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Abstract

Consider a connected undirected graphG = (V, E), a subset of verticesC ⊆ V , and an integer
r ≥ 1; for anyvertexv ∈ V , let Br (v) denote the ball of radiusr centered atv, i.e., the set of
all vertices within distancer from v. If for all verticesv ∈ V (respectively,v ∈ V\C), the sets
Br (v) ∩ C are all nonempty and different, then we callC an r -identifying code (respectively, an
r -locating-dominating code). We study the smallest cardinalities or densities of these codes in chains
(finite or infinite) and cycles.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Given aconnected undirected graphG = (V, E) and an integerr ≥ 1, we defineBr (v),
theball of radiusr centered atv ∈ V , by

Br (v) = {x ∈ V : d(x, v) ≤ r },
whered(x, v) denotes the number of edges in any shortest path betweenv andx. Whenever
d(x, v) ≤ r , we saythat x and v r -cover each other (or simplycover if there is no
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Fig. 1. A graphG admitting no 1-identifying code.

ambiguity). A setX ⊆ V covers a setY ⊆ V if every vertex inY is covered by at
least one vertex inX.

A code Cis anonempty set of vertices, and its elements are calledcodewords. For each
vertexv ∈ V , we denote by

KC,r (v) = C ∩ Br (v)

the set ofcodewords whichr -coverv. Two verticesv1 andv2 with KC,r (v1) �= KC,r (v2)

are said to ber -separated, or separated, by codeC.
A code C is calledr -identifying, or identifying, if the setsKC,r (v), v ∈ V , are all

nonempty and distinct [9]. It is calledr -locating-dominating, or locating-dominating, if
the same is true for allv ∈ V\C [5]. In other words, in the first case all vertices must be
covered and pairwise separated byC, in the latter case only the noncodewords need to be
covered and separated.

Remark 1. For givengraphG = (V, E) and integerr , there exists anr -identifying code
C ⊆ V if andonly if

∀v1, v2 ∈ V(v1 �= v2), Br (v1) �= Br (v2).

Indeed, if for allv1, v2 ∈ V, Br (v1) andBr (v2) are different, thenC = V is r -identifying.
Conversely, if for somev1, v2 ∈ V, Br (v1) = Br (v2), then for any codeC ⊆ V , we have
KC,r (v1) = KC,r (v2). For instance, there is nor -identifying code in a complete graph. See
alsoExample 1below.

Remark 2. For givengraphG = (V, E) and integerr , an r -locating-dominating code
always exists (simply takeC = V), and anyr -identifying code isr -locating-dominating.

Example 1. Consider the graphG in Fig. 1. We seethat B1(a) = {a, b, d, e}, B1(b) =
{a, b, c, e}, B1(c) = {b, c}, B1(d) = {a, d, e}, B1(e) = {a, b, d, e}; consequently, because
B1(a) = B1(e), there isno 1-identifying code inG (cf. Remark 1above). On the other
hand,C = {a, b} is 1-locating-dominating, since the setsKC,1(c) = {b}, KC,1(d) = {a},
andKC,1(e) = {a, b}, are all nonempty and different.

The motivations come, for instance, from fault diagnosis in multiprocessor systems. Such
a systemcan be modeled as a graph where vertices are processors and edges are links
between processors. Assume that at most one of the processors is malfunctioning and we
wish to test the system and locate the faulty processor. For this purpose, some processors
(constituting the code) will be selected and assigned the task of testing their neighborhoods
(i.e., the vertices at distance at mostr ). Whenever a selected processor (=a codeword)
detects a fault, it sends an alarm signal, saying that one element in its neighborhood is
malfunctioning. We require that we can uniquely tell the location of the malfunctioning
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processor based only on the information which ones of the codewords gave the alarm, and
in this case an identifying code is what we need.

If the selected codewords are assumed to work without failure, or if their only task
is to test their neighborhoods (i.e., they are not considered as processors anymore) and we
assume that they perform this simple task without failure, then we shall search for locating-
dominating codes. These codes can also be considered for modeling the protection of a
building, the rooms of which are the vertices of a graph.

Locating-dominating codes were introduced in [5], identifying codes in [9], and they
constitute now a topic of their own: both were studied in a large number of various papers,
investigating particular graphs or families of graphs (such as planar graphs, certain infinite
regular grids, or then-cube), dealing with complexity issues, or using heuristics such as
the noising methods for the construction of small codes. See, e.g., [3, 4], and references
therein, or [12]. For instance, the best possible densities for a 1-locating-dominating code
in the infinite grid [11, Theorem 11] or for anr -identifying code(r ≥ 1) in the infinite
king grid [2] are exactly known.

Here, we shallstudy identifying and locating-dominating codes in chains (Sections 2
and3) and cycles (Section 4).

More specifically:

• In Section 2, we determine the exact value of the smallest possible density of an
r -identifying code in theinfinite chain, for all r ≥ 1. Then we do the same for
r -locating-dominating codes, for allr > 1 (thecaser = 1 is stated in [11, after
Theorem 11]; seeTheorem 2here).

• In Section 3, we investigatefinite chains. We give the exact value of the smallest
possible cardinality of a 1-identifying code; forr > 1, we give a lower bound and, for
an infinite set of values of the length of the chain (for givenr ), an upper bound which
coincides with the lower bound. The smallestcardinality of a 1-locating-dominating
code in a finite chain is known [10, Theorem 9] (cf.Theorem 6here); forr > 1, we
give a lower and an upper bound, which differ bycr , wherec is close toone third for
an infinite set of values of the chain length.

