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a b s t r a c t

A strong antidiamond principle (?c) is shown to be consistent with CH. This principle can
be stated as a ‘‘P-ideal dichotomy’’: every P-ideal on ω1 (i.e. an ideal that is σ -directed under
inclusion modulo finite) either has a closed unbounded subset of ω1 locally inside of it, or else
has a stationary subset of ω1 orthogonal to it. We rely on Shelah’s theory of parameterized
properness for NNR iterations, and make a contribution to the theory with a method of
constructing the properness parameter simultaneously with the iteration. Our handling of
the application of the NNR iteration theory involves definability of forcing notions in third
order arithmetic, analogous to Souslin forcing in second order arithmetic.
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1. Introduction

It is a remarkable fact (i.e. theorem of ZFC and the existence of some large cardinals) that if φ and ψ are two Π2(NS)
sentences in the language of set theory, both of which can individually be forced to hold in the structure (Hℵ2 ,∈,NS) (NS
denotes the ideal on nonstationary subsets of ω1), then their conjunction can also be forced to hold in this structure. Indeed
Woodin has constructed a canonical model Pmax where theΠ2 theory over (Hℵ2 ,∈,NS) is maximal (cf. [13]). In this model
Cantor’s Continuum Hypothesis (CH) is false. The question of whether the Π2 theory can be maximized over structures
(Hℵ2 ,∈,NS) satisfying CH, is a major obstacle to further progress on the Continuum Hypothesis. This is closely related to
the question of whether there are forcing axioms analogous to the Proper Forcing Axiom (PFA) or Martin’s Maximum (MM)
that are consistent with CH.
Specifically, there is the test question of Shelah and Woodin given below asking whether the above-mentioned

remarkable fact still holds if we take the conjunctions of φ and ψ with CH: Let Π2(NS) denote the collection of all Π2
sentences in the language of set theory (i.e. of the form ∀x ∃y ϕ(x, y) where ϕ has no unbounded quantifiers) with the
added unary predicate NS.

Question 1. Are thereΠ2(NS) sentences φ and ψ such that both

(1) (Hℵ2 ,∈,NS) |= pφ ∧ CHq and
(2) (Hℵ2 ,∈,NS) |= pψ ∧ CHq

can be forced, yet provably (Hℵ2 ,∈,NS) |= pφ ∧ ψ → ¬CHq?

Woodin has conjectured a positive answer, which would indicate that theΠ2(NS) theory over Hℵ2 cannot be maximized for
models of CH, and thus there are ‘‘disjoint’’Π2-rich models of CH.
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There has been much work done on maximizing theΠ2 theory in the presence of CH, where the idea to show that some
‘strong’ Π2 statement is consistent with CH. A major breakthrough in this line of research was the Abraham–Todorčević
P-ideal dichotomy (∗) that implies many well-knownΠ2 consequences of PFA, and yet was shown to be consistent with CH
([2]). In the present paper, we push the boundary of maximizing theΠ2 theory over CH, by proving that the strengthening
(?c)ω1 (see below) of (∗)ω1 is consistent with CH. (Technically speaking, (?c) is a variant of (∗), but once we can obtain a
model of (?c)with CH we can easily obtain (∗) simultaneously, whereas the converse is false.)
We believe there are good indications that (?c)ω1 is strong enough to serve as one of the twoΠ2(NS) statements in giving

a positive answer to Question 1. In particular, there is Example 3, which tells us that in an iterated forcing construction, given
a P-ideal I where the second alternative of (?c) fails, depending on the initial stages of the iteration, we may or may not
be able to force the first alternative while at the same time making sure we do not add reals. And this suggests serious
difficulties in obtaining a forcing axiom consistent with CH that would imply (?c).
Consider now the following dichotomy of Eisworth, based on the P-ideal dichotomy (∗).

(?c) For every ordinal θ of uncountable cofinality, every σ -directed downward closed (i.e. under subsets) subfamily I of
([θ ]ℵ0 ,⊆∗) has either
(1) a closed uncountable subset of θ locally in I,
(2) a stationary subset of θ orthogonal to I,

where C ⊆ θ is locally in I means [C]ℵ0 ⊆ I, and S ⊆ θ is orthogonal to I means S ∩ x is finite for all x ∈ I. For
some fixed ordinal θ , (?c)θ denotes the restriction of (?c) to θ . The original principle (∗) is also a dichotomy, where in
the first alternative (1), ‘‘closed uncountable’’ is weakened to ‘‘uncountable’’; and the second alternative (2) is strengthened
to the existence of a countable decomposition of θ into pieces orthogonal to I. Other similar variations are possible such as
the principle ( s) studied in [3] (actually this is a weakening of (?c) optimal with respect to permitting the existence of a
nonspecial Aronszajn tree).
The main result of this research is that (?c)ω1 is consistent with CH.

Theorem 1. (?c)ω1 is consistent with CH relative to ZFC.

This answers Shelah’s question [10, Question 2.17]. The methods here can also be modified in the straightforward manner
to obtain the consistency of the unrestricted principle (?c)with CH relative to a supercompact cardinal.
It was already known that (?c) is consistent with the failure of CH. The following theorem is due to Eisworth, at least in

the case θ = ω1, and is proved in [4].

Theorem 2. PFA implies (?c).

The principle (∗) is already very powerful with applications to uncountable objects appearing in other areas of
mathematics such as measure theory. The principle (?c)moreover brings into play the most significant structural property
of Hℵ2 , as compared to Hℵ1 ; thus, unlike (∗), it is not aΠ2 statement (i.e. without the predicate NS). Let us briefly consider
a couple of examples of how such principles are applied to combinatorial objects.

Example 1. As demonstrated in [2], to any tree T = (T ,≤T ) we can associate the ideal T ⊥ of all countable subsets x of T
perpendicular to the tree, i.e. every node has at most finitely many predecessors in x. Then, for example, if T has all levels
countable then T ⊥ is a P-ideal. And T ⊥ has an uncountable set orthogonal to it iff T has an uncountable branch.

Example 2. If Ex = (xδ : δ < θ with cof(δ) = ω) is a sequence where each xδ ⊆ δ is a cofinal subset of order type ω, then
we can associate an ideal Ex⊥ of all countable y ⊆ θ orthogonal to Ex, i.e. xδ ∩ y is finite for all δ. Then Ex⊥ is a P-ideal, with no
orthogonal subset of θ of order typeω2. And Ex is a club-guessing sequence, in the weak sense, iff it has no closed unbounded
subset of θ locally in Ex⊥. See e.g. [4], [8, Ch. XVIII, Problem 1.9].

Let us mention some of the challenges that need to be overcome to prove Theorem 1. First of all, it is known that (?c)ω1
negates the relatively weak consequence of♦ that there is a club-guessing sequence on ω1 (see Example 2, [4]). Therefore,
we cannot use a-proper forcing to obtain Theorem 1. Moreover, (?c)ω1 implies that all Aronszajn trees are special [4], and
thus there are significant difficulties in using Shelah’s theory in [8, Ch. XVIII, Section 2] that he developed for negating club
guessing with CH. We use his newest NNR (no new reals) iteration theory from [9], called parameterized properness, which
was developed in order to obtain the negation of club-guessing sequences together with all Aronszajn trees being special
simultaneouslywith CH. This involved devising new techniques for constructing the properness parameters.We also discuss
the possibility of using the NNR iteration theory in [8, Ch. XVIII, Section 2] (cf. Section 4.4).
We say that two families H, I ⊆ [θ ]ℵ0 are orthogonal, written H ⊥ I if x ∩ y is finite for all x ∈ H and y ∈ I. The

following example can be obtained by a straightforward construction of an (ω1, ω1) gap in ([ω1]ℵ0 ,⊆∗).

Example 3 (♦). There exist two σ -directed subfamilies H and I of ([ω1]ℵ0 ,⊆∗) such that H ⊥ I and neither has a
stationary set orthogonal to it.

It follows from this (see [9]) that we cannot obtain a model of (?c)ω1 + CH by a straightforward iteration, where at each
stage a club is forced locally inside a P-ideal with no stationary subset of ω1 orthogonal to it. The above example shows that
we will run into the so-called ‘‘disjoint clubs’’.
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Many forcing notions, such as Cohen forcing and random forcing, can be represented as sets of reals that have simple
definitions. This fact has beenwell used to obtain results in the descriptive set theory of the reals. For example, in [7, Section
5] the simplicity of the representations of random forcing and amoeba forcing as sets of reals, respectively, is used (rather
spectacularly) to construct a nonmeasurable Σ13 -set of reals from some real computing ω1 over L. The property of being
simply definable as a set of reals is particularly useful in the iteration of such forcing notions. Judah–Shelah gave a systematic
treatment of these forcing notions in [5], where they are named Souslin forcing, with the emphasis on the iteration of Souslin
forcing notions.
In overcoming the ‘‘disjoint clubs’’ obstacle by constructing a properness parameter suitable for our iteration, we entered

an analogous situation but in the realm of third order arithmetic, instead of the second order realm of set theory of the reals.
Weused the fact that our forcing notions can be represented as simply definable subsets ofP (ω1) to establish nice properties
of their iterations. For example, wewere able to show that our forcing notions, which have cardinality 2ℵ1 , satisfy properties
such as commutativity, of both their iterations and their generic objects (analogous to the fact that if r is a random real over
V and s is a random real over V [r] then r is a random real over V [s]).

