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Completing some Partial Latin Squares

TRISTAN DENLEY AND ROLAND HÄGGKVIST

We show that any partial 3r×3r Latin squarewhose filled cells lie in two disjointr×r sub-squares
can be completed. We do this by proving the more general result that any partial 3r by 3r Latin square,
with filled cells in the top left 2r × 2r square, for which there is a pairing of the columns so that in
each row there is a filled cell in at most one of each matched pair of columns, can be completed if and
only if there is some way to fill the cells of the top left 2r × 2r square.

c© 2000 Academic Press

1. INTRODUCTION

Imagine a square array ofn2 cells containingn different symbols. If the symbols are ar-
ranged in the array so that no symbol appears more than once in any row or column, then the
array is called ann× n Latin square. To construct examples of Latin squares is a simple task,
but what if some of the entries have already been filled and your task is to complete the square,
if possible? The impetus for the work on completing partial Latin squares is due to a paper of
Evans [3]. In his article, Evans outlined the intrinsic interest of completing a variety of partial
structures, includingLatin squares of course, but also groups and projective planes. He also
made a number of conjectures, among them that everyn × n partial Latin square which has
at mostn − 1 filled entries can be completed. This conjecture remained unsettled for some
20 years until it was finally proved to be true by Häggkvist forn ≥ 1111 [5] and in its entirety
by Andersenand Hilton [1] and Smetaniuk [7]. Evans’ conjecture is, in some sense, best pos-
sible, sincethere are obvious configurations ofn symbols in ann × n partial Latin square
which cannot be completed. However, if we insist on some additional structure for the filled
cells and symbols, a variety of configurations can be shown to always have completions. One
of these possibilities gave rise to a conjecture of Häggkvist:

CONJECTURE (1980). Any partial nr× nr Latin square whose filled cells lie in(n− 1)
disjoint r × r squares can be completed.

This paper provides a proof of Häggkvist’s conjecture whenn = 3.

2. THE RESULTS

For the proof we require two existing results from opposite ends of the history of complet-
ing partial Latin squares. The first is probably the first result about completing partial Latin
squares, due to Ryser.

THEOREM A (RYSER’ S THEOREM [6]). An r×s Latin rectangle with entries from n sym-
bols can be extended to an n× n Latin square on those symbols if and only if each symbol
occurs in the rectangle at least r+ s− n times.

The configuration of Ḧaggkvist’s conjecture whenn = 3 is actually only a special case of a
much broader class of partial Latin squares which all have completions. The key to this is the
following more general theorem.

0195–6698/00/100877 + 04 $35.00/0 c© 2000 AcademicPress

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82637257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


878 T. Denley and R. Ḧaggkvist

THEOREM 1. LetL be a partial3r by3r Latin square with filled squares in the top left2r
by 2r squareT . Suppose further that in each row ofT there is a filled cell in at most one of
columns i and i+ r for each i = 1, . . . ,r . ThenL can be completed if and only if there is
some way to fill the cells ofT .

PROOF. The necessity of the condition is trivial of course. Suppose then that all the cells
of T have been filled. Our objective will be to redistribute the symbols in the fillable cells of
T in such a way that every symbol appears at least 2r + 2r − 3r = r times; thatL can be
completed then follows from TheoremA.

To hopefully avoid confusion, when we wish to refer to the filled cells of the original partial
Latin square we shall speak ofL, and when we wish to speak of the new filled cells we shall
speak ofT . We define a bipartite graphH which has bipartition(R, S), whereR is the set of
rows ofT andS is the set of 3r symbols. InH we join a rowρ to a symbols with an edgefρs

whenever the symbols does not occur in rowρ in the original partial Latin squareL. Now,
to introduce the way in which the fillable cells inT were filled, we colour the edgefρs with
colourc if the symbols now appears in cell(ρ, c) of T . We shall refer to those edges which
receive no colour in this way as theuncolourededges. Observe that whenT is filled there are
2r used symbols in each row, and sor unused symbols, each vertexρ ∈ R is incident with
r uncoloured edges. Finally, we provide each vertexρ ∈ R with a list F(ρ) of columns in
which rowρ was filled inL.

Recall that our aim is to fill the fillable cells inT in such a way that every symbol appears
at leastr times. If this has not already been achieved, then there must be a symbols0 which is
used less thanr times inT . Given this symbol, there must be an 1≤ i ≤ r so that symbols0
never appears in columnsi andi + r . Our aim will be to redistribute the symbols so that after
the redistributions0 will appear in one of these columns, and overall will appear one more
time than it did before—creeping closer to the magic count ofr .

Let B0 be the subset of symbols which appear at mostr times inT and also appear in at
most one of columnsi and i + r . Note that since the 4r 2 cells ofT are filled with only 3r
symbols, there must be at least one symbol used more thanr times which, therefore, is not a
member ofB0. Let H0 be the subgraph ofH induced by the uncoloured edges incident with
the vertices ofB0. Then for each vertexx ∈ B0, dH0(x) ≥ r and certainly for each vertex
ρ ∈ R, dH0(ρ) ≤ r . ThusH0 has a matchingM of B0 into R, which we shall regard as edges
in H . We shall use these matching edges to construct a pathP which begins ats0 and ends at
one of the vertices outsideB0. We will use this path to redistribute the symbols.