• In Section 4, we study cycles. For allr ≥ 1, we give a lower bound on the smallest
sizeof an r -identifying code in a cycle, and for cycles of even length we provide a
construction meeting this bound. The smallestcardinality of a 1-locating-dominating
code in a cycle is known [10, Theorem 9] (cf.Theorem 12here); we give, forr > 1,
a lower bound and, for an infinite set of values of the cycle length, we exhibit a
construction meeting this bound.

• In Section 5, we deepen the study of infinite chains by changing slightly the notion
of ball—this is part of a more general problem, involving patterns other than balls.

Chainscan be seen as 1-ary complete trees, and codes in trees are studied in [1], in
particular 1-identifying codes in the completeq-ary trees,q ≥ 2.

2. The infinite chain

The infinite chainG = CH∞ has vertex setV = Z and edge setE = {{i , i +1} : i ∈ Z}.
We denote bydI

r (CH∞) anddL D
r (CH∞) the smallest density of anr -identifying and of an
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r -locating-dominating code, respectively, inCH∞. In thenext two subsections, we provide
the exact values ofdI

r (CH∞) anddL D
r (CH∞), for all r ≥ 1.

Before that, we give a definition and an easy but useful lemma. We say that, given a
codeC in CH∞, two verticesx andy not in C areC-consecutiveif all vertices betweenx
andy belong toC.

Lemma 1. Let r ≥ 1 be an integer and C be a code inCH∞.

(i) If all vertices are r-covered by C and all pairs of consecutive vertices are r-separated
byC, then C is r-identifying.

(ii) If all vertices are r-covered by C and all pairs of C-consecutive vertices are
r-separated by C, then C is r-locating-dominating.

(iii) A codeword can r-separate at most two pairs of consecutive vertices.
(iv) A codeword can r-separate at most two pairs of C-consecutive vertices.

Proof. (i) and (ii): Can be seen from the fact that a ball consists of consecutive integers.
(iii): A codewordx ∈ C r -separates the two pairs of consecutive integers(x−r −1, x−

r ) and(x + r, x + r + 1).
(iv): Let (i k) be the sequence of vertices not inC, sequence which can be finite or

infinite; let� and�′ be integers such that 0< � ≤ r and�′ > r . A codewordx can at most
r -separate the following two types ofC-consecutive noncodewords:

• i k = x ± � ∈ Br (x)\{x} andi k+1 = x + �′ /∈ Br (x);
• i k = x − �′ /∈ Br (x) andi k+1 = x ± � ∈ Br (x)\{x}. �

2.1. Identifying codes in the infinite chain

The best density of an identifying code in the infinite chain does not depend onr .

Theorem 1. For all r ≥ 1,

dI
r (CH∞) = 1/2.

Proof. First, we prove the lower bound. LetC be anr -identifying code which is not equal
to Z (clearly, theinfinite chain always admits one). Leti ∈ Z be a vertex which is not a
codeword. The symmetric differenceBr (i + r )�Br (i + r + 1) is equal to{i , i + 2r + 1};
consequently, ifi is not a codeword, theni + 2r + 1 must be, inorder to separatei + r
and i + r + 1. So any noncodewordi induces a codewordi + 2r + 1. This proves that
dI

r (CH∞) ≥ 1/2.
Now for the upper bound, we exhibit the construction of a codeC which isr -identifying

and has density one half. Actually, we give two different constructions, one depending on
r ; seeFig. 2. The second code, periodic, is obtained by repeating the pattern given between
brackets (containing 4r +2 vertices). Both constructions are easy to check: first, all vertices
are covered byC; second, moving from left to right, one sees that each vertexi is separated
by C from its predecessori − 1, becausei either “gains” a new codeword to its right or
“loses” a codeword to its left. UsingLemma 1(i), this shows thatC is identifying. �

2.2. Locating-dominating codes in the infinite chain

We distinguish two cases,r = 1, r ≥ 2.
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Fig. 2. Two periodicr -identifying codes with density 1/2 in CH∞. Codewords are in black.

Theorem 2.

dL D
1 (CH∞) = 2/5;

for all r ≥ 2, dL D
r (CH∞) = 1/3.

Proof. (a) The caser = 1 (stated without proof in [11]): we consider five consecutive
integers, say 1,2, 3, 4, 5 and prove that at least two of them must be codewords in a
1-locating-dominating codeC.

• if there are two or three codewords among 2, 3, and 4, we are done;
• if there is no codeword among 2, 3, and 4, then 3 cannot be covered byC;
• if there is one codeword among 2, 3, and 4, without loss of generality we can assume

that this codeword is 2 or 3. If it is 2, then 4 must be covered byC and 5 is a
codeword; if it is 3, then 1 or 5 is a codeword, because 2 and 4 must be separated
by C.

This proves the lower bound.Fig. 3(a) gives a pattern of five vertices yielding a periodic
1-locating-dominating code, which is easy to check.

(b) The caser ≥ 2: again, we first prove the lower bound. LetC be anr -locating-
dominating code,Qn = {−n, . . . , n} and pn = |C ∩ Qn|, wheren is a positive integer.