1.1. Terminology

We use standard order theoretic notation and terminology. Thus for a family F of subsets of some fixed set S, we let
↓F denote the downwards closure in the inclusion order, i.e. ↓F =

⋃
x∈F P (x). The definition of the upwards closure ↑F

is symmetric. When want to take the downwards closure with respect to some other quasi-ordering . of P (S), we write
↓(F ,.). For example, we will consider the almost inclusion quasi-ordering⊆∗, where x ⊆∗ ymeans that x \ y is finite. A P-
ideal is an ideal that is also σ -directed in the⊆∗-ordering; furthermore, a P-ideal on some specified set S is always assumed
to contain every finite subset of S. A subset A ⊆ Q of a quasi-order (Q ,.) is cofinal if every q ∈ Q has an a ∈ Awith q ≤ a.
While a subset A ⊆ P of a strict partial order (P, <) is cofinal if every p ∈ P has an a ∈ A with p < a, e.g. we will consider
cofinal subsets of some structure (M,∈).
A subfamily ofH ⊆ [S]ℵ0 is called cofinal if it is cofinal in the inclusion ordering, i.e. for all a ∈ [S]ℵ0 there exists b ∈ H

with a ⊆ b. It is closed if whenever a0 ⊆ a1 ⊆ · · · is a sequence of elements ofH then so is
⋃
n<ω an ∈ H , and stationary if

it intersects every closed set.
We write q ≥ p for q extends p, i.e. carries more information than p. This is clearly more natural than, the perhaps more

common, q ≤ p, especially in the context of a-properness and more generally parameterized properness (cf. Definition 11).
As usual, Gen(M, P) denotes the family of ideals G ⊆ P that are generic over M , while gen(M, P) is the set of all (M, P)-
generic elements of P . And Gen+(M, P) is the subfamily of all G ∈ Gen(M, P) that have a common extension in P , and
gen+(M, P) is set of all completely (M, P)-generic elements q of P , meaning q extends some member of D for every dense
D ⊆ P inM . Every q ∈ gen+(M, P) uniquely determines a member of Gen+(M, P), namely {p ∈ P ∩M : p ≤ q}, which we
denote as ĠP [M, q]. Complete properness has the same formulation as properness using countable elementary submodels,
but with (M, P)-generic replaced by completely (M, P)-generic. Thus a forcing notion is completely proper iff it is proper
and adds no new reals. For more about proper forcing see e.g. [1].
Unless otherwise stated, for some function f and some subset X ⊆ dom(f ), we write f [X] for the image {f (x) : x ∈ X} of

X under f . Hopefully this will not cause confusion, because we also use square brackets for generic interpretations.

2. Parameters for properness

Although the following definition looks slightly different, it is almost the same as the definition of a ‘‘reasonable
parameter’’ from [9, Section 1]. The main difference is that we only require cofinality in Hλ (cf. (ii)); indeed, it is noted
in Remark 1.10(2) of that article that this is sufficient.
Definition 4. For a regular cardinal λ, a λ-parameter for properness is a pair ( EA,D) for which there exists a sequence of
regular cardinals Eµ = (µα : α < ω1)with µ0 ≥ λ and Hµα ∈ Hµβ for all α < β , such that

(i) EA is an ω1 sequence whereAα ⊆ [Hµα ]
ℵ0 is stationary for all α < ω1, and for everyM ∈ Aα ,

(a) M ≺ Hµα ,
(b) (Eµ � α, EA � α) ∈ M ,

EA is called the skeleton of the parameter, and the rank function on lim
−→

A =
⋃
α<ω1

Aα is defined by

M ∈ Arank(M). (1)

We use the notationA<α =
⋃
ξ<α Aξ .

(ii) For allM ∈ A, if rank(M) = 0 thenD(M) = {0}; and if rank(M) > 0 thenD(M) is a nonempty collection of subsets of
A<rank(M) ∩M so that for each element X ∈ D(M), every ξ < rank(M) and every a ∈ M ∩ Hλ has a K ∈ X such that
(a) rank(K) ≥ ξ ,
(b) X ∩ K ∈ D(K),
(c) a ∈ K .

Proposition 5. rank(M) < ω1 ∩M.
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Proof. By (i(b)). �

Proposition 6. rank(K) ≤ rank(M) for all K ∈ lim
−→

A ∩M.

Proof. By (i). �

Proposition 7. For all M ∈ lim
−→

A with rank(M) > 0,D(M) is closed under supersets in P (A<rank(M) ∩M).

Proof. A simple induction on rank(M). �

The properness parameter is often utilized through the following game. It is a simplification of the game in [9,
Definition 1.5], that appears to serve the same purpose. In any case, the two games are equivalent for the properness
parameters we will be using (cf. Definition 16).

Definition 8. Let ( EA,D) be a properness parameter. For each M ∈ lim
−→

A of positive rank, the Chooser Game a(M) =
a( EA,D)(M) is defined as follows. It is a two player game of length ω, where the challenger moves first against the chooser.
On the kth move (setting X−1 = A<rank(M) ∩M):

• The challenger plays Xk ⊆ Xk−1 inD(M).
• The chooser plays Kk ∈ Xk, and Yk ⊆ Xk inD(Kk).

The chooser wins the game if
⋃
k<ω Yk ∪ {Kk} ∈ D(M). Otherwise the challenger wins.

We say that the chooser has a global winning (nonlosing) strategy in the game a( EA,D) if the chooser has a winning
(nonlosing) strategy in the game a( EA,D)(M) for allM ∈ lim

−→
Awith rank(M) > 0.

Note that the chooser always has a valid move:

Lemma 9. Every X ∈ D(M) has a Y ⊆ X inD(M) such that Y ∩ K ∈ D(K) for all K ∈ Y .

Proof. The proof is by induction on rank(M). For each a ∈ M ∩ Hλ and each ξ < rank(M), there exists Kaξ ∈ X with
a ∈ Kaξ , X ∩ Kaξ ∈ D(Kaξ ) and rank(Kaξ ) ≥ ξ . Then by the induction hypothesis, there exist Yaξ ⊆ X ∩ Kaξ in D(Kaξ ) such
that Yaξ ∩ J ∈ D(J) for all J ∈ Yaξ . Now

⋃
a∈M∩Hλ

⋃
ξ<rank(M) Yaξ ∪ {Kaξ } is in D(M) and satisfies the desired conclusion, by

Proposition 7. �

Example 10. The present example corresponds to a standard parameter in [9]. Given a skeleton EA for a properness
parameter, define D(M) by recursion on rank(M) as follows. Let D(M) = {0} if rank(M) = 0, and D(M) consist of all
subsets of A<rank(M) ∩ M satisfying (ii) otherwise. Condition (i) on the skeleton ensures that D(M) 6= ∅ for all M ∈ lim

−→
A,

and thus this does indeed define a parameter for properness. The chooser has a global winning strategy in the corresponding
Chooser Game, because givenM ∈ lim

−→
A of positive rank, if (an : n < ω) enumeratesM ∩Hλ and limn→ω ξn+1 = rank(M)

(cf. Remark 17), then playing Kn with a0, . . . , an ∈ Kn and rank(Kn) ≥ ξn (and Yk arbitrary) defines a winning strategy for
the chooser in the game a( EA,D)(M).

The following definition is the case α = β of Shelah [9, Definition 2.8].

Definition 11. Let ( EA,D) be a λ-parameter for properness. A poset P is proper for the parameter ( EA,D) or ( EA,D)-proper
if P ∈ Hλ1 and there exists a ∈ Hλ such that for allM ∈ lim

−→
Awith a, P ∈ M:

(p) for all p ∈ P ∩M and all X ∈ D(M), there is an (M, P)-generic extension q of p such that

M(q) ∩ X ∈ D(M), (2)

whereM(q) =
{
M ∈ [Hλ]ℵ0 : q ∈ gen(M, P)

}
.

Note that Eq. (2) is trivial when rank(M) = 0.

Example 12. Suppose P is an a-proper forcing notion with P (P) ∈ Hλ. Then P is ( EA,D)-proper for every λ-parameter for
properness.

2.0.1. Tails
Definition 13. For any X ∈ D(M), a tail of X is a subset of the form {K ∈ X : a ∈ K}where a ∈ M ∩ Hλ.

Proposition 14. The intersection of two tails of X is itself a tail of X.

Proposition 15. For all X ∈ D(M) and all J ∈ lim
−→

A ∩M, there exists a tail Y of X such that K /∈ J for all K ∈ Y .

Any ‘reasonable’ parameter has eachD(M) closed under taking tails, but this is not a requirement.

1 In [9] it is required that in fact P (P) ∈ Hλ . Although it is harmless to ask for this, we have left it out.
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2.1. Properness parameters for shooting clubs

When forcing a club subset of θ , if p is generic over M then p forces that sup(θ ∩ M) is in the club. This explains why
a-properness is unsuitable for purposes such as destroying a club-guessing sequence, because it can be used to guess the
generic club in the ground model. The following class of properness parameters is designed to handle this difficulty by
putting restrictions on these suprema. For any familyM, the trace of the suprema ofM on θ is

tr supθ (M) = {sup(θ ∩M) : M ∈M}. (3)

Definition 16. Suppose θ is an ordinal of uncountable cofinality and EA is a skeleton of a λ-parameter for properness for
someλ. For eachM ∈ lim

−→
A, let there a countable familyΩ(M) ⊆ P (θ) (normally,Ω(M) ⊆ P (θ∩M)). For eachM ∈ lim

−→
A,

DΩ( EA)(M) = DΩ(M) is defined by recursion on rank(M). If rank(M) = 0 then defineDΩ(M) = {∅}; otherwise, it is defined
as the family of subsets ofA<rank(M) ∩M containing a subset of the form

X =
⋃
n<ω

Xn ∪ {Kn} (4)

where

(i) K0 ∈ K1 ∈ · · · is cofinal in (M ∩ Hλ,∈)with limn→ω rank(Kn)+ 1 = rank(M),
(ii) Xn ∈ DΩ( EA)(Kn) for all n,
(iii) every x ∈ Ω(M) has a tail Y of X with tr supθ (Y ) ⊆ x.

