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Completing some Partial Latin Squares

TRISTAN DENLEY AND ROLAND HAGGKVIST

We show that any partiak3< 3r Latin squarevhose filled cells lie in two disjoint xr sub-squares
can be completed. We do this by proving the more general result that any patiaB3Latin square,
with filled cells in the top left 2 x 2r square, for which there is a pairing of the columns so that in
each row there is afilled cell in at most one of each matched pair of columns, can be completed if and
only if there is some way to fill the cells of the top left 2 2r square.

(© 2000 Academic Press

1. INTRODUCTION

Imagine a square array of cells containingn differentsymbols. If the symbols are ar-
ranged in the array so that no symbol appears more than once in any row or column, then the
array is called am x n Latin square. To construct examples of Latin squares is a simple task,
but what if some of the entries have already been filled and your task is to complete the square,
if possible? The impetus for the work on completing partial Latin squares is due to a paper of
Evans [3]. In his article, Evans outlined the intrinsic interest of completing a variety of partial
structures, includindiatin squares of course, but also groups and projective planes. He also
made a number of conjectures, among them that everyn partial Latin square which has
at mostn — 1 filled entries can be completed. This conjecture remained unsettled for some
20 years until it was finally proved to be true byagbkvist forn > 1111 [5] and in its entirety
by Anderserand Hilton [L] and Smetaniuk [7]. Evans’ conjecture is, in some sense, best pos-
sible, sincethere are obvious configurations mfsymbols in am x n partial Latin square
which cannot be completed. However, if we insist on some additional structure for the filled
cells and symbols, a variety of configurations can be shown to always have completions. One
of these possibilities gave rise to a conjecture afjgkvist:

CONJECTURE (1980). Any partial nr x nr Latin square whose filled cells lie im — 1)
disjointr x r squares can be completed.

This paper provides a proof ofdggkvist’s conjecture whem= 3.

2. THE RESULTS

For the proof we require two existing results from opposite ends of the history of complet-
ing partial Latin squares. The first is probably the first result about completing partial Latin
squares, due to Ryser.

THEOREMA (RYSER'S THEOREM[6]). Anr x s Latin rectangle with entries from n sym-
bolscan be extended to anx n Latin square on those symbols if and only if each symbol
occurs in the rectangle at least¥ s — n times.

The configuration of lggkvist’s conjecture whem= 3 is actually only a special case of a
much broader class of partial Latin squares which all have completions. The key to this is the
following more general theorem.
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THEOREM 1. Let L be a partial3r by 3r Latin square with filled squares in the top it
by 2r square7 . Suppose further that in each row Bfthere is a filled cell in at most one of
columnsi and i+ r foreachi=1,...,r. ThenL can be completed if and only if there is
some way to fill the cells af.

PrROOFE The necessity of the condition is trivial of course. Suppose then that all the cells
of 7 hawe been filled. Our objective will be to redistribute the symbols in the fillable cells of
7T in such a way that every symbol appears at least2r — 3r = r times; that{ can be
completed then follows from Theorefm

To hopefully avoid confusion, when we wish to refer to the filled cells of the original partial
Latin square we shall speak 6f and when we wish to speak of the new filled cells we shall
speak of7 . We define a bipartite grapH which has bipartition R, S), whereR is the set of
rows of 7 andSis the set of 8 symbols. InH we join a rowp to a symbok with an edgef ;s
whenever the symbda does not occur in rovp in the original partial Latin squarg. Now,
to introduce the way in which the fillable cells #h were filled, we colour the edgé,s with
colourc if the symbols now appears in cellp, ¢) of 7. We shall refer to those edges which
receive no colour in this way as thecolourededges. Observe that whénis filled there are
2r used symbols in each row, and sanused symbols, each vertexe R is incident with
r uncoloured edges. Finally, we provide each vepeg R with a list F(p) of columns in
which row p was filled inL.

Recall that our aim is to fill the fillable cells i in such a way that every symbol appears
at least times. If this has not already been achieved, then there must be a ssgwiddth is
used less thantimes in7 . Given this symbol, there must be an<li < r so that symbosy
never appears in column&andi + r. Our aim will be to redistribute the symbols so that after
the redistributiorsy will appear in one of these columns, and overall will appear one more
time than it did before—creeping closer to the magic coumt of

Let By be the subset of symbols which appear at mastnes in7 and also appear in at
most one of columns andi + r. Note that since ther4 cells of 7 are filled with only 3
symbols, there must be at least one symbol used morerttiares which, therefore, is not a
member ofBg. Let Hp be the subgraph dfl induced by the uncoloured edges incident with
the vertices ofBy. Then for each vertex € Bg, dy,(x) > r and certainly for each vertex
p € R, dn,(p) <r. ThusHp has a matchind/ of Bg into R, which we shall regard as edges
in H. We shall use these matching edges to construct aPathich begins asy and ends at
one of the vertices outsidgy. We will use this path to redistribute the symbols.