In Qn, there are 2n + 1 − pn noncodewords, and there are max{0, 2n − pn} pairs of
C-consecutive vertices. Because no codeword outsideQn+r can act onQn, and because
Lemma 1(iv) still works here (seeRemark 3below), we obtain:

2pn+r ≥ 2n − pn;
consequently, since obviouslypn+r ≤ pn + 2r ,

3pn + 4r ≥ |Qn| − 1,

which leads to

pn

|Qn| ≥ 1

3

(
1 − 1 + 4r

|Qn|
)

for all n. This proves that the density of anr -locating-dominating code inCH∞ is at
least 1/3.

The construction of a periodicr -locating-dominating codeC with density 1/3 is given
in Fig. 3(b), where a pattern containing 3r + 3 (respectively, 3r ) vertices is given forr odd
(respectively,r even).

Again, it is tedious but straightforward to see that all noncodewords are covered
and separated byC, by comparing the setsKC,r (i ) and KC,r ( j ), where i and j
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Fig. 3. Periodicr -locating-dominating codes with density 2/5 (r = 1) and 1/3 (r ≥ 2) in CH∞. Codewords are

in black.

are C-consecutive noncodewords andi or j belong to the patterns inFig. 3(b). By
Lemma 1(ii), this is sufficient. �

3. Finite chains

The finite chain withn vertices,G = CHn, has vertex setVn = {1, . . . , n} and edge set
En = {{i , i + 1} : 1 ≤ i ≤ n − 1}. We denote byM I

r (CHn) andM L D
r (CHn) the smallest

cardinality of anr -identifying and of anr -locating-dominating code, respectively, inCHn.
In the next subsection, we establish the exact value ofM I

1 (CHn) for all n ≥ 1; for
r > 1, we give a lower bound onM I

r (CHn) and, for an infinite set of values ofn, an upper
bound which coincides with the lower bound.

Then, in Section 3.2, we give the exact value ofM L D
1 (CHn), and for r > 1, we

determine a lower and an upper bound onM L D
r (CHn), which differ by cr , wherec is

close to 1/3 for an infinite set of values ofn.

Remark 3. The four statements ofLemma 1still entirely apply if we replaceCH∞ by
CHn.

3.1. Identifying codes in finite chains

We first consider the caser = 1. Note that there is no identifying code inCH2, and
no r -identifying code inCHn if n ≤ 2r , because in this case there exist two distinct
verticesv1, v2 verifying Br (v1) = Br (v2) (cf. Remark 1); for instance, ifn = 2r , then
Br (r ) = Br (r + 1) = Vn.

Theorem 3.

M I
1 (CHn) =

{n+1
2 if n ≥ 1 is odd,

n
2 + 1 if n ≥ 4 is even.

Proof. The casen = 1 is trivial. Now consider a 1-identifying codeC in CHn, where
n ≥ 3. At most|C| vertices i can have|KC,1(i )| = 1 (otherwise, at least two of them
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could not be separated) and the other vertices must be covered by at least two codewords,
therefore we have the following inequality:

1 · |C| + 2 · (n − |C|) ≤
∑
c∈C

|B1(c)| ≤ 3|C|,

which leads to

|C| ≥ n

2
. (1)

(a) n odd, n ≥ 3: by (1), we obtain|C| ≥ (n + 1)/2. On the other hand,C =
{1, 3, . . . , n} contains(n+1)/2 codewords and is 1-identifying: all codewords are covered
by themselves and only by themselves, any noncodewordi is covered byi − 1 ∈ C and
i + 1 ∈ C.

(b) n even,n ≥ 4: (1) gives |C| ≥ n/2. Let us try to pick every other vertex as a
codeword:C = {1, 3, . . . , n − 1}; this fails becauseKC,1(n − 1) = KC,1(n) = {n − 1}.
Therefore, if|C| = n/2, there must be, at least once, at least two consecutive codewords,
say i and i + 1. Necessarily,i − 1 or i + 2 is also a codeword (otherwise,KC,1(i ) =
KC,1(i +1) = {i , i +1}), which means that at least once, we have at least three consecutive
codewords.

Consider now any four consecutive vertices,j , j +1, j +2, j +3. Among them, at least
two must be codewords, whether or notj − 1 and j + 4 are codewords, becausej + 1 and
j + 2 must be covered and separated byC.

Finally, let us consider an occurrence of threeconsecutive codewordsi −1, i , i +1, 2 ≤
i ≤ n − 1. Every group of four vertices to the right ofi + 1, {i + 2, i + 3, i + 4, i +
5}, . . . , {i +4k−2, i +4k−1, i +4k, i +4k+1}, k ≥ 0, n−3 ≤ i +4k+1 ≤ n, contains
at least two codewords. The same is true for the groups to the left ofi −1, {i −2, i −3, i −
4, i − 5}, . . . , {i − 4k′ + 2, i − 4k′ + 1, i − 4k′, i − 4k′ − 1}, k′ ≥ 0, 1 ≤ i − 4k′ − 1 ≤ 4.

Apart from thecodewordsi − 1, i , i + 1, and these groups of four vertices, which all in
all amount to 3+ 4k + 4k′ vertices and contain at least 3+ 2k + 2k′ codewords, we can
have additional vertices at both ends of the chainCHn. At each end, we can have:

• no vertex;
• or one vertex, which is not necessarily a codeword;
• or two vertices, one of them necessarily being a codeword (to cover the end of the

chain);
• or three vertices, two of them necessarily being codewords (to cover and separate the

end of the chain and its neighbor).