Condition (iii) is a geometrical restriction on the trace of the suprema.

Remark. The limit in condition (i) has its usual topological meaning. Thus for any f : ω → On, limn→ω f (n) = α iff every
ξ < α has a k < ω such that f (n) ∈ (ξ , α] for all n ≥ k. Also, lim supn→ω f (n) should be interpreted as limn→ω supi≥n f (i).

Lemma 18. When rank(M) > 0,DΩ(M) is closed under taking tails.

Proof. The proof is by induction on rank(M). Suppose X ∈ DΩ(M) satisfies (i)–(iii), and let Y = {K ∈ X : a ∈ K} be a tail
of X for some a ∈ M ∩ Hλ. Condition (i) holds because Kn ∈ Y for all but finitely many n; condition (ii) holds for Y by the
induction hypothesis; and condition (iii) is by Proposition 14. �

Proposition 19. If X ∈ DΩ(M), and Y ⊆ X and Y K ⊆ X (K ∈ Y ) satisfy

(a) Y K ∈ DΩ(K),
(b) for all a ∈ M ∩ Hλ and all ξ < rank(M), there exists K ∈ Y with a ∈ K and rank(K) ≥ ξ ,

then Y ∪
⋃
K∈Y Y

K
∈ DΩ(M).

Proposition 20. ( EA,DΩ) is a properness parameter wheneverDΩ(M) 6= ∅ for all M ∈ lim
−→

A.

An arbitrarymappingΩ may fail to define a properness parameter, i.e. theDΩ(M)may be empty for someM .We provide
a general construction to avoid this.

Definition 21. A map Λ : lim
−→

A → P ([θ ]ℵ0) is said to instantiate Ω if every M ∈ lim
−→

A with rank(M) > 0, every finite
A ⊆ Ω(M), every y ∈ Λ(M), every a ∈ M ∩ Hλ and every ξ < rank(M) has a K ∈ A<rank(M) ∩M such that

(i) a ∈ K ,
(ii) rank(K) ≥ ξ ,
(iii) sup(θ ∩ K) ∈ y ∩

⋂
A,

(iv) y ∩
⋂
A ∈ Λ(K).

Remark. In all of our applications of instantiations, we will have Λ(M) = ↑Ω(M) for all M , and thus we can omit the ‘y’
in (iii) and (iv) in the verification. See e.g. Example 24.

Lemma 23. If there exists a map instantiatingΩ , then ( EA,DΩ) is a λ-properness parameter, i.e.DΩ(M) 6= ∅ for all M ∈ lim
−→

A.

Proof. Assume that Λ instantiates Ω . We proceed by induction on rank(M), with the induction hypothesis that for all
y ∈ Λ(M), there exists X ∈ DΩ(M) with tr sup(X) ⊆ y. Suppose M ∈ Aα where α > 0, and y ∈ Λ(M). Let (xn : n < ω)
enumerateΩ(M), letting xn = θ ∩ M in case Ω(M) = ∅. Let (an : n < ω) enumerate M ∩ Hλ, and fix a sequence ξn < α
(n < ω) such that lim supn→ω ξn + 1 = α. We recursively choose Kn+1 3 Kn in A<α ∩ M with an ∈ Kn, rank(Kn) ≥ ξn,
sup(θ ∩Kn) ∈ y∩

⋂n
i=0 xi and y∩

⋂n
i=0 xi ∈ Λ(Kn). This is possible by (i)–(iv). And for each n, there exists Xn ∈ DΩ(Kn)with

tr sup(Xn) ⊆ y∩
⋂n
i=0 xi by the induction hypothesis. Then putting X =

⋃
n<ω Xn ∪ {Kn}, conditions (i)–(iii) of Definition 16

are clearly satisfied, i.e. X ∈ DΩ(M), and also tr sup(X) ⊆ y, completing the induction. �
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Example 24. Suppose E ⊆ {M ∈ [Hλ]ℵ0 : M ≺ Hλ} is stationary, and EA is a skeleton of a λ-properness parameter with
M ∩ Hλ ∈ E for allM ∈ lim

−→
A. SupposeH ⊆ [θ ]ℵ0 has no stationary orthogonal set. If yM ∈ ↓H (M ∈ E ) satisfies x ⊆∗ yM

for all x ∈ H ∩M , then definingΩ : lim
−→

A→ [[θ ]ℵ0 ]≤ℵ0 by

Ω(M) = {yM \ s : s ⊆ yM is finite}, (5)

we have that ( EA,DΩ) is a λ-properness parameter. This is instantiated byΛ, whereΛ(M) = ↑Ω(M) for allM .

Proof. We apply Lemma 23. Thus given M ∈ Aα with α > 0, a nonempty finite A ⊆ Ω(M), a ∈ M ∩ Hλ and ξ < α, we
need to show that there exists K ∈ A<α ∩M satisfying (i)–(iv).
Put B = {K ∈ Aξ : a ∈ K}. Since B ∈ M and B stationary, tr sup(B) ∈ M is a stationary subset of θ . Thus there

exists δ ∈ tr sup(B)∩
⋂
A∩M by elementarity, sinceH has no stationary orthogonal set. And by elementarity, we can find

K ∈ B ∩M with sup(θ ∩ K) = δ, and hence K satisfies (i)–(iii). Condition (iv) is satisfied because yK ⊆∗ yM . �

Proposition 25. Assume that Ω does define a properness parameter in Definition 16. Then the chooser has a global winning
strategy in the game a( EA,DΩ).

Proof. It is immediate from the definition of DΩ(M) and the payout of the game, that the chooser wins so long as
limn→ω rank(Kn)+ 1 = rank(M) and (Kn : n < ω) is cofinal inM ∩ Hλ, where (Kn, Yn) denotes the chooser’s nth move. The
chooser can guarantee this in the obvious manner. �

2.1.1. Direction constraints
In addition to the limitations imposed on the trace of the suprema, we shall want additional control over the ‘direction’

in which the members of each D(M) can grow. This simply means that we want the set in Eq. (4) to be contained in some
subfamily of lim

−→
A, but what is more, this family lives in some forcing extension (and is thus ‘imaginary’).

Definition 26. Let Z be a collection of pairs of the form (P, Ḃ), where P is a forcing notion and Ḃ is a P-name for a subset
of lim
−→

A. Then we define subfamilies DΩ(Z)(M) = DΩ( EA;Z)(M) ⊆ DΩ( EA)(M) by recursion on rank(M) as follows. If
rank(M) = 0 then DΩ( EA;Z)(M) = {∅}; otherwise, it is the family of all members of DΩ(EA)(M) such that the set X in
Eq. (4) additionally satisfies

(iv) every p ∈ P ∩M has a q ∈ gen(M, P, p) and a tail Y ⊆ X such that q ‖ Y ⊆ Ḃ,

for all (P, Ḃ) ∈ Z ∩M .

Lemma 27. When rank(M) > 0,DΩ( EA;Z)(M) is closed under taking tails.

Proof. By Lemma 18. �

Typically, we have Ḃ a subset of the models over which ĠP is generic, in which case we automatically have that P is
Ω( EA;Z)-proper.

Corollary 28. Suppose thatDΩ( EA;Z) is a properness parameter, i.e.DΩ( EA;Z)(M) 6= ∅ for all M ∈ lim
−→

A. If (P, Ḃ) ∈ Z and
P ‖ Ḃ ⊆ {M ∈ lim

−→
A : ĠP ∈ Gen(M, P)}, then P isDΩ( EA;Z)-proper.

We generalize Lemma 23 to the present setting.

Lemma 29. Assume that for every M ∈ lim
−→

Awith rank(M) > 0, every (P, Ḃ) ∈ Z∩M has a qMP,Ḃ(p) ∈ gen(M, P, p) for each
p ∈ P ∩M, such that every finite A ⊆ Ω(M), every finite sequence (P0, Ḃ0), . . . , (Pm−1, Ḃm−1) inZ∩M, all finite Oi ⊆ Pi ∩M
(i = 0, . . . ,m− 1), every a ∈ M ∩ Hλ and every ξ < rank(M) has a K ∈ A<rank(M) ∩M satisfying

(i) a, (P0, Ḃ0), . . . , (Pm−1, Ḃm−1) ∈ K ,
(ii) rank(K) ≥ ξ ,
(iii) sup(θ ∩ K) ∈

⋂
A,

(iv)
⋂
A ∈ ↑Ω(K),

(v) qMPi,Ḃi(p) ‖ K ∈ Ḃi for all p ∈ Oi for all i = 0, . . . ,m− 1,

(vi) qMPi,Ḃi(p) ≥ q
K
Pi,Ḃi

(p) for all p ∈ Oi for all i = 0, . . . ,m− 1.

