ̃xi
= {(xi, yj , zij ):

j = 0,1, . . . ,M}, for i = 0,1, . . . ,N (see Fig. 4). Then, for y ∈ [0,p], we construct a
RIFS associated with the interpolation points Δy = {(xi, y,ui(y)): i = 0,1, . . . ,N}, Qy =
{(x̂k, y,uI(k)(y)), k = 0,1, . . . ,K}, the set of contraction factors S together with the matrix
P , which produce a FIF fy : [0,1] → R (see Fig. 4). We define the function

F : [0,1] × [0,p] → R such that F(x, y) = fy(x).

Similarly, we consider arbitrary continuous functions vj , that interpolate the sets Δyj
=

{(xi, yj , zij ): i = 0,1, . . . ,N} for j = 0,1, . . . ,M . As before, for x ∈ [0,1] we construct a
RIFS associated with the interpolation points Δ̃x = {(x, yj , vj (x)): j = 0,1, . . . ,M}, Q̃x =
{(x, ŷl, vĨ(l)

(x)), l = 0,1, . . . ,L}, the set of contraction factors S̃ together with the matrix P̃ ,

which produce a FIF f̃x : [0,p] → R. Thus, we define the function

F̃ : [0,1] × [0,p] → R such that F̃ (x, y) = f̃x(y).

The functions F , F̃ interpolate the data Δ. We will prove that F , F̃ are continuous functions.



P. Bouboulis, L. Dalla / J. Math. Anal. Appl. 336 (2007) 919–936 927
(a)

(b)

Fig. 4. An example of the construction of the function F is shown (see Table 1). (a) The points of Δ, where N = M = 8,
p = 1. (b) The nine interpolation functions u0, u1, . . . , u8. (c) One of the FIFs fy (shown by the arrow). (d) The graph
of the function F .

Proposition 1. The functions F , F̃ are continuous.

Proof. We will prove that F is continuous. We claim that the set F = {fy : y ∈ [0,p]} ⊂
C([0,1]) (as in our construction) is compact in 〈C([0,1]),‖ · ‖∞〉. To prove this claim we
consider (fyn)n∈N to be a sequence in F . As (yn)n∈N is a sequence of [0,p] there exists a
subsequence with limn→∞ ykn = y0 ∈ [0,p]. Then limn→∞ ui(ykn) = ui(y0), i = 0,1, . . . ,N ,
and by Lemma 1 it holds that limn→∞ fykn

= fy0 with respect to the ‖ · ‖∞ metric. Hence F is
sequentially compact in C([0,1]) and therefore F is compact.
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(c)

(d)

Fig. 4. (continued)

Thus the family F is equicontinuous in C([0,1]) at each point x0 ∈ [0,1] (i.e. for ε > 0 there
exists δ > 0 such that if |x − x0| < δ then |fy(x)− fy(x0)| < ε for any y ∈ [0,1]). (For the proof
see [8, p. 164].) Let (x∗, y∗) ∈ [0,1] × [0,p] and ε > 0. The function F(x∗, ·) is continuous at
y∗ as ∣∣F (

x∗, yn

) − F
(
x∗, y∗)∣∣ = ∣∣fyn

(
x∗) − fy∗

(
x∗)∣∣ � ‖fyn − fy∗‖∞

and limn→0 fyn = fy∗ , for limn→0 yn = y∗. Let δ1 > 0 be such that |F(x∗, y)−F(x∗, y∗)| < ε/2,
if |y − y∗| < δ1. As F is equicontinuous at x∗, there exists δ2 > 0 such that if |x − x∗| < δ2,
then |F(x, y) − F(x∗, y)| < ε/2, for any y ∈ [0,p]. Hence for (x, y) ∈ [0,1] × [0,p] with
|x − x∗| + |y − y∗| < min{δ1, δ2} we obtain∣∣F(x, y) − F

(
x∗, y∗)∣∣ �

∣∣F(x, y) − F
(
x∗, y

)∣∣ + ∣∣F (
x∗, y

) − F
(
x∗, y∗)∣∣ < ε.