So, atboth ends, we can havea = 1, 3, or 5 additional vertices—remember thatn is
even—containing, in the best case,b = 0, 1, or 3 codewords, respectively. This shows that
the cardinality of a 1-identifying code is at least

3 + 2k + 2k′ + b = (5 + 4k + 4k′ + a) + (2b − a + 1)

2

= (n + 2) + (2b − a + 1)

2

≥ n + 2

2
.
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On the other hand,C = {1, 3, . . . , n−7, n−5, n−3, n−2, n−1} containsn
2 +1 codewords

and is 1-identifying: the firstn2 − 2 codewords are covered by themselves and only by
themselves,KC,1(n−3) = {n−3, n−2}, KC,1(n−2) = {n−3, n−2, n−1}, KC,1(n−1) =
{n − 2, n − 1}, and for the noncodewords, any noncodewordi is covered byi − 1 ∈ C and
i + 1 ∈ C, exceptn which is covered byn − 1 ∈ C. �

Whenr > 1, we first give a lower bound.

Theorem 4. For r ≥ 2, n ≥ 2r + 1,

M I
r (CHn) ≥

⌈
n + 1

2

⌉
.

Proof. Let C be anr -identifying code inCHn. Assume thati is a noncodeword, with
1 ≤ i ≤ n − (2r + 1); theni + 2r + 1 is acodeword, becausei + r andi + r + 1 must be
separated byC. Therefore:

|(Vn\C) ∩ [1, n − 2r − 1]| ≤ |C ∩ [2r + 2, n]|.
On the other hand,

n = |C ∩ [1, 2r + 1]| + |C ∩ [2r + 2, n]|
+ |(Vn\C) ∩ [1, n − 2r − 1]| + |(Vn\C) ∩ [n − 2r, n]|,

and therefore

n ≤ 2|C| − |C ∩ [1, 2r + 1]| + |(Vn\C) ∩ [n − 2r, n]|.
Now ther pairs of vertices(i , i + 1), 1 ≤ i ≤ r , can be separated only byi + 1 + r , so

C ∩ [1, 2r + 1] ⊇ {r + 2, r + 3, . . . , 2r + 1},
but 1 isnot covered byC yet; therefore|C ∩ [1, 2r + 1]| ≥ r + 1.

Also, in the same way,|C∩[n−2r, n]| ≥ r +1, and|(Vn\C)∩[n−2r, n]| ≤ r . Finally:

n ≤ 2|C| − (r + 1) + r = 2|C| − 1,

as was claimed. �

With given r , for infinitely many values ofn, it is possible to construct codes with
(n + 1)/2 elements, which meets the lower bound ofTheorem 4.

Theorem 5. Let k be a nonnegative integer. For any fixed r≥ 2, and for n= (4r +2)k+1,

M I
r (CHn) ≤ n + 1

2
.

Proof. The casek = 0 is trivial, so we assume thatk ≥ 1. Consider the pattern with
4r + 2 vertices and 2r + 1 codewords, already seen inFig. 2. Repeat this patternk − 1
times to the left and append a codeword to the right, to obtain a codeC ⊆ Vn which has
k(2r + 1) + 1 = (n + 1)/2 elements. The same argument as in the proof ofTheorem 1
shows thatC is indeedr -identifying. �
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Fig. 4. 1-Locating-dominating codes inCHn. Codewords are in black.

3.2. Locating-dominating codes in finite chains

First, we consider the caser = 1.

Theorem 6 ([10]). For all n ≥ 1,

M L D
1 (CHn) =

⌈
2n

5

⌉
.

Proof. For the lower bound, we give an alternative proof, using a technique quite different
from the proof in [10]: consider a 1-locating-dominating codeC in CHn. Now n − |C|
noncodewords must be covered byC, at most|C| of these vertices are covered by one
codeword, and the remaining vertices are covered by at least two codewords; therefore we
have the following inequality:

1 · |C| + 2 · (n − 2|C|) ≤
∑
c∈C

|B1(c)\{c}| ≤ 2|C|,

which leads to

|C| ≥
⌈

2n

5

⌉
.

This lower bound can be met with equality, as shown inFig. 4, where the left pattern,
containing five vertices, is repeatedk−1 times to the left, withk = �n

5�. It is easy to check
that these codes are 1-locating-dominating. Their sizes are 2k, 2k + 1, 2k + 1, 2k + 2, and
2k + 2, respectively, which in all cases is equal to2n

5 �. �

Whenr > 1, we first give a lower bound.

Theorem 7. For r ≥ 2, n ≥ 1,

M L D
r (CHn) ≥

⌈
n + 1

3

⌉
.

Proof. Let C be anr -locating-dominating code inCHn. By Lemma 1(iv) combined with
Remark 3, a codeword can separate at most two pairs ofC-consecutive noncodewords.
Therefore, 2· |C| ≥ n − |C| − 1. But one can go further: because 1 andn must either
belong toC or be covered byC,

if p = |C ∩ [1, r + 1]| andq = |C ∩ [n − r, n]|, then p ≥ 1 andq ≥ 1.
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Fig. 5.r -Locating-dominating codes inCHn. Codewords are in black.