ThenDΩ( EA;Z) is a properness parameter.
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Proof. We establish the lemma by induction on rank(M), with the induction hypothesis that there exists X ∈ DΩ(Z)(M)
such that qMP,Ḃ(p) (p ∈ Pi ∩M) from the hypothesis of the lemma witnesses Definition 26(iv) for X , for all (P, Ḃ) ∈ Z ∩M .
Suppose then that M ∈ lim

−→
A with α = rank(M) > 0. Let (xn : n < ω) enumerate Ω(M), letting xn = θ ∩ M in

case Ω(M) = ∅, let (an : n < ω) enumerate M ∩ Hλ, let (Pn, Ḃn : n < ω) enumerate Z ∩ M , and let (pni : i < ω)
enumerate Pn∩M for each n. Fix a sequence ξn < rank(M) (n < ω) such that lim supn→ω ξn+1 = α. We recursively choose
Kn+1 3 Kn in A<α ∩ M with an, (P0, Ḃ0), . . . , (Pn, Ḃn) ∈ Kn, ξn ≤ rank(Kn), sup(θ ∩ Kn) ∈

⋂n
i=0 xi,

⋂n
i=0 xi ∈ ↑Ω(Kn)

and qMPi,Ḃi(pij) ‖ Kn ∈ Ḃi and qMPi,Ḃi(pij) ≥ q
Kn
Pi,Ḃi

(pij) for all i, j = 0, . . . , n. This is possible by (i)–(vi). And for each n,
there exists Xn in DΩ(Z)(Kn) as in the induction hypothesis. Furthermore, by going to a tail of Xn, we may assume that
tr sup(Xn) ⊆

⋂n
i=0 xi and that q

Kn
Pi,Ḃi

(pij) ‖ Xn ⊆ Ḃi for all i, j = 0, . . . , n. Then putting X =
⋃
n<ω Xn ∪ {Kn}, conditions (i)–

(iii) of Definition 16 are clearly satisfied. And for condition (iv), given (P, Ḃ) ∈ Z∩M and p ∈ P∩M , say (P, Ḃ) = (Pi, Ḃi) and
p = pij, qMPi,Ḃi(p) ‖

⋃
n≥max(i,j) Xn ∪ {Kn} ⊆ Ḃi. This proves that X ∈ DΩ(Z)(M) is as needed, completing the induction. �

2.2. The iteration

Notation 30. Let E ⊆ [Hλ]ℵ0 . For a poset P with P ∈ Hλ, if G ⊆ P is a generic ideal over V , in V [G] we define

E[G] = {M[G] : M ∈ E , P ∈ M and G ∈ Gen(V , P)}. (6)

Proposition 31. Let P be a forcing notion that adds no new ω-sequences of ground model elements (e.g. P completely proper). If
E ⊆ [Hκ ]ℵ0 is closed and cofinal then so is E[G].

A λ-properness parameter ( EA,D) can be interpreted in a forcing extension V [G] by some forcing notion P ∈ Hλ as ( EB,E)
where Bα = Aα[G] for all α < ω1 and E(M[G]) = D(M) for all M ∈ lim

−→
A with M[G] ∈ lim

−→
B. Thus when we say that

P ‖ pQ̇ is ( EA,D)-properq, we mean that V [G] |= pQ̇ [G] is ( EB,E)-properq.
Let us now address the issue of ‘‘long properness’’. The following is essentially [9, Definition 1.8(c)], but without the

requirement of complete properness.

Definition 32. Let ( EA,D) be a λ-properness parameter. A countable support iteration (Pξ : ξ ≤ δ) is called longD-proper
if Pδ ∈ Hλ and there exists a ∈ Hλ such that for allM ∈ lim

−→
Awith a, Pδ ∈ M , for all ξ < δ inM , if

(i) q ∈ gen(M, Pξ ),
(ii) X =M(q) ∩M ∈ D(M),
(iii) ṗ is a Pξ -name such that
(a) q ‖ ṗ ∈ Pδ ∩M ,
(b) q ‖ ṗ � ξ ∈ ĠPξ ,

then there exists r ∈ gen(M, Pδ) such that

(iv) r � ξ = q,
(v) M(r) ∩ X ∈ D(M),
(vi) r ‖ ṗ ∈ ĠPδ .

The following lemma says that the iteration is longD-proper when each iterand isD-proper. It is proved in [9, page 17,
‘‘Proof of clause (c)’’].

Lemma 33. Assume that the chooser has a global winning strategy in the game a(D). Suppose (Pξ , Q̇ξ : ξ < δ) is a countable
support iteration such that Pξ ‖ pQ̇ξ isD-properq for all ξ < δ. Then (Pξ : ξ ≤ δ) is longD-proper.

Although [9] is the first place we read the phrase ‘‘long properness’’, it is a familiar concept used for example in the proof
of the preservation of properness under countable support iterations. Indeed Lemma 33 corresponds to the ‘‘Properness
Extension Lemma’’ of [1, Lemma 2.8] and the ‘‘a-Extension Property’’ of [1, Lemma 5.6].
The following is a simplified, and somewhat weakened, version of [9, Main Claim 1.9], which is the basic NNR iteration

theorem for parameterized properness.

Theorem 3 (Shelah). Let ( EA,D) be a properness parameter, where the chooser has a global winning strategy in the game a(D).
Suppose (Pξ , Q̇ξ : ξ < δ) is a countable support iteration such that

(a) Pξ ‖ Q̇ξ isD-proper for all ξ < δ,
(b) Pξ ‖ Q̇ξ is D-complete for all ξ < δ.

Then the limit Pδ of the iteration does not add new reals.
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We do not refer to the following strengthening of Theorem 3 as a ‘‘theorem’’ because, unlike Theorem 3, it does not stand
alone in the sense that the needed hypothesis is preserved at limits. That is, there is no conclusion from the hypothesis that
the limit Pδ isDδ-proper for some properness parameter ( EA,Dδ); although in our application of Lemma 34 this will be the
case. In fact Lemma 34 below is in the same spirit as the fact that an iteration of proper D-complete forcings of length less
than ω2 adds no new reals.

Lemma 34. Let ( EA,Dξ : ξ < δ) be a sequence of properness parameters such that the chooser has a global winning strategy in
the game a(Dξ ) for all ξ < δ. Suppose that (Pξ , Q̇ξ : ξ < δ) is a countable support iteration satisfying

(a) Pξ is longDξ -proper for all ξ < δ,
(b) Pξ ‖ Q̇ξ is D-complete for all ξ < δ.

Then the limit Pδ does not add new reals.

Proof (Sketch of Proof). The proof is based on Abraham’s proof in [1, Section 5] of Shelah’s fundamental NNR iteration
theorem that countable support iterations of forcing notions that are both a-proper and D-complete do not add new reals.
There is a function E that is implicitly assumed to exist in e.g. the proof in [8, Ch. V, Section 7], and is thankfully made

explicit in [1]. It takes arguments of the form (M, EM, (Pξ , Q̇ξ : ξ < γ ),G, p) as input, where M ≺ Hλ is countable
containing (Pξ , Q̇ξ : ξ < γ ), EM = (Mη : η < α) is an ∈-tower of countable elementary submodels with M0 = M ,
G ∈ Gen(M, Pγ0 , p � γ0) ∩ M1 for some γ0 < γ in M and p ∈ Pγ ∩ M . The value E(M, EM, (Pξ , Q̇ξ : ξ < γ ),G, p) returned
is an element H ∈ Gen(M, Pγ , p) extending G, i.e. p � γ0 ∈ G for all p ∈ H . The whole point of introducing E is that it is
definable from some parameters, and thus the generic output by E can be found inside a suitable elementary submodel.
It is then shown in [1, Lemma 5.21] that if the tower EM is high enough, if (Pξ , Q̇ξ : ξ < γ ) is a countable support iteration

of a-proper and D-complete forcing notions, and if G ∈ Gen+(M, Pγ0) is also generic over all members of the tower, then
E(M, EM, (Pξ , Q̇ξ : ξ < γ ),G, p) is completely generic overM , proving that Pγ does not add new reals.
Bymaking the corresponding changes to the definition ofE, the exactly analogous proofworks for iterations (Pξ , Q̇ξ : ξ <

γ ) of D-complete forcing notions that are long D-proper for some properness parameter ( EA,D); we obtain a completely
generic E(M, EM, (Pξ , Q̇ξ : ξ < γ ),G, p)whenever the range of EM is inD(N) for some N ∈ lim

−→
A of big enough rank.

Now consider the iteration from the hypothesis of the lemma. By the hypotheses (a) and (b), for every γ < δ,
E(M, EM, (Pξ , Q̇ξ : ξ < γ ),G, p) is completely generic for all suitable EM and G. To show that Pδ does not add reals, we
want to find a completely (M, Pδ)-generic ideal. Although we cannot take E(M, EM, (Pξ , Q̇ξ : ξ < δ),G, p) since we do not
have aDδ , we can still go through the proof of [1, Lemma 5.21] to obtain complete genericity, by using EM = EM0_ EM1_ · · · ,
where ξ0 < ξ1 < · · · is cofinal in δ ∩ M , N0 ∈ N1 ∈ · · · in lim

−→
A are of big enough rank, and the range of EMn is in Dξn(Nn)

for all n < ω. �

3. The forcing notions

In the context of an ordinal θ of uncountable cofinality, κ will always denote a regular cardinal κ ≥ (|θ |ℵ0)+; and in the
context of a cardinal κ , we let λ denote a regular cardinal that is sufficiently large, by which we mean λ ≥ |Hκ |+ = (2<κ)+.
Thus in the most important case θ = ω1, taking κ and λ to be the least sufficiently large regular cardinals and assuming CH
and 2ℵ1 = ℵ2 (e.g. assuming GCH),

|θ | = ℵ1 κ = (ℵ
ℵ0
1 )
+
= ℵ2 λ = (2ℵ1)+ = ℵ3. (7)

Definition 35. Let S be a set. For two families F ⊆ H ⊆ P (S), we let

∂H (F ) = {x ⊆ θ : ↑x ∩ F is cofinal in (H,⊆∗)}, (8)

i.e. the set of all x such that {y ∈ F : x ⊆ y} is ⊆∗-cofinal in H . We write ∂(H) for ∂H (H), and we write α ∈ ∂H (F ) to
indicate that {α} ∈ ∂H (F ).

Proposition 36. ∂H (F ) ⊆ ↓F wheneverH is nonempty.

3.1. Forcing notion for shooting clubs

The following forcing notion is equivalent to the forcing notion R(H,C(↓H)) from [3]. Thus the forcing notion in
Definition 37 is a special case of a more general class of forcing notions studied there. Many of the main results here, with
the exception of the new result in Lemma 59, follow from the general theory developed in [3]. We will provide direct proofs
for most of the results.