Let fρ0s0 be the edge ofM incident withs0. By assumption, either columni or column
i + r is not a member ofF(ρ0), i.e., there is a columnc0 ∈ {i, i + r } \ F(ρ0). Thenρ0 is
incident with an edgefρ0s1 which is colouredc0 in H . If this new symbols1 is a member of
B0, then we continue constructing the path, otherwise we stop. If we continue, sinces1 ∈ B0 it
is incident with an edge ofM joining it to a rowρ1, and as before there must be some column
c1 ∈ {i, i + r } \ F(ρ1) and an edge colouredc1 joining ρ1 to s2. We construct the path by
repeating these steps until we meet a symbol outsideB0. P must be a path, since there exists
at most one edge colouredi or i + r which is incident with each symbol other than the last
(each of these symbols is a member ofB0 and that is one of the conditions for membership),
and the edges joining the symbols to the rows form a matching inM . SinceB0 is a finite set
this path must eventually meet a vertex outsideB0 and there it stops, by construction, at a
symbolsn.

We recolourfρi si with colourci , and uncolourfρi si+1, for i = 0, . . . ,n− 1 (or if you wish,
make the analogous changes toT ). The crux of the argument relies on what has happened
to the symbols in this redistribution. Observe that after these changes the symbols0 will



Completing some partial Latin squares 879

3r

3r

Filled cells

r

r

r r

FIGURE 1. A configuration of filled squares in Theorem2.

appear, in addition to all its previous positions, in precisely one of columnsi andi + r . The
final symbolsn will appear one less time than before, but by definition it wasgreedyand so
initially it appeared more thanr times or in both columnsi andi + r . After the redistribution
sn will appear either at leastr times inT or in one of columnsi andi + r . Finally, the only
changes which were made during the redistribution took place amongst the columnsi and
i + r , and consisted of switching a symbol from columni to columni + r or vice versa. Thus
every other symbol still appears amongst these columns as often inT as it did before, and
precisely as often overall inT as it did before.

As we repeat this process let us keep count of the total number of times a symbol which
appears at mostr times appears in neither columni nor columni + r , for i = 1, . . . ,r .
Observe that after each step of the process the number of such occurrences decreases by one,
since one such occurrence for symbols0 is eliminated, no such occurrence for symbolsn is
created, and no others are created for the other vertices in the path. Thus by repeating this
process eventually the number such occurrences is reduced to zero. Thus every symbol will
either appear greater thanr times, or at mostr times, and at least once in each pair of columns
i andi +r —thus preciselyr times. Hence every symbol appears at leastr times and the result
follows. 2

Using Theorem1, our main theorem now follows easily, employing the recent result of
Borodin, Kostochka and Woodall, which extends Galvins’ proof of the Dinitz conjecture [4].

THEOREM B (BORODIN, KOSTOCHKA, WOODALL [2]). Let G be a bipartite graph and
Le(uv) be a set (list) of at leastmax{dG(u),dG(v)} positive integers for each edge uv ∈
E(G). Then G has an Le-list colouring (a proper edge colouring in which each edge f re-
ceives a colour from its list Le( f )).

THEOREM 2. Let L be a3r by 3r partial Latin square with filled cells which lie in two
disjoint r by r squares. ThenL can be completed.

PROOF. If the two r by r squares liein the same set ofr rows, then the result follows
immediately from TheoremA.
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If otherwise, then we can assume that ther by r squares have no rows in common (possibly
by transposing the roles of row and column). Observe then that the columns can be reordered
so that in each row a cell is filled in precisely one of columnsi andi+r , for eachi = 1, . . . ,r ,
and so that all the empty columns are collected on the right-hand side. Thus, by Theorem1, it
is enoughto simply fill the empty cells ofT .

Let G be the bipartite graph with bipartition(R,C), whereR andC are the sets of rows
and columns ofT , respectively. InG we join a rowρ to a columnc by an edgeeρc precisely
when the cell(ρ, c) in T is empty. We also give each edgeeρc a list Le(eρc) of the symbols
which appear in neither rowr nor columnc. Consider two different types of cell. Firstly, there
are cells which have a square below or above, and have a square to the left or right. Such a
cell corresponds to an edgeeρc in G, and by construction we see thatdG(ρ) = dG(c) = r and
|Le(eρc)| ≥ r . Secondly, there are possibly cells which lie in an empty column. These have
only a square to their left and so correspond to an edgee′ρc whereLe(e′ρc) = 2r , dG(ρ) = r
anddG(c) = 2r .

Thus for eacheρc ∈ E(G) we have|Le(eρc)| = max{dG(ρ),dG(c)} and so TheoremB
ensures thatG has anLe-list colouring, which exactly corresponds to a valid filling of the
empty cells ofT . The result follows. 2

REFERENCES

1. L. D. Andersen and A. J. W. Hilton, Thank Evans!,Proc.London Math. Soc.,47 (1983), 507–522.
2. O. V. Borodin, A. V. Kostochka and D. R. Woodall, List edge and list total colourings of multigraphs,

J. Comb. Theory, Ser. B,71 (1997), 184–204.
3. T. Evans, Embedding incomplete latin squares,Am. Math.Mon.,67 (1960), 958–961.
4. F. Galvin, The list-chromatic index of a bipartite multigraph,J. Comb. Theory, Ser. B,63 (1995),

153–158.
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