Now a codeword in[1, r + 1] (respectively, in[n − r, n]) cannot separate a pair of vertices
to its left (respectively, to its right); therefore,

2 · (|C| − p − q) + 1 · (p + q) ≥ n − |C| − 1,

i.e., 3|C| ≥ n − 1 + p + q ≥ n + 1,

hence the claim. �

The lower bound of the previous theorem can be met with equality for some values ofn,
as can be easily seen inFig. 5. However, we did not succeed in reducing the gap between
the lower bound ofTheorem 7and the following upper bounds to less thancr , wherec is
close to 1/3 for infinitely many values of the chain lengthn.

Still, we believe that the lower bound ofTheorem 7can be met with equality for
infinitely many values ofn (seeConjecture 1below).

Theorem 8. Let k be a nonnegative integer and r≥ 2;

(i) if r is even and n= 3kr + 2r + 1, then

M L D
r (CHn) ≤ n + 1

3
+ r + 1

3
;

(ii) if r is odd and n= k(3r + 3) + 2r + 1, then

M L D
r (CHn) ≤ n + 1

3
+ r + 1

3
;

(iii) for any n≥ 2r + 1,

M L D
r (CHn) ≤

⌈
n + 1

3
+ 7r + 5

3

⌉
.

Proof. (i) Consider the caser even in Fig. 6 (cf. Fig. 3). If k = 1, simply take the
construction as it is. Ifk = 0, take only the left part, with 2r + 1 vertices. If k ≥ 2,
then repeatk − 1 times to the right the pattern given between brackets.
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Fig. 6. Patterns forr -locating-dominating codes inCHn. Codewords are in black.

The codeC thus constructed haskr + r + 1 elements,in a chainof length n =
3kr + 2r + 1. Therefore|C| = (n + r + 2)/3 and it is straightforward to check that
C is r -locating-dominating.

(ii) Now we constructC∗ considering the caser odd inFig. 6; codeC∗ hask(r + 1) +
r +1 elements,in a chainof lengthn = k(3r +3)+2r +1. Therefore|C∗| = (n + r + 2)/3
and it is straightforward to check thatC∗ is r -locating-dominating.

(iii) If r is even, adds codewords to the left of the previous construction ofC, where
1 ≤ s ≤ 3r − 1. The codeCs thus constructed haskr + r + 1 + s elements in a chain
of lengthns = 3kr +2r +1+s, running between 3kr +2r +2 and 3kr +2r +1+3r −1 =
3r (k + 1) + 2r : all lengthsn ≥ 2r + 1 have been considered andCs, which isobviously
r -locating-dominating, has size(ns + r + 2 + 2s)/3 ≤ (ns + 7r )/3.

If r is odd, adds codewords to the left of the previous construction ofC∗, where
1 ≤ s ≤ 3r + 2. The codeC∗

s thus constructed hask(r + 1) + r + 1 + s elements in
a chainof lengthn∗

s = k(3r + 3) + 2r + 1 + s, running betweenk(3r + 3) + 2r + 2 and
k(3r + 3) + 2r + 1 + 3r + 2 = (k + 1)(3r + 3) + 2r : all lengthsn ≥ 2r + 1 have been
considered andC∗

s , which is obviouslyr -locating-dominating, has size(n∗
s + r + 2s +

2)/3 ≤ (n∗
s + 7r + 6)/3. �

With further investigation, the results ofTheorem 8(iii) could be slightly improved,
since clearly not all thesvertices added to the left of the construction need to be codewords.

Constructions forr = 2 andr = 3 give us grounds for stating the following conjecture
(see alsonote added in proof).

Conjecture 1. For any fixed r≥ 2, there exist infinitely many values of n for which

M L D
r (CHn) ≤

⌈
n + 1

3

⌉
.

4. Cycles

The cycle withn vertices,G = CYn, has vertex setVn = {1, . . . , n} and edge set
En = {{i , i + 1} : 1 ≤ i ≤ n − 1} ∪ {{n, 1}}. We denote byM I

r (CYn) andM L D
r (CYn) the

smallest cardinality of anr -identifying and of anr -locating-dominating code, respectively,
in CYn.
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Fig. 7. Codes which are notr -identifying. Codewords are in black.

Remark 4. Unlike the case of chains, inorder to prove that a codeC is identifying in a
cycle, it is not sufficient to check that any twoconsecutive vertices are separated byC,
as shown inFig. 7, where the codes are not identifying, although all pairs of consecutive
vertices are separated byC. The same istrue for locating-dominating codes andC-conse-
cutive vertices. This means that the statements (i) and (ii) ofLemma 1do not apply to
cycles.

However, it is easy to see that the statements (iii) and (iv) ofLemma 1are still valid if
we replaceCH∞ by CYn.

In the next subsection, for allr we give a lower bound on the smallest size of an
r -identifying code inCYn, and for evenn we provide a construction which meets this
bound.

Then inSection 4.2, we give the exact value ofM L D
1 (CYn), anddetermine, for allr ≥ 2,

a lower bound onM L D
r (CYn), and infinitely many particular values of the cycle lengthn

for which the lower and upper bounds coincide.

4.1. Identifying codes in cycles

We first give a lower bound which is valid for allr and n ≥ 2r + 2—note that if
n ≤ 2r +1, then nor -identifying code can exist inCYn, because for all verticesi , we have
Br (i ) = Vn (cf. Remark 1).

Theorem 9. For r ≥ 1, n ≥ 2r + 2,

M I
r (CYn) ≥

⌈n

2

⌉
.