Definition 37. For some ordinal θ of uncountable cofinality, letH ⊆ [θ ]ℵ0 be nonempty. Then defineQ(H) to be the poset
consisting of all pairs p = (xp,Xp)where

(i) xp ∈ ∂(H) is a closed subset of θ ,
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(ii) Xp is a countable family of subsets ofH with

xp ∈ ∂H (J) for all J ∈ Xp,

ordered by q extends p if

(iii) xq w xp (i.e. xq end-extends xp with respect to the ordinal ordering),
(iv) Xq ⊇ Xp.

For an ideal G ⊆ Q(H), we write CG =
⋃
p∈G xp. And we write 0Q(H) for the condition (∅,∅).

Our poset forces the following desired result.

Proposition 38. Q(H) ‖ pCĠQ(H)
is locally inHq.

Proof. By Proposition 36. �

Lemma 39. Suppose J ⊆ H is cofinal in (H,⊆∗). ThenQ(H) ‖ p∃y ∈ H CĠQ(H)
\ y is locally in Jq.

Proof. Observe that the set of all p ∈ Q(H) containingK ∈ Xp of the formKy = {x ∪ y : x ∈ J} for some y ∈ ↓H is
dense. That is, given p ∈ Q(H), (xp,Xp ∪ {Kxp}) ∈ Q(H) since xp ∈ ∂H (Kxp). �

Proposition 40. The classQ is provably equivalent to a∆0-formula.

Proposition 41. If p and q are two conditions in Q(H) such that xq v xp and every J ∈ Xq has a K ⊆ J in Xp, then
Q(H) /∼sep |= q ≤ p.

Proposition 42. p and q are compatible inQ(H) iff xp and xq are comparable under end-extension and xp ∪ xq ∈ ∂H (J) for all
J ∈ Xp ∪Xq.

The following game is equivalent to the game agen(M, y,H,C(↓H), p) from [3, Definition 3.11], except for the
requirement that p0 = p. It is used to establish the various properties of our forcing notion.

Notation 43. For a centered subset C of some forcing notion P, we let 〈C〉 denote the ideal on P generated by C.

Definition 44. For anyM ≺ Hκ , withH ⊆ [θ ]ℵ0 nonempty and inM , for y ∈ [θ ]ℵ0 and p ∈ Q(H)∩M , we define the game
agen(M, y,H, p)with players Extender and Complete of length ω. Extender plays first and on move 0 must play p0 so that

• p0 = p.

On Extender’s (k+ 1)th move:

• Extender plays pk+1 ∈ Q(H) ∩M satisfying
(1) pk+1 extends pk,
(2) xpk+1 \ xpk ⊆ y \

⋃k
i=0 si.

On Complete’s kth move:

• Complete plays a finite sk ⊆ y.

This game has three possible outcomes, determined as follows:

(i) Extender loses (i.e. Complete wins) if 〈pk : k < ω〉 /∈ Gen(M,Q(H)),
(ii) the game is drawn (i.e. a tie) if 〈pk : k < ω〉 ∈ Gen+(M,Q(H)),
(iii) Extender wins the game if 〈pk : k < ω〉 ∈ Gen(M,Q(H)) but (ii) fails.

The game agen(M, y,H, p) is especially interesting for us because a draw in this game corresponds precisely with
complete genericity.

Proposition 45. Let pk denote Extender’s kthmove in the game agen(M, y,H, p). Then the game results in a draw iff 〈pk : k <
ω〉 ∈ Gen+(M,Q(H), p).

Proposition 46. At the end of the game agen(M, y,H, p), for every k < ω,⋃
n<ω

xpn \ xpk ⊆ y \
k⋃
i=0

si. (9)

Proposition 47. SupposeΦ is a nonlosing strategy for Complete in the game agen(M, y,H, p). Then Complete does not lose if it
plays sk ⊇ Φ(Pk), where Pk is the position after Extender’s kthmove.
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Proof. This is by general principles. If Complete plays as in the hypothesis, then it is restricting Extender’s moves. Since the
outcome of the game is determined solely on Extender’s sequence of moves, this is beneficial to Complete. �

Similarly:

Proposition 48. For all y ⊆ z, ifΦ is a nonlosing strategy for Complete in the game agen(M, z,H, p) then Pk 7→ Φ(Pk) ∩ y is a
nonlosing strategy for Complete in the game agen(M, y,H, p).

Before proceeding, recall that whenever (H,⊆∗) is σ -directed, the ideal of noncofinal subsets ofH forms a σ -ideal, i.e. is
closed under countable unions (see e.g. [3, Lemma 2.2]).

Lemma 49. SupposeH is a σ -directed subfamily of [θ ]ℵ0 with no stationary orthogonal set. For every countable M ≺ Hκ with
H ∈ M, if J ⊆ [θ ]ℵ0 in M is cofinal in (H,⊆∗), then sup(θ ∩M) ∈ ∂H (J).

Proof. Let Z be the set of all α < θ such that α /∈ ∂H (J). Supposing towards a contradiction that the lemma fails,
sup(θ ∩ M) ∈ Z , and thus Z is stationary because Z ∈ M . By the assumption onH , Z is not orthogonal toH , say x ∈ [Z]ℵ0
with x ⊆ y for some y ∈ H . Since {z ∈ J : y ⊆∗ z} is cofinal in (H,⊆∗) asH is directed, there must exist a finite s ⊆ x
such that {z ∈ J : x \ s ⊆ z} is cofinal becauseH is σ -directed. We have now arrived at the contradiction that α ∈ ∂H (J)
for all α ∈ z \ s. �

The following corollary implies that Q(H) forces a closed cofinal subset of θ , although it remains to show that Q(H)
does not collapse ℵ1.

Corollary 50. AssumeH is as in Lemma 49. For every ξ < θ ,

Dξ = {p ∈ Q(H) : max(xp) ≥ ξ} (10)

is a dense subset ofQ(H).

Proof. Given p ∈ Q(H), find a countable elementaryM ≺ Hκ withH, p, ξ ∈ M , set δ = sup(θ ∩M). For each J ∈ Xp, let
KJ = {y ∈ J : xp ⊆ y}. EachKJ is cofinal as xp ∈ ∂H (J), and thus by Lemma 49, δ ∈ ∂H (KJ) for all J ∈ Xp. This implies
that xp ∪ {δ} ∈ ∂H (J) for all J ∈ Xp, and therefore q = (xp ∪ {δ},Xp) ∈ Q(H). Since δ > ξ , the proof is complete. �

Corollary 51. IfH ⊆ [θ ]ℵ0 is σ -directed under⊆∗ and has no stationary orthogonal set, thenQ(H) ‖ CĠQ(H)
is a closed cofinal

subset of θ .

Terminology 52. Henceforth, we let ϕ(θ,H) abbreviate the statement: H is a σ -directed subfamily of ([θ ]ℵ0 ,⊆∗) with no
stationary orthogonal set.

Corollary 53. Assume ϕ(θ,H). LetH ∈ M ≺ Hκ , y ∈ [θ ]ℵ0 and p ∈ Q(H) ∩M, and let pk denote Extender’s kthmove in the
game agen(M, y,H, p). Suppose that Extender does not lose the game. Then the following are equivalent:

(a) The game agen(M, y,H, p) is drawn.
(b)

(⋃
k<ω xpk ∪ {sup(θ ∩M)},

⋃
k<ω Xpk

)
∈ Q(H).

(c)
⋃
k<ω xpk ∪ {sup(θ ∩M)} ∈ ∂H (J) for all J ∈ Xq.

Proof. Put δ = sup(θ ∩ M). By Corollary 50, for every ξ < θ in M , Dξ ∈ M (cf. Eq. (10)) is dense, and thus xpk ∈ Dξ for
some k since Extender did not lose. Hence

⋃
k<ω xpk is unbounded in δ.

(a)→ (b): {pk : k < ω} has a common extension, say q, by Proposition 45. Since we must have δ ∈ xq, and obviously⋃
k<ω Xpk ⊆ Xq, it clearly follows that the pair defined in (b) is a condition ofQ(H).
The implication (b)→ (c) is trivial by definition; the implication (c)→ (b) is because the set is closed; and the

implication (b)→ (a) is an immediate consequence of Proposition 45. �

Lemma 54. Let H ⊆ [θ ]ℵ0 be σ -directed. Suppose M ≺ Hλ is countable with H ∈ M, and y ∈ [θ ]ℵ0 satisfies x ⊆∗ y for all
x ∈ H ∩M. Then every p ∈ Q(H)∩M and every dense D ⊆ Q(H) in M, has an extension q of p in D∩M such that xq \ xp ⊆ y.

Proof. Suppose to the contrary that there is no q ≥ p in D ∩ M with xq \ xp ⊆ y. Define F as the set of all K ∈ [Hκ ]ℵ0 for
which there exists yK ∈ [θ ]ℵ0 such that xp ⊆ yK , there is no q ≥ p in D with xq ⊆ yK , and x ⊆∗ yK for all x ∈ H ∩ K . Then
F ∈ M .
Take K ∈ [Hκ ]ℵ0 ∩M . Since {z ∈ H : xp ⊆ z} is cofinal by condition (i) of the forcing notion, and sinceH is σ -directed,

there exists z ∈ H ∩ M such that xp ⊆ z and x ⊆∗ z for all x ∈ H ∩ K . Then there exists a finite s ⊆ z \ xp such that
z \ s ⊆ y∪ xp. There can be no q ≥ p in Dwith xq ⊆ z \ s, because otherwise by elementarity we could find such a q ∈ D∩M ,
contradicting our supposition. Hence yK = z \ switnesses that K ∈ F .
By elementarity, we have proved that F = [Hκ ]ℵ0 , and thus J = {yK : K ∈ F } ⊆ H is cofinal in (H,⊆∗) with

xp ∈ ∂H (J). Hence

q = (xp,Xp ∪ {J}) ∈ Q(H). (11)

Since D is dense, there exists q′ ≥ q in D. But then xq′ ∈ ∂H (J), and in particular xq′ ⊆ yK for some K ∈ F , contradicting the
choice of yK . �
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Corollary 55. LetH be a σ -directed subfamily of ([θ ]ℵ0 ,⊆∗). Suppose M ≺ Hλ withH ∈ M, y ∈ [θ ]ℵ0 and p ∈ Q(H) ∩M. If
x ⊆∗ y for all x ∈ H ∩M, then Extender has a nonlosing strategy in the game agen(M, y,H, p).