Hence F is continuous at (x∗, y∗). �
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Table 1
The interpolation points, the contraction factors and the connection vectors used for the surface of Fig. 4

Δ

x

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

y 0 15 12 08 17 11 15 08 14 06
0.125 09 17 14 19 08 11 16 09 13
0.25 12 06 13 08 18 14 06 15 09
0.375 17 11 05 14 09 14 10 08 17
0.5 08 14 09 16 11 05 14 19 09
0.625 15 10 17 08 16 14 06 12 11
0.75 09 14 06 15 09 06 11 08 12
0.875 15 07 18 09 14 11 07 15 09
1 11 16 13 15 07 11 16 09 05

The points of Q are shown with bold letters.
Sx = {0.6,−0.6,0.7,−0.5,0.5,−0.7,0.6,−0.8}, Sy = {−0.7,0.6,−0.6,−0.6,−0.6,0.7,−0.5,0.7},
Vx = (1,1,2,1,1,2,2,1), Vy = (1,2,1,2,1,2,2,1), ψ = 4δ.

Figure 5 shows some examples of the above construction using arbitrary data points.

3.2. A notable result

In the general case, where ui , vj are arbitrary continuous functions interpolating the sets Δ̃xi

and Δyj
, i = 0,1, . . . ,N , j = 0,1, . . . ,M , respectively, the functions F and F̃ are distinct.

We draw special attention to the case where ui , vj are affine fractal interpolation func-
tions constructed as we describe below. The RIFS associated with the interpolation points
Δ̃xi

= {(xi, yj , zij ): j = 0,1, . . . ,M}, Q̃xi
= {(xi, ŷl, zi,Ĩ(l)

): l = 0,1, . . . ,L}, the set of con-

traction factors S̃ together with the stochastic matrix P̃ produces a FIF ui : [0,p] → R (see
Fig. 4), for all i = 0,1, . . . ,N . Similarly, the RIFS associated with the interpolation points
Δyj

= {(xi, yj , zij ): i = 0,1, . . . ,N}, Qyj
= {(x̂k, yj , zI(k),j ): k = 0,1, . . . ,K}, the set of

contraction factors S together with the stochastic matrix P produces a FIF vj : [0,1] → R,
j = 0,1, . . . ,M . Evidently, f̃xi

= ui , i = 0,1, . . . ,N and fyj
= vj , j = 0,1, . . . ,M . In this

case the two functions F and F̃ are coincide, as stated in the following proposition.

Proposition 2. If in the construction of F , F̃ described as in Section 3.1, ui are the affine FIFs
associated with Δ̃xi

, Q̃xi
, S̃, P̃ , i = 0,1, . . . ,N , and vj are the affine FIFs associated with Δyj

,
Qyj

, S, P , j = 0,1, . . . ,M , then

F = F̃ .

Proof. Let {[0,1],wy,1−N,P } be the RIFS whose attractor is the graph of the affine FIF fy ,
where

wy,i

(
x

z

)
=

(
Li(x)

Fy,i(x, z)

)
=

(
Li(x)

siz + qy,i(x)

)

and {[0,p], w̃x,1−M, P̃ } be the RIFS whose attractor is the graph of the affine FIF f̃x , where

w̃x,j

(
y

z

)
=

(
L̃j (y)

˜
)

=
(

L̃j (y)

s̃ z + q̃ (y)

)
,

Fx,j (y, z) j x,j
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(a)

(b)

Fig. 5. Two more continuous surfaces that interpolate a set of 9 × 9 interpolation points.

for x ∈ [0,1], y ∈ [0,p], z ∈ R, i = 1,2, . . . ,N , j = 1,2, . . . ,M . Then the following functional
equations hold

fy(x) = Fy,i

(
L−1

i (x), fy

(
L−1

i (x)
))

, (6)

f̃x(y) = F̃x,j

(
L̃−1

j (y), f̃x

(
L̃−1

j (y)
))

, (7)

for x ∈ Ii , y ∈ Ĩj , i = 1,2, . . . ,N , j = 1,2, . . . ,M .
Consider the RIFS {[0,1],L1−N,P }, L = (L1,L2, . . . ,LN) the map defined on H([0,1])N

(as W in Section 2), the set A0 = {x0, x1, . . . , xN } ⊂ H([0,1]) and the sequence {An}n∈N defined
as in Section 2. The attractor of the RIFS is the set [0,1] = limn An. Similarly, we define the
RIFS {[0,1], L̃1−M,P }, L̃ = (L̃1, L̃2, . . . , L̃M) the map defined on H([0,p])N , the set Ã0 =
{y0, y1, . . . , yM} ⊂ H([0,p]) and the sequence {Ãn}n∈N. The attractor of the latter RIFS is the
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set [0,p] = limn Ãn. We may easily deduce that

An =
N⋃

i=1

Li(An−1 ∩ JJ(i)) and Ãn =
M⋃

j=1

L̃j (Ãn−1 ∩ J̃
J̃(j)

).