Proof. The proof is similar to the first part of the proof ofTheorem 1: let C be an
r -identifying code; if i is not a codeword, theni + 2r + 1 (mod n) (which cannot be
equal toi ) must be, son − |C| ≤ |C|, i.e., |C| ≥ n/2. �

This lower bound is met with equality for all evenn ≥ 2r + 4 (see also
note added in proof).

Theorem 10. For all r ≥ 1, and for all even n, n ≥ 2r + 4,

M I
r (CYn) ≤ n

2
.

Proof. We claim that the codeC = {1, 3, . . . , n − 1}, consisting of every other vertex, is
r -identifying. First, all vertices are covered byC.

Next, since all codewords play the same role, and all noncodewords play the same
role, without loss of generality we can consider a particular codeword, say 1, and the
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noncodeword 2, and it will be sufficient to show that no other vertexj can be such that
KC,r ( j ) = KC,r (1) or KC,r ( j ) = KC,r (2).

Assume first thatr is even. We see that

KC,r (1) = {n + 1 − r, n + 3 − r, . . . , n − 1, 1, 3, . . . , r − 1, r + 1},
KC,r (2) = {n + 3 − r, n + 5 − r, . . . , 1, 3, . . . , r − 1, r + 1}.

If j is such thatKC,r ( j ) = KC,r (1), then in particular

• j is covered by 1: this means that

n + 1 − r ≤ j ≤ r + 1;
• j is not covered byr + 3 (which is smaller thann + 1 − r and cannot belong to

KC,r (1)): this means that

j /∈ {3, 4, 5, . . . , 2r + 2, 2r + 3};
• j is not covered byn − 1 − r (which is greater thanr + 1 and cannot belong to

KC,r (1)): this means that

j /∈ {n − 1 − 2r, n − 2r, . . . , n − 2, n − 1}.
This leaves onlyn, 1 or 2 aspossible values forj ; but n cannot be covered byr + 1, and
2 cannot be covered byn + 1 − r . So thesetwo vertices are separated byC from 1 and
necessarilyj = 1.

If j is such thatKC,r ( j ) = KC,r (2), then similarly:

n + 1 − r ≤ j ≤ r + 1;
j /∈ {3, 4, 5, . . . , 2r + 2, 2r + 3}; j /∈ {n + 1 − 2r, n + 2 − 2r, . . . , n, 1}.

So necessarilyj = 2.
If r is odd, then

KC,r (1) = {n + 2 − r, n + 4 − r, . . . , n − 1, 1, 3, . . . , r − 2, r },
KC,r (2) = {n + 2 − r, n + 4 − r, . . . , 1, 3, . . . , r, r + 2}.

If j is such thatKC,r ( j ) = KC,r (1), then:

n + 1 − r ≤ j ≤ r + 1;
j /∈ {2, 3, 4, . . . , 2r + 1, 2r + 2}; j /∈ {n − 2r, n − 2r + 1, . . . , n − 1, n}.

So necessarilyj = 1.
If j is such thatKC,r ( j ) = KC,r (2), then:

n + 1 − r ≤ j ≤ r + 1;
j /∈ {4, 5, 6, . . . , 2r + 3, 2r + 4}; j /∈ {n − 2r, n − 2r + 1, . . . , n − 1, n}.

This leaves only 1, 2, or 3 as possible values forj ; but 1 cannot be covered byr + 2, and
3 cannot be covered byn + 2 − r . So thesetwo vertices are separated byC from 2 and
necessarilyj = 2. �
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The conditionn ≥ 2r + 4 is crucial for Theorem 10. If n = 2r + 2, there is a serious
degradation in the quality of the codes, compared toTheorem 10, sincethe next theorem
states that all vertices but one must be taken!

Theorem 11. For all r ≥ 1,

M I
r (CY2r+2) = 2r + 1.

Proof. Thatn − 1 = 2r + 1 codewords are sufficient is easy to check.
We prove now that if C is anr -identifying code inCY2r+2, then at most one vertex is

not in C.
For any i ∈ Vn, Br (i ) = Vn\{i + r + 1 (mod n)}, and for anyi , j ∈ Vn, i �=

j , Br (i )�Br ( j ) = {i + r + 1 (mod n), j + r + 1 (mod n)}. Now, we know that in
Br (i )�Br ( j ), there mustbe at least one codeword, which separatesi and j .

Assume, without loss of generality, that 1/∈ C. Then for all j �= r + 2, Br (r +
2)�Br ( j ) = {1, j + r + 1 (modn)} and

∅ �= (Br (r + 2)�Br ( j )) ∩ C ⊆ { j + r + 1 (modn)}.
So for all values ofj butone, then − 1 distinct verticesj + r + 1 (modn) are necessarily
codewords. �
4.2. Locating-dominating codes in cycles

The caser = 1 in a cycle is similar to the case of the finite chain.

Theorem 12 ([10]). For all n ≥ 1,

M L D
1 (CYn) =

⌈
2n

5

⌉
.

Proof. For the lower bound, see the proof ofTheorem 6. Theonly, unimportant, difference
is that in a cycle,|B1(c)\{c}| is always equal to 2 forn ≥ 3.

This lower bound can be met with equality, usingFig. 4: the left pattern, containing
five vertices, is repeatedk − 1 times to the left, and to obtain a cycle of lengthn, one
links the leftmost and rightmost vertices. It is easy to check that these codes are 1-locating-
dominating in CYn. �

Whenr > 1, we first give a lower bound.