Let f,,s be the edge oM incident withsy. By assumption, either columinor column
i +r is not a member of (pg), i.e., there is a columog € {i,i +r} \ F(og). Thenpg is
incident with an edge 5,5, which is colouredsg in H. If this new symbols; is a member of
By, then we continue constructing the path, otherwise we stop. If we continue sgiady it
is incident with an edge d¥! joining it to a rowps, and as before there must be some column
c1 € {i,i +r}\ F(p1) and an edge coloured joining p; to s,. We construct the path by
repeating these steps until we meet a symbol outBidd® must be a path, since there exists
at most one edge colourédr i + r which is incident with each symbol other than the last
(each of these symbols is a membemBgfand that is one of the conditions for membership),
and the edges joining the symbols to the rows form a matching.isinceBy is a finite set
this path must eventually meet a vertex outsieand there it stops, by construction, at a
symbols,.

We recolourf, 5 with colourc;, and uncolourf ;s .., fori =0, ...,n—1 (or if you wish,
make the analogous changesZtp. The crux of the argument relies on what has happened
to the symbols in this redistribution. Observe that after these changes the ssgmiitil
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FIGURE 1. A configuration of filled squares in Theore2n

appeatr, in addition to all its previous positions, in precisely one of colunamsli + r. The

final symbols, will appear one less time than before, but by definition it wssedyand so
initially it appeared more thantimes or in both columnsandi + r. After the redistribution
s, will appear either at leasttimes in7 or in one of columns$ andi + r. Finally, the only

changes which were made during the redistribution took place amongst the caluands
i +r, and consisted of switching a symbol from coluiie columni +r or vice versa. Thus
every other symbol still appears amongst these columns as oftéramit did before, and
precisely as often overall i as it did before.

As we repeat this process let us keep count of the total number of times a symbol which
appears at most times appears in neither columimor columni +r, fori = 1,...,r.
Observe that after each step of the process the number of such occurrences decreases by one,
since one such occurrence for symbkgis eliminated, no such occurrence for symbgls
created, and no others are created for the other vertices in the path. Thus by repeating this
process eventually the number such occurrences is reduced to zero. Thus every symbol will
either appear greater tharimes, or at most times, and at least once in each pair of columns
i andi +r—thus precisely times. Hence every symbol appears at ledshes and the result
follows. a

Using Theoremil, our main theorem now follows easily, employing the recent result of
Borodin, Kostochka and Woodall, which extends Galvins’ proof of the Dinitz conjecture [4].

THEOREM B (BORODIN, KOSTOCHKA, WOODALL [2]). Let G be a bipartite graph and
Le(uv) be a set (list) of at leasmax{d;(u), dg(v)} positive integers for each edge us
E(G). Then G has an :list colouring (a proper edge colouring in which each edge f re-
ceives a colour from its list & f)).

THEOREM2. Let £ be a3r by 3r partial Latin square with filled cells which lie in two
disjointr by r squares. Thed can be completed.

PrROOF If the twor by r squares lidn the same set af rows, then the result follows
immediately from Theorem.
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If otherwise, then we can assume thatth®y/ r squares hae no rows in common (possibly
by transposing the roles of row and column). Observe then that the columns can be reordered
so thatin each row a cell is filled in precisely one of colurasadi +r, foreach = 1, ...,r,
and so that all the empty columns are collected on the right-hand side. Thus, by THedrrem
is enoughto simply fill the empty cells off .

Let G be the bipartite graph with bipartitiofR, C), whereR andC are the sets of rows
and columns off, respectively. IrG we join a rowp to a columnc by an edgee,c precisely
when the cellp, ¢) in T is empty. We also give each edgg a list Le(e,c) of the symbols
which appear in neither rownor columnc. Consider two different types of cell. Firstly, there
are cells which have a square below or above, and have a square to the left or right. Such a
cell corresponds to an edgg: in G, and by construction we see thi(p) = dg(c) =r and
[Le(esc)| = r. Secondly, there are possibly cells which lie in an empty column. These have
only a square to their left and so correspond to an ex;jgevhere Le(e;)c) =2r,dg(p) =7
anddg(c) = 2r.

Thus for eacte,c € E(G) we have|Le(e,c)| = max{t:(p), dz(c)} and so TheorenB
ensures thaG has anLe-list colouring, which exactly corresponds to a valid filling of the
empty cells ofZ7". The result follows. O
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