Proof. Let (Dk : k < ω) enumerate all of the dense subsets of Q(H) in M . Suppose the position in the game is
(p0, s0), . . . , (pk, sk) after the kth move. By the assumption on y,

x ⊆∗ y \
k⋃
i=0

si for all x ∈ H ∩M. (12)

On move k+ 1, by Lemma 54, Extender can thus play pk+1 ≥ pk in Dk ∩ M such that xpk+1 \ xpk ⊆ y \
⋃k
i=0 si. Clearly then

〈pk : k < ω〉 ∈ Gen(M,Q(H)). �

Lemma 56. Assumeϕ(θ,H). LetM ≺ Hλ be a countable elementary submodelwithH ∈ M, let y ∈ [θ ]ℵ0 and let p ∈ Q(H)∩M.
If x ⊆∗ y for all x ∈ H ∩M, then Complete has a nonlosing strategy in the game agen(M, y,H, p).

Proof. Suppose that x ⊆∗ y for all x ∈ H ∩ M . Then since H is σ -directed, we can find z ∈ H such that x ⊆∗ z for all
x ∈ H ∩M . Therefore, by Proposition 48, replacing ywith y ∩ z we can assume that y ∈ ↓H .
Set δ = sup(θ ∩M). At the end of the game agen(M, y,H, p), where Extender has played pk on its kth move, we will set

xq =
⋃
k<ω xpk ∪ {δ}. The aim of the Complete’s strategy is to ensure that xq ∈ ∂H (J) for all J ∈ Xpk , for all k < ω.

We know that
⋃
k<ω Xpk will be countable, and thus we can arrange a diagonalization (Jk : k < ω) in advance, and since

theXpk ’s will be increasing with k, we can also insist that Jk ∈ Xpk for all k. After Extender plays pk onmove k, we take care
of some Jk ∈ Xpk according to the diagonalization. Set

Kk = {z ∈ Jk : xpk ⊆ z}. (13)

ThenKk is⊆∗-cofinal inH because xpk ∈ ∂H (Jk) by the definition of the poset. Thus as pk ∈ M , by Lemma 49,

K ′k = {z ∈ Kk : δ ∈ z} (14)

is cofinal too.

Claim 56.1. There exists a finite sk ⊆ y such that y \ sk ∈ ∂H (K
′

k).

Proof. Since y ∈ ↓H , andH is directed, {z ∈ K ′k : y ⊆
∗ z} is cofinal. It then follows from the fact thatH is σ -directed that

there exists a finite sk ⊆ y such that y \ sk ∈ ∂H (K
′

k). �

Complete plays sk as in the claim on its kth move. This describes the strategy for Complete.
If Extender loses then Complete wins, and thus wemay assume that Extender does not lose. Put xq =

⋃
k<ω xpk ∪{δ} and

Xq =
⋃
k<ω Xpk . It remains to show that the game is drawn, and thus it suffices to show that xq ∈ ∂H (J) for all J ∈ Xq by

Corollary 53. But everyJ ∈ Xq appears asJk for some k, and thus as
⋃
n<ω xpn \xpk ⊆ y\sk by Proposition 46, y\sk ∈ ∂H (K

′

k)
implies that {y ∈ Jk : xq ⊆ y} is cofinal by Eqs. (13) and (14), proving xq ∈ ∂H (Jk). �

The following lemma implies that our poset does not collapse ℵ1.

Lemma 57. Assume thatH is a σ -directed subfamily of ([θ ]ℵ0 ,⊆∗)with no stationary orthogonal set (i.e.ϕ(θ,H)). ThenQ(H)
is completely proper.

Proof. LetM ≺ Hλ be countable withH ∈ M . SinceH is σ -directed there exists y ∈ H such that x ⊆∗ y for all x ∈ H ∩M .
Let p ∈ Q(H) ∩M be given. Then the hypotheses of Corollary 55 and Lemma 56 are satisfied. Therefore both Extender and
Complete have nonlosing strategies in the game agen(M, y,H, p). The game is played with both Extender and Complete
playing according to their respective strategies. Since the game results in a draw, there exists q ∈ gen+(M,Q(H), p) by
Proposition 45. This proves thatQ(H) is completely proper. �

Terminology 58. We let ϕ∗(M,H, y) abbreviate the statement: x ⊆∗ y for all x ∈ H ∩M.

Lemma 59. Let ( EA,DΩ) be a λ-properness parameter determined by Ω : lim
−→

A → [[θ ]ℵ0 ]≤ℵ0 (cf. Definition 16). Assume
ϕ(θ,H). If every M ∈ lim

−→
A of positive rank with H ∈ M has a y ∈ Ω(M) ∩ ↓H satisfying ϕ∗(M,H, y), then Q(H) is

( EA,DΩ)-proper.

Proof. This is proved by induction on rank(M), where M is from the set of all M ∈ lim
−→

A with H ∈ M . The induction
hypothesis is that for all p ∈ Q(H) ∩ M , and all X ∈ DΩ(M), for every yM ∈ ↓H satisfying ϕ∗(M,H, yM) and moreover
yM ∈ Ω(M) when rank(M) > 0, and every finite t ⊆ yM , there exists q ∈ gen(M,Q(H), p) such thatM(q) ∩ X ∈ DΩ(M)
and

xq \ xp ⊆ (yM \ t) ∪ {sup(θ ∩M)}. (15)

This will in particular entail that Q(H) is proper for the desired parameter, because by the hypothesis on Ω there always
exists such a yM and hence a = H will witness that (p) holds.
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For the base case rank(M) = 0, it suffices to show that every p ∈ Q(H) ∩M and every z ∈ [θ ]ℵ0 satisfying ϕ∗(M,H, z)
have an (M,Q(H))-generic extension q ≥ pwith xq\xp ⊆ z∪{sup(θ∩M)}. And Extender andComplete both have nonlosing
strategies in the gameagen(M, z,H, p) by Corollary 55 and Lemma56. After the game is played according to these respective
strategies, with pk denoting Extender’s kth move, we obtain q ∈ gen+(M,Q(H), p)with xq =

⋃
k<ω xpk ∪ {sup(θ ∩M)} by

Corollary 53. And then xq \ xp ⊆ z ∪ {sup(θ ∩M)} by Proposition 46 with k = 0 since p0 = p.
Suppose now that rank(M) > 0 with H ∈ M , and we are given p ∈ Q(H) ∩ M , X ∈ DΩ(M) and yM ∈ Ω(M) ∩ ↓H

satisfying ϕ∗(M,H, yM) and a finite t ⊆ yM . By going to a subset of X , we can assume that X ∩ K ∈ DΩ(K) for all K ∈ X by
Lemma 9. Moreover, since yM ∈ Ω(M), by going to a tail of X , we can assume that

tr supθ (X) ⊆ yM \ t. (16)

Let (ak : k < ω) enumerateM ∩ Hλ and let (ξk : k < ω) satisfy limk→ω ξk + 1 = rank(M).
The game agen(M, yM \ t,H, p) shall be played with (pk, sk) denoting the kth move. Since ϕ∗(M,H, yM \ t), Complete

has a nonlosing strategy in this game, which it plays by. After the kth move has been played, we can find Kk ∈ X such that
ak, pk ∈ Kk, rank(Kk) ≥ ξk and moreover

sup(θ ∩ Kk) /∈
k⋃
i=0

si. (17)

Since yKk ∈ ↓H , we can find a finite uk ⊆ yKk such that yKk \ uk ⊆ yM . Now by the induction hypothesis, there exists
pk+1 ≥ pk in gen(Kk,Q(H)) such that

Yk =M(pk+1) ∩ X ∈ DΩ(Kk), (18)

and xpk+1 \ xpk ⊆
(
yKk \

(⋃k
i=0 si ∪ t ∪ uk

))
∪ {sup(θ ∩ Kk)} ⊆ yM \

(⋃k
i=0 si ∪ t

)
∪ {sup(θ ∩ Kk)}. Then in fact

xpk+1 \ xpk ⊆ yM \
(⋃k

i=0 si ∪ t
)
by (16) and (17), and thus pk+1 is a valid move for Extender.

At the end of the game, since (Kk : k < ω) is cofinal in M ∩ Hλ and each pk+1 is (Kk,Q(H))-generic, it follows that the
ideal 〈pk : k < ω〉 is in Gen(M,Q(H)), and thus Extender does not lose. Since Complete also does not lose, the conditions
{pk : k < ω} have a common extension q. Now

⋃
k<ω Yk∪{Kk} ⊆M(q)∩X , and clearly

⋃
k<ω Yk∪{Kk} ∈ DΩ(M). Moreover

we can assume that xq =
⋃
k<ω xpk ∪ {sup(θ ∩M)} by Corollary 53, and thus xq \ xp ⊆ (yM \ t)∪ {sup(θ ∩M)}, completing

the induction. �

For definitions of D-completeness we refer the reader to [3] and/or [1]. In the present paper we say that a poset is D-
complete, if it has a simply definable ℵ1-complete completeness system. To avoid a complicated proof we only prove that
Q(H) has a simply definableℵ0-complete completeness system. If anℵ1-complete system is desired, one can use the notion
of a forward strategy introduced there; in particular, Lemma 60 can be obtained as an application of [3, Lemma 3.39].