Theorem 13. For r ≥ 2, n ≥ 1,

M L D
r (CYn) ≥

⌈n

3

⌉
.

Proof. Let C be anr -locating-dominating code inCYn. By Lemma 1(iv) together with
Remark 4, and since there aren pairs of consecutive vertices, we have: 2· |C| ≥
n − |C|. �

With givenr , for infinitely many values ofn, the previous lower bound can be met with
equality.
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Theorem 14. Let r = 2 and k≥ 2, or r > 2 and k≥ 1; if r is odd and n= k(3r + 3), or
if r is even and n= 3kr , then

M L D
r (CYn) ≤ n

3
.

Proof. According to the parity ofr , usek times the appropriate pattern ofFig. 3(b), and
link together the leftmost and rightmost vertices.�

The case whenr = 2 andk = 1(n = 6) would leave two noncodewords covered by
the same two codewords. Actually, it is easy to see thatM L D

2 (CY6) = 3; the lower bound
comes from the fact that with two codewords, only three nonempty sets of codewords are
available, for four noncodewords.

5. New balls

Note that in the infinite chainCH∞, the ball Br (i ) is the set of 2r + 1 consecutive
integers{i − r, . . . , i , . . . , i + r }, i.e., a segment of odd length. One can instead consider
segmentsof even lengths and the problem is how to best place these segments inCH∞, in
such a way that every integer belongs to at least one segment, and no two integers belong
to the same set of segments (identifying codes) or no two noncodewords belong to the
same set of segments (locating-dominating codes). More generally, in [8] this problem is
considered inZ2, for identifyi ng codes, and with various patterns.

Now, in an even segment, the center is not inZ. As we shallsee below, this does not
affect the nature of the issue for identifying codes, but leads to add a new parameter in the
case of locating-dominating codes.

5.1. Identifying codes

Here, all waysof associating a segment with a codeword are equivalent, since
codewords and noncodewords have the same status with respect to the properties that an
identifying code must satisfy: every vertex must belong to at least one segment, and no two
vertices can belong to the same set of segments—of course this remark is true for even as
well as for odd segments.

Theorem 15. Let s∈ N∗, s even. The best density of an identifying code C using segments
of length s inCH∞ is 2/3 if s = 2, and1/2 if s > 2.

We recall that for all odd values ofs ≥ 3, the best density is 1/2 (Theorem 1).

Proof. In this proof, in order to specify the segments and use easily their covering and
separating properties, we choose to associate a segment with, for instance, its smallest
element, which will be the codeword representing this segment, and we change accordingly
the notion of covering: a codewordi will s-cover thes integersi , i + 1, . . . , i + s− 1. See
Fig. 8, where the leftmost codewords are represented with their segments.

We firstshow the lower bound fors = 2: we consider three consecutive integers, say 1,
2, 3, and prove that at least two of them must be codewords ofC. Suppose that only 3 is
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Fig. 8. Optimal identifying codes inCH∞. Codewords are in black.

in C; then 2 is not covered byC. Suppose next that only 2 is a codeword; then 2 and 3 are
not separated byC. Finally, if only 1 is a codeword, then 3 is not covered byC.

To prove thatthe density is at least one half for all evens > 2, it sufficesto prove that
every pair { j − s, j } contains at least one codeword, and this holds, because ifj is not a
codeword, then the only codeword that can separatej − 1 and j is j − s.

The upper bound fors = 2 comesfrom the construction inFig. 8, which is easy to
check.

Finally, we provide a construction fors > 2, s even. Let

C0 = {0, 2, . . . , s − 4, s − 2, s + 1, s + 3, . . . , 2s − 1} andC =
⋃
k∈Z

(C0 + k2s)

(seeFig. 8for s = 6). We claim thatC is identifying. Consider a pair of consecutive points
i , i + 1; we show that necessarily there is a codeword which covers exactly one of them.

If i +1 is acodeword, we are done, sincei +1 does not coveri . So we are left with two
cases:

(i) i ∈ C, i + 1 /∈ C; we can assume, without loss of generality, thati belongs to
C0\{2s − 1}. Now i − s + 1 coversi and noti + 1, andi − s + 1 is a codeword:
indeed, ifi is of the forms+ 1+ 2 j (0 ≤ 2 j ≤ s− 4), theni − s+ 1 = 2 j + 2 is in
C0, and if i is of the form 2j (0 ≤ 2 j ≤ s − 2), theni − s + 1 = (2 j + s + 1) − 2s
is in (C0 − 2s) ⊂ C.

(ii) i , i + 1 /∈ C; we can assume, without loss of generality, thati = s − 1, and we see
that 0 is a codeword coveringi and noti + 1. �

5.2. Locating-dominating codes

For odd as well as for even segment lengths, the best density of a locating-dominating
code depends on how we choose to associate a segment with a codeword, as shows the next
example, for length four.

Example 2. (a) Consider segments of lengths = 4, in which the smallest element is the
codeword representing the segment—seeFig. 9(a). We claim that the best density that a
locating-dominating code using these segments can achieve is 2/5.