Evidently for n = 0,

fx(y) = f̃y(x) = F(x, y), (8)

for any (x, y) ∈ (A0 × [0,p]) ∪ ([0,1] × Ã0).
We assume that (8) holds for any (x, y) ∈ (An × [0,p]) ∪ ([0,1] × Ãn). Then, we will show

that (8) holds for (x, y) ∈ (An+1 × [0,p]) ∪ ([0,1] × Ãn+1).
To prove the latter we use induction. For m = 0, Eq. (8) holds for (x, y) ∈ (An+1 × Ã0) ∪

(A0 × Ãn+1) ⊆ ([0,1] × Ã0) ∪ (A0 × [0,p]). Assuming that (8) holds for (x, y) ∈ (An+1 ×
Ãm) ∪ (Am × Ãn+1), we will prove that it holds for (x, y) ∈ (An+1 × Ãm+1) ∪ (Am+1 × Ãn+1).

Let x ∈ Ii , y ∈ Ĩj . Then, x∗ = L−1
i (x) ∈ Jk and y∗ = L̃−1

j (y) ∈ J̃l . As (x∗, y) ∈ (An ×
Ãm+1)∪ (Am × Ãn+1) ⊆ (An ×[0,p])∪ (Am × Ãn+1) and (x∗, y∗) ∈ (An ×Am)∪ (Am × Ãn) ⊆
(An+1 × Ãm) ∪ (Am × Ãn+1), we have that

fx∗(y) = f̃y

(
x∗) = F

(
x∗, y

)
and fx∗

(
y∗) = f̃y∗

(
x∗) = F

(
x∗, y∗).

Therefore we obtain:

fy(x) = Fy,i

(
L−1

i (x), fy

(
L−1

i (x)
))

= Fy,i

(
x∗, fy

(
x∗))

= sify

(
x∗) + qy,i

(
x∗)

= siF
(
x∗, y

) + qy,i

(
x∗)

= si f̃x∗(y) + qy,i

(
x∗)

= si F̃x∗,j
(
L̃−1(y), f̃x∗

(
L̃−1(y)

)) + qy,i

(
x∗)

= si F̃x∗,j
(
y∗, f̃x∗

(
y∗)) + qy,i

(
x∗)

= si s̃j f̃x∗
(
y∗) + si q̃x∗,j

(
y∗) + qy,i

(
x∗)

= si s̃jF
(
x∗, y∗) + si q̃x∗,j

(
y∗) + qy,i

(
x∗).

We note that qt,i , t ∈ [0,1] and q̃t,j , t ∈ [0,p] are polynomials of degree one, where

qt,i(x̂k−1) = ft (xi−1) − sift (x̂k−1), qt,i(x̂k) = ft (xi) − sift (x̂k), for t ∈ [0,p],
q̃t,j (ŷl−1) = f̃t (yj−1) − s̃j f̃t (ŷl−1), q̃t,j (ŷl) = f̃t (yj ) − s̃j f̃t (ŷl), for t ∈ [0,1],

i = 1,2, . . . ,N , j = 1,2, . . . ,M .
Therefore, considering that ft (xi) = ui(t) = f̃xi

(t) ∀t ∈ [0,p], we get:

qt,i

(
x∗) = qt,i(x̂k−1) + x∗ − x̂k−1

ψx

(
qt,i(x̂k) − qt,i(x̂k−1)

)

= ft (xi−1) − sift (x̂k−1) + ωx

ψx

(
ft (xi) − sift (x̂k) − ft (xi−1) + sift (x̂k−1)

)
= F(xi−1, t) − siF (x̂k−1, t)

+ ωx (
F(xi, t) − siF (x̂k, t) − F(xi−1, t) + siF (x̂k−1, t)

)

ψx
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=
(

1 − ωx

ψx

)
f̃xi−1(t) − si

(
1 − ωx

ψx

)
f̃x̂k−1(t) + ωx

ψx

f̃xi
(t) − si

ωx

ψx

f̃x̂k
(t) (9)

and similarly

q̃t,j

(
y∗) =

(
1 − ωy

ψy

)
F(t, yj−1) − s̃j

(
1 − ωy

ψy

)
F(t, ŷl−1) + ωy

ψy

F(t, yj )

− s̃j
ωy

ψy

F (t, ŷl), (10)

for t ∈ [0,1], where ωx = x∗ − x̂k−1, ωy = y∗ − ŷl−1, ψx = ψk , ψy = ψl .
In addition, with the help of Eq. (10), we obtain

f̃xi
(y) = F̃xi ,j

(
y∗, f̃xi

(
y∗)) = s̃j F

(
xi, y

∗) + q̃xi ,j

(
y∗)

= s̃j F
(
xi, y

∗) +
(

1 − ωy

ψy

)
F(xi, yj−1) − s̃j

(
1 − ωy

ψy

)
F(xi, ŷl−1)

+ ωy

ψy

F(xi, yj ) − s̃j
ωy

ψy

F (xi, ŷl).