Lemma 60. LetH ⊆ [θ ]ℵ0 be σ -directed with no stationary orthogonal set (i.e. ϕ(θ,H)). ThenQ(H) is D-complete.

Proof (Proof for ℵ0-completeness). The completeness system receives as input a countableM ≺ Hλ, a familyH ⊆ [θ ]ℵ0 in
M and p ∈ Q(H) ∩M . We fix a suitably definable way of coding

• a subset yZ of θ ∩M ,
• a partial functionΦZ onM withΦZ (a) ∈ [θ ∩M]<ℵ0 for all a ∈ dom(ΦZ ),

by subsets Z ⊆ M . The second order formula ϕ defining the family of subsets of Gen(M,Q(H), p) is given by pif

(a) x ⊆∗ yZ for all x ∈ H ,

there exists2 a sequence (pk : k < ω) of conditions inQ(H) and a sequence (sk : k < ω) of finite subsets of θ such that

(b) (pk, sk) is valid for move k of the game agen(M, yZ ,H, p),
(c) Ea =

(
(p0, s0), . . . , (pk−1, sk−1), pk

)
∈ dom(ΦZ ) and sk ⊇ ΦZ (Ea)q.

Thus the family coded by some Z ⊆ M is

GZ = {G ∈ Gen(M,Q(H), p) : M |= ϕ(G, Z;H, p)}. (19)

First we verify ℵ0-completeness. Let Z0, . . . , Zn−1 be given subsets of M . We can assume without loss of generality
that condition (a) holds for all j = 0, . . . , n − 1. The game agen

(
M,
⋂n−1
j=0 yZj ,H, p

)
is played with (pk, sk) being the

kth move. By condition (a), x ⊆∗
⋂n−1
j=0 yZj for all x ∈ H ∩ M , and hence by Corollary 55 Extender has a nonlosing

strategy in this game, which it plays by. For each j = 0, . . . , n − 1, we recursively choose for each k < ω, tjk so that
Eajk =

(
(p0, tj0), . . . , (pk−1, tj(k−1))

)
is a valid position in the game agen(M, yZj ,H, p); its definition is tjk = ΦZj(Eajk). Onmove

2 Note that this is a second order quantifier, so that e.g. the sequence (pk : k < ω) need not be an element ofM .
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k, Complete plays sk =
(⋃n−1

j=0 tjk
)
∩
⋂n−1
j=0 yZj , which ensures that Extender’s move pk+1 in the former game is also a valid

move in each of the games agen(M, yZj ,H, p) (j = 0, . . . , n− 1). Let G = 〈pk : k < ω〉. Then G ∈ Gen(M,Q(H), p) because
Extender does not lose. And thus for each j,M |= ϕ(G, Zj;H, p) as witnessed by (p0, tj0), (p1, tj1), . . . ; hence,

⋂n−1
j=0 GZj 6= ∅

as wanted.
For D-completeness, it remains to find a Z ⊆ M such that GZ ⊆ Gen+(M,Q(H), p). However, choosing any y ∈ [θ ]ℵ0

satisfying ϕ∗(M,H, y), Complete has a nonlosing strategy Φ in the game agen(M, y,H, p) by Lemma 56. Find Z ⊆ M such
that yZ = y and ΦZ = Φ . Now suppose that G ∈ GZ , witnessed by (pk : k < ω) and (sk : k < ω). Then by (b) and (c), and
Proposition 47, Complete does not lose the game agen(M, y,H, p)where (pk, yk) is played on move k. Since Complete does
not lose, and we already know that G ∈ Gen(M,Q(H)), we must have G ∈ Gen+(M,Q(H)). �

In the case θ = ω1, assuming CH, our poset Q(H) clearly has the ℵ2-cc and thus does not collapse cardinals. However,
if we want to avoid using an inaccessible cardinal, we need that iterated forcing constructions using our poset also have
the ℵ2-cc, which is not in general preserved under countable support iterations. The usual approach in this situation is to
use the properness isomorphism condition, and apply the theory from [8, Ch. VIII, Section 2]. By the properness isomorphism
condition, we mean the ℵ2-pic there; and there is a theorem that under CH, a countable support iteration of length at most
ω2 of posets satisfying theℵ2-pic has theℵ2-cc. As an alternative to using Lemma 61, one can always iterate up to a strongly
inaccessible cardinal µ since our posets will all have the µ-cc.
Wewill not give the actual definition of the properness isomorphism condition here, but instead refer the reader to either

Shelah’s book, [3] or [1]. We also do not provide a proof of the following lemma, because as is usual with this property, it is
a straightforward modification of the proof of properness. One can also obtain Lemma 61 by applying [3, Corollary 3.54.1].

Lemma 61. Assume that H is a σ -directed subfamily of ([ω1]ℵ0 ,⊆∗) with no stationary orthogonal set (i.e. ϕ(ω1,H)). Then
Q(H) satisfies the properness isomorphism condition.

3.2. Forcing notion for shooting non-clubs

The following is perhaps the most natural forcing notion for forcing an uncountable set locally in some σ -directed
subfamily of ([S]ℵ0 ,⊆∗), for some set S.

Definition 62. ForH ⊆ P (S), letR(H) be the poset consisting of all pairs p = (xp,Xp)where

(i) xp ∈ ∂(H),
(ii) Xp is a countable family of cofinal subsets of (H,⊆∗)with

xp ∈ ∂H (J) for all J ∈ Xp, (20)

ordered by q extends p if

(iii) xq ⊇ xp,
(iv) Xq ⊇ Xp.

For an ideal G ⊆ R(H), we write XG =
⋃
p∈G xp. We write 0R(H) for the condition (∅,∅).

Proposition 63. R(H) ‖ pXĠR(H)
is locally in ↓Hq.

Proposition 64. The classR is provably equivalent to a∆0-formula.

Proposition 65. If p and q are two conditions in R(H) such that xq ⊆ xp and every J ∈ Xq has a K ⊆ J in Xp, then
R(H) /∼sep |= q ≤ p.

The only significant difference between Definition 62 and the forcing notion called ‘‘R(H)’’ in [3, Definition 3.1], which
is itself very closed based on the original forcing notion from [2], is that condition (iii) is not required to be end-extension
as inQ(H). This weakens the compatibility relation as follows.

Proposition 66. p and q are compatible inR(H) iff xp ∪ xq ∈ ∂H (J) for all J ∈ Xp ∪Xq.

Condition (iii), however, leaves many properties unaffected. For example, the following facts can be established with
exactly the same proofs as in [3]. Assume for now that H is a σ -directed subfamily of ([S]ℵ0 ,⊆∗), where S is some
uncountable set.

Lemma 67. R(H) is a-proper.

Note that, unlike withQ(H), we do not need any additional requirements onH for properness as in Lemma 57.

Lemma 68. R(H) is D-complete.

Lemma 69. R(H) satisfies the properness isomorphism condition.
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Lemma 70. If S cannot be decomposed into countably many pieces that are orthogonal to H , then R(H) forces that XĠR(H)
is

uncountable.
The following is established in [3].

Lemma 71. Let θ be an ordinal of uncountable cofinality, and let H be a σ -directed subfamily of ([θ ]ℵ0 ,⊆∗). Let S ⊆ θ be
stationary. If S has no stationary subset orthogonal toH , thenR(H) forces that XĠR(H)

∩ S is stationary.

4. Absolute antichains

SupposeH is a subfamily of [θ ]ℵ0 . Suppose thatW is an outer model of V . Since Q andR are considered as classes, we
can interpretQ(H) andR(H) inW . And by Propositions 40 and 64, respectively, we have

Q(H)V ⊆ Q(H)W and R(H)V ⊆ R(H)W , (21)

and thus forO = Q,R,O(H)V is a suborder ofO(H)W (recall that P is a suborder of Q when P ⊆ Q and p ≤P q↔ p ≤Q q
for all p, q ∈ P). Since (xp ∪ xq,Xp ∪Xq) is a common extension of any two compatible conditions p and q, it follows that
‘p ⊥ q’ is absolute between V andW , for either forcing notion. Here we are interested in havingO(H)V generically included
in O(H)W – see Definition 72 where we obtain an approximation to this property – and therefore we are interested in the
upwards absoluteness of pA is a maximal antichain of O(H)q for both classes of forcing notions O = Q,R.
This is a familiar scenario. The concept of Souslin forcing was introduced in [5], concerning a certain class of forcing

notions that can be represented as definable subsets of the reals, or more generally, definable over (Hℵ1 ,∈). These Souslin
forcing notions can thus be interpreted in any outer model, and they enjoy many nice absoluteness properties, which are
particularly useful in the iteration of Souslin forcing notions. For example, themaximality of antichains of Souslin ccc forcing
notions is upwards absolute. In our case, say for θ = ω1 and assuming CH, our forcing notions areℵ2-cc and representable as
subsets ofP (ω1), and simply definable over (Hℵ2 ,∈) by Propositions 40 and 64, respectively; and we also want to establish
the upwards absoluteness of antichains. However, in the present case we shall rely on combinatorial arguments rather
than absoluteness results of second order arithmetic. In the process, we shall observe thatR(H) andQ(H) have very nice
properties, such as commutativity, that are typically associated with certain Souslin forcing notions.