First, a periodic locating-dominating codeC is obtained by repeating the pattern of
Fig. 3(a). For the lower bound, consider five consecutive vertices, say 6, 7, 8, 9, and 10.
Obviously, at least one of them must be a codeword; now assume that only one of them
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Fig. 9. Two ways of choosing a codeword in a segment of length four. Codewords are in black.

belongs toC. If i t is 6 that belongs toC, then 10 cannot be covered byC; if it is 7 or 8,
then 9 and 10 cannot be separated byC; if i t is 10, then 9 cannot be covered byC. This
leavesC ∩{6, 7, 8, 9, 10} = {9} as the only possibility. But then, in order to separate 6 and
7, 7 and 8, and to cover 8, necessarily 3, 4, and 5 are codewords.

So we have proved that

either|C ∩ {6, 7, 8, 9, 10}| ≥ 2

or |C ∩ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}| ≥ 1 + 3 = 4,

which shows that the density of the code is at least 2/5.
(b) On the other hand, if we consider segments of length four in which now it is the

second smallestelement which represents the segment—seeFig. 9(b)—then the density
can reach 1/3, since it is easy to check that the codeC = {3p : p ∈ Z} is locating-
dominating (see also the proof ofTheorem 17).

Therefore, for each value ofs, it would be necessary to consider all possible positions of
the codeword in the segment and try to derive the corresponding best densities. Since we do
not wish to go into such a detailed investigation, we content ourselves with the following
results and conjecture.

Theorem 16. Let s∈ N∗; thebest density of a locating-dominating code C using segments
of length s inCH∞ is at least1/3.

Proof. Apply mutatis mutandisLemma 1(iv) and adapt part (b) of the proof ofTheorem 2.
The asymptotic result of the counting arguments does not depend on the position of the
codeword in the segment.�

Theorem 17. Let s∈ N∗. If s is odd(s ≥ 5), or s = 6k+2(k ≥ 1), or s = 6k + 4 (k ≥ 0),
then, choosing appropriately the position of the codeword in the segment, we can achieve
1/3 for thebest density of a locating-dominating code using segments of length s inCH∞.

Proof. If s ≥ 5 isodd, seeTheorem 2, where the codeword isthe center of the segment.
Whens = 6k + 2, s ≥ 8, if we choose to represent the segment by its smallest element,

then the codeC = {3p : p ∈ Z} is locating-dominating: all we have to check is that two
consecutive noncodewordsi = 3p + 1, i + 1 = 3p + 2, are separated byC. This is so,
because 3p + 1 − (s − 1) = 3p − 6k is a codeword coveringi , not i + 1.

Whens = 6k + 4, s ≥ 4, if we choose to represent the segment by its second smallest
element, then the codeC = {3p : p ∈ Z} is locating-dominating; since now a codeword
a covers the verticesa − 1, a, a + 1, . . . , a + s − 2, all we have to check is that twoC-
consecutive noncodewordsi = 3p + 2, i + 2 = 3p + 4, are separated byC. This is so,
because 3p + 2 − (s − 2) = 3p − 6k is a codeword coveringi , not i + 2. �
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Things get more complicated when the length of the segment is a multiple of six, but a
small study led us to the following conjecture.

Conjecture 2. Let s ∈ N∗. If s = 6k (k ≥ 1), then, choosing appropriately the position
of the codeword in the segment, we can achieve1/3 for the best density of a locating-
dominating code using segments of length s inCH∞.

6. Conclusion

Below, we summarize some results on identifying and locating-dominating codes in
cycles and chains.

• For infinite chains:

◦ For r ≥ 1, dI
r (CH∞) = 1/2.

◦ dL D
1 (CH∞) = 2/5 [11]; for r ≥ 2, dL D

r (CH∞) = 1/3.

• For finite chains:

◦ M I
1 (CHn) =

{n+1
2 if n ≥ 1 isodd,

n
2 + 1 if n ≥ 4 is even;

for r ≥ 2, n ≥ 2r + 1, M I
r (CHn) ≥ n+1

2 �, with equality for infinitely manyn.
◦ M L D

1 (CHn) = 2n
5 � [10]; for r ≥ 2, n ≥ 1, M L D

r (CHn) ≥ n+1
3 � and

M L D
r (CHn) ≤ n+1

3 + r+1
3 for infinitely manyn.

• For cycles:

◦ For r ≥ 1, n ≥ 2r + 2, M I
r (CYn) ≥ n

2�, with equality for evenn ≥ 2r + 4.
◦ M L D

1 (CYn) = 2n
5 � [10]; for r ≥ 2, n ≥ 1, M L D

r (CYn) ≥ n
3�, with equality

for infinitely manyn.

Note added in proof

The case of 1-identifying codes in cycles (cf.Theorems 9and10) is completely solved,
since it is shown in [6] that whenn is odd,n ≥ 7,

M I
1 (CYn) = n + 3

2
.

Using variations on the pattern given inFig. 3(b) with r = 2, i.e., C = {4, 6} ⊂
{1, 2, 3, 4, 5, 6}, Honkala [7] proves that

(1) if r ≡ 1, 2, 3, or 4(mod 6), r �= 1, thenfor all n ≥ 2r + 1,

M L D
r (CHn) ≤

⌈
n + 2r + 3

3

⌉
;

(2) for all n ≥ 1,

M L D
2 (CHn) ≤

⌈
n + 1

3

⌉
,
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cf. Theorem 8. Inequality (2), together withTheorem 7, shows thatM L D
2 (CHn) = n+1

3 �,
andConjecture 1“strongly” holds forr = 2.
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