We obtain similar relations for f̃xi−1(y), f̃x̂k−1(y), f̃x̂k
(y).

Thus, the value of fy(x) is

fy(x) = si s̃jF
(
x∗, y∗) + ωy

ψy

siF
(
x∗, yj

) − ωy

ψy

si s̃jF
(
x∗, ŷl

) +
(

1 − ωy

ψy

)
siF

(
x∗, yj−1

)

−
(

1 − ωy

ψy

)
si s̃jF

(
x∗, ŷl−1

) +
(

1 − ωx

ψx

)
s̃j F

(
xi−1, y

∗)

+
(

1 − ωx

ψx

)(
1 − ωy

ψy

)
F(xi−1, yj−1) −

(
1 − ωy

ψy

)(
1 − ωx

ψx

)
s̃j F (xi−1, ŷl−1)

+
(

1 − ωx

ψx

)
ωy

ψy

F(xi−1, yj ) −
(

1 − ωx

ψx

)
ωy

ψy

s̃jF (xi−1, ŷl)

−
(

1 − ωx

ψx

)
si s̃jF

(
x̂k−1, y

∗) −
(

1 − ωx

ψx

)(
1 − ωy

ψy

)
siF (x̂k−1, yj−1)

+
(

1 − ωx

ψx

)(
1 − ωy

ψy

)
si s̃jF (x̂k−1, ŷl−1) −

(
1 − ωx

ψx

)
ωy

ψy

siF (x̂k−1, yj )

+
(

1 − ωx

ψx

)
ωy

ψy

si s̃jF (x̂k−1, ŷl) + ωx

ψx

s̃jF
(
xi, y

∗) + ωx

ψx

(
1 − ωy

ψy

)
F(xi, yj−1)

− ωx

ψx

(
1 − ωy

ψy

)
s̃j F (xi, ŷl−1) + ωx

ψx

ωy

ψy

F(xi, yj ) − ωx

ψx

ωy

ψy

s̃jF (xi, ŷl)

− ωx

ψx

si s̃jF
(
x̂k, y

∗) − ωx

ψx

(
1 − ωy

ψy

)
siF (x̂k, yj−1)

+ ωx

ψx

(
1 − ωy

ψy

)
si s̃jF (x̂k, ŷl−1) − ωx

ψx

ωy

ψy

siF (x̂k, yj ) + ωx

ψx

ωy

ψy

si s̃jF (x̂k, ŷl).

Working similarly we obtain the same relation for f̃x(y).
Thus, relation (8) holds for (x, y) ∈ (An+1 × Ãm) ∪ (Am × Ãn+1), m ∈ N. Since
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lim
m

Am =
∞⋃

m=1

Am = [0,1], lim
m

Ãm =
∞⋃

m=1

Ãm = [0,p],

and F , F̃ are continuous, we may deduce that (8) holds for (x, y) ∈ (An+1 × [0,p]) ∪ ([0,1] ×
Ãn+1). Thus, by induction, (8) holds for (x, y) ∈ (An × [0,p]) ∪ ([0,1] × Ãn) and any n ∈ N.
Therefore, it holds for (x, y) ∈ [0,1] × [0,p]. �
4. Lower bound of the dimension of the Constructed Fractal Surfaces

We will prove a general result that gives a lower bound for the box-counting dimension of
the graph of a continuous function, if a lower bound of the box-counting dimension of its plane
sections is known.

If E is a bounded set in Rn, then the δ-parallel body of E is the set of all points at a distance
less than δ from E, i.e.,

E(δ) = E + δBn = {
x ∈ R

n: ∃y ∈ E with ‖x − y‖ � δ
}
,

where δ � 0 and Bn = B(0,1) the closed unitary sphere of Rn with center at 0. Denoting the
volume by Vn, we get the lower and upper box-counting (Minkowski–Bouligand) dimension,
respectively,

dimB(E) = n − lim sup
δ→0+

logVn(E(δ))

log δ
,

dimB(E) = n − lim inf
δ→0+

logVn(E(δ))

log δ

(see [10]), and if dimB(E) = dimB(E) we write dimB(E).