4.1. Embeddings

We write P 4 Q to specify that a forcing notion P generically embeds into a forcing notion Q , which as usual we mean
that for all G ∈ Gen(V ,Q ), V [G] |= pGen(V , P) 6= ∅q, i.e. every generic for Q induces a generic for P . A generic embedding
between two forcing notions has the usual meaning, i.e. they are called complete embeddings in [6, Ch. VII, Section 7]. We
write P ∼= Q to indicate that P and Q are isomorphic as forcing notions, i.e. P 4 Q and Q 4 P . Recall that P 4 Q iff there
exists a generic embedding e : P / ∼sep → Q , where the separative quotient is indicated in the domain. Also recall that
when P is a suborder of Q , the inclusion map i : P → Q is a generic embedding iff i[A] is a maximal antichain of Q for every
maximal antichain A of P . We want to generalize the notion P 4 Q , where Q is allowed to be outside of some universe.
Definition 72. Let M be a model (typically transitive), and let P and Q be forcing notions with P ∈ M . We say that P
generically embeds into Q over M if for all G ∈ Gen(V ,Q ), V [G] |= pGen(M, P) 6= ∅q. We write P 4M Q . We say that P is
generically included in Q over M if P is a suborder of Q that generically embeds overM . We write P 4iM Q . And e : P → Q is
a generic embedding over M if it is order preserving, i.e. q ≥ p implies e(q) ≥ e(p), q ⊥ p implies e(q) ⊥ e(p) and for every
maximal antichain A of P inM , e[A] is a maximal antichain of Q .
Thus V |= pP 4V Q q iff V |= pP 4 Q q.

Proposition 73. P 4iM Q iff the inclusion map i is a generic embedding over M.
Notation 74. For a separative poset P, let P denote its completion.
Lemma 75. Let M be a transitive model of enough of ZFC. Then P 4M Q iff there exists e : P → Q /∼sep such that e is a generic
embedding over M.
Proof. If e : P → Q /∼sep is a generic embedding overM , and G ∈ Gen(V ,Q /∼sep), then e−1[G] ⊆ P is downwards closed
and upwards linked (i.e. pairwise compatible), and intersects every maximal antichain of P in M . It thus follows from the
well-known facts that e−1[G] generates a member of Gen(M, P). Thus P 4M Q /∼sep ∼= Q .
Conversely, if P 4M Q then there is a Q -name Ġ for a member of Gen(M, P). Then e : P → Q /∼sep defined by

e(p) = ‖p ∈ Ġ‖ (22)

is a generic embedding overM . �
Proposition 76. Suppose that P,Q ∈ M and M is a model of enough of ZFC. If e : P → Q is a generic embedding over M, and
H ∈ Gen(M,Q ), then e−1[H] ∈ Gen(M, P).
Recall the following basic fact.

Proposition 77. If e : P → Q is a generic embedding, then every q ∈ Q has a pq ∈ P such that e(p′) is compatible with q for all
p′ ≥ pq.
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Lemma 78. Let P and Q be separative forcing notions with P ∈ M, where M is a transitive model of enough of ZFC. If e : P → Q
is a generic embedding over M, then so is ẽ : P /∼sep → Q /∼sep given by ẽ([p]) = [e(p)].

Proof. First we observe that if P / ∼sep |= p ≥ q then Q / ∼sep |= e(p) ≥ e(q). For suppose to the contrary that
Q / ∼sep |= e(p) � e(q). Then there exists r ≥ e(p) in Q that is Q -incompatible with e(q). In M , let A be a maximal
antichain with q ∈ A. Then since e[A] is a maximal antichain, there exists q′ ∈ A such that e(q′) is Q -compatible with r .
If q′ ⊥ q then q′ ⊥ p as P / ∼sep |= p ≥ q, and hence e(q′) ⊥ e(p) implies e(q′) ⊥ r . But then q′ ∈ A implies q′ = q,
contradicting that e(q) ⊥ r .
The preceding observation obviously implies that ẽ is well defined and order preserving. That ẽ preserves maximal

antichains follows immediately from the fact that p ⊥ q implies [p] ⊥ [q]. �

Proposition 79. Let P and Q be separative forcing notions with P ∈ M, where M is a transitive model of enough of ZFC. If
e : P → Q is a generic embedding over M, then so is ē : P → Q given by ē(p̄) =

∧
{e(p) : p ∈ P , p ≥ p̄}.

The notion of a projection is used in [1] as a map from Q into P witnessing P 4 Q . We weaken the requirements on
projections here for brevity, but only use them as inverses of generic embeddings (noting that it would have been better to
do it the former way).

Definition 80. We say that π : Q → P is a projection if π is an order preserving surjection.

Definition 81. Let κ be a cardinal. A forcing notion P is said to be κ-semicomplete if every A ⊆ P of cardinality |A| < κ , with
an upper bound in P , has a minimal upper bound in P . It is semicomplete if it is κ-semicomplete for all cardinals κ .

In the casewere P is a poset (and not just a quasi-order),minimal upper bounds are suprema. Then semicomplete is precisely
the order theoretic notion of a complete semilattice. Also note that complete semilattices always have a minimum element,
namely

∨
∅. Recall that a poset P is pointed if it has a minimum element, which denote as 0P .

Example 82. Q(H) and R(H) are both complete semilattices. If A ⊆ R(H) and a ≤ p for all a ∈ A, then clearly∨
A =

(⋃
a∈A xa,

⋃
a∈AXa

)
. Similarly forQ(H), but taking the closure of

⋃
a∈A xa.

Definition 83. Recall that a subset A of a poset P upwards order closed if whenever B ⊆ A is nonempty, if a =
∨
B exists

when taken in P , then a ∈ A.

The above notion is not to be confused with an upwards closed subset, also called an upper set.
Recall that e : P → q is an order embedding between to quasi-orders if it is both order preserving and reflecting, i.e. p ≤ q

iff e(p) ≤ e(q) for all p, q ∈ P . For a poset, this means that e is isomorphic to its range.

Lemma 84. Suppose that P is a pointed poset and Q is a complete semilattice. If e : P → Q is an order embedding with an
upwards order closed range, then it has a projection π : Q → P for a left inverse, given by

π(q) =
∨
{p ∈ P : e(p) ≤ q}. (23)

Proof. To check that the supremum always exists, take q ∈ Q . Put A = {p ∈ P : e(p) ≤ q}. In the case A = ∅, the supremum
is 0P . Otherwise, since q is an upper bound of e[A], a =

∨
e[A] =

∨
p∈A e(p) exists in Q since it is a complete semilattice;

and then since e[P] is upwards order closed, there exists p′ ∈ P such that e(p′) = a. Then p′ is an upper bound of A since e
is order reflecting. And if r ∈ P is an upper bound of A, then e(r) is an upper bound of e[A] since e is order preserving, and
thus e(p′) = a ≤ e(r) implies p′ ≤ r , proving that p′ is the least upper bound.
It is clear that π is an order preserving left inverse of e. (And obviously π is a surjection when it is a left inverse.) �

Example 85. Now let us see how this applies to say Q(H). Let W be a transitive outer model of V which has the same
countable sequences of ordinals as V . Q(H) is a complete semilattice in V , and thus, in W , Q(H)V is also a complete
semilattice by the assumption on W , because in Example 82 we showed that the suprema are given by countable unions
which thus remain in V . The fact that suprema remain in V , also implies that Q(H)V is upwards order closed in Q(H)W .
Therefore, Lemma 84 applies in W to the identity mapping i : Q(H)V → Q(H)W , yielding a projection π : Q(H)W →
Q(H)V inW that is the identity onQ(H)V . Exactly analogous facts hold forR(H).

Notation 86. For any map e : P → Q let e∗ be the corresponding mapping of P-names to Q -names (cf. e.g. [6, Ch. VII, 7.12]).

Proposition 87. Let P ⊆ Q . If i : P → Q is the inclusion map then i∗ is an inclusion map.

Proposition 88. Let M ≺ Hλ with P,Q ∈ M. Suppose that e : P → Q is a generic embedding in M3 and that Eq. (23) defines
π : Q → P as a left inverse of e. If q ∈ gen(M,Q ), then π(q) ∈ gen(M, P); and if q ∈ gen+(M,Q ), then π(q) ∈ gen+(M, P).

3 Not overM .
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Lemma 89. Let M ≺ Hλ with P,Q ∈ M and λ sufficiently large and regular. Suppose that e : P → Q is a generic embedding in
M and Eq. (23) defines a left inverse π : Q → P of e, ϕ(v0, . . . , vn−1) is a formula which is absolute for transitive models of ZFC
and ẋ0, . . . , ẋn−1 ∈ M are P-names. Then for all q ∈ gen(M,Q ), π(q) ∈ gen(M, P) and

π(q) ‖ ϕ(ẋ0, . . . , ẋn−1) iff q ‖ ϕ(e∗(ẋ0), . . . , e∗(ẋn−1)). (24)

Proof. See e.g. [6, Ch. VII, 7.13]. �
Next we recall some basic forcing facts on maximal antichains and generic embeddings.

Proposition 90. For A ⊆ P ? Q̇ , let A / P be the P-name {q̇ : (p, q̇) ∈ A, p ∈ ĠP} for a subset of Q̇ . Then the following are
equivalent:

(a) A ⊆ P ? Q̇ is a maximal antichain.
(b) P ‖ A / P is a maximal antichain of Q̇ .

Proposition 91. Suppose R ‖ Q̇ 4 Ṗ . Then Ṗ / Q̇ ∼= (R ? Ṗ) / (R ? Q̇ ).

Remark. Both sides of the equivalence in Proposition 91 are R ? Q̇ -names, and thus the equivalence should of course be
interpreted as R ? Q̇ ‖ Ṗ / Q̇ ∼= (R ? Ṗ) / (R ? Q̇ ). We shall apply the equivalent statement

R ? Ṗ ∼= R ? Q̇