Proposition 3. Let F : [0,1] × [0,p] → R be a continuous function, Fy its restriction on
[0,1]× {y} and GF , GFy their graphs for y ∈ [0,p]. If dimB(GFy ) � s for almost all y ∈ [0,p],
then dimB(GF ) � s + 1.

Proof. We restrict the Lebesgue measure V3 on [0,1]× [0,p]×R and the V2 on [0,1]×R. The
continuity of the function F ensures the measurability of the function h(δ, y) = V2(GFy + δB2),
y ∈ [0,p], δ � 0. From Fubini’s theorem we have that

V3(GF + δB3) =
1∫

0

V2(GFy + δB2) dy, (11)

for δ � 0. In addition, using Jensen’s inequality we obtain

log

1∫
0

V2(GFy + δB2) dy �
1∫

0

logV2(GFy + δB2) dy, (12)

for δ � 0. Let δn > 0 be a sequence with limn δn = 0. For all y ∈ [0,p] we have
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logV2(GFy + δnB2)

log δn

< 2,

for n � n0(y).
In view of Fatou’s lemma and the relations (11), (12) we have

lim sup
n

logV3(GF + δnB3) dy

log δn

= lim sup
n

log
∫ 1

0 V2(GFy + δnB2) dy

log δn

�
1∫

0

lim sup
n

(
logV2(GFy + δnB2)

log δn

)
dy

� 2 −
1∫

0

dimB(GFy ) dy

� 2 − s (from the hypothesis).

Therefore,

dimB(GF ) = 3 − lim sup
δ→0+

logV3(Gf + δB3)

log δ
� 3 − (2 − s) = 1 + s. �

Remark 1. One may prove that the function h(δ, y) = V2(GFy + δB2) used above is actually
continuous.

We will use the above result to derive a lower bound of the box-counting dimension of FIS
constructed as in Section 3.1.

Let f be an affine recurrent FIF given by {[0,1],w1−N,P } with irreducible connection matrix
C and graph Gf . Let

S(d) = diag
{|s1|aD−1

1 , |s2|aD−1
2 , . . . , |sN |aD−1

N

}
(diagonal matrix) and D be the unique value so that ρ(S(D) · C) = 1 (ρ(·) is the spectral radius
of the matrix). If ρ(S(1) ·C) > 1 and the interpolation points contained in Jk ×R are not colinear
for all k = 0,1, . . . ,K , then the box-counting dimension of the graph Gf is

dimB(Gf ) = D,

otherwise dimB(Gf ) = 1 (see [2]). In the special case, where the points of Δ and the points of Q

are equidistant (i.e. xi − xi−1 = δ, x̂k − x̂k−1 = ψ ), the box counting dimension is given by

D = 1 + logα

(
ρ
(
S(1) · C))

,

where α = ψ/δ.
Consider the construction presented in Section 3.1. If there is an index j0 ∈ {0,1, . . . ,M}

such that dimB(Gfyj0
) = D1 > 1, then there is a subinterval of [0,p] of positive length, such

that dimB(Gfy ) = D1, for any y in the interval. Therefore by Proposition 3

dimB(GF ) � 1 + D1 > 2.

Similarly if there is i0 ∈ {0,1, . . . ,N} such that dimB(G
f̃xi0

) = D2 > 1, then there is a subinter-

val of [0,1] of positive length, such that dimB(G
f̃x

) = D2, for any x in the interval. Therefore

dimB(G ˜ ) � 1 + D2 > 2.

F
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Fig. 6. A C1 fractal interpolation surface.

In the case where ui , vj (i = 1,2, . . . ,N , j = 1,2, . . . ,M) are affine FIFs with box-counting
dimensions D1 and D2, respectively, we have

dimB(GF ) = dimB(G
F̃
) � max{1 + D1,1 + D2}.

5. Conclusions

The construction we describe in the above sections may be applied to arbitrary interpolation
points. The emerging surface is the graph of a continuous function that interpolates the data. In
Table 1 the data for the construction of the surface shown in Fig. 4(d) are given. Figure 5 shows
two more continuous surfaces. One may observe the roughness of the produced surfaces shown
in the figures.

We should note that this construction may be generalized to construct fractal interpolation
functions defined on [0,1]n, n ∈ N, that interpolate arbitrary data (placed in rectangular grids).
It would be interesting to see if the result presented in Section 3.2 holds in that case also. In
addition, if we choose ui , i = 0,1, . . . ,N , to be C1 functions (e.g. splines) and construct fy using
Hermite-type polynomials (as in [14]), we may construct smooth FIS that generalizes spline
surfaces (see [6] and Fig. 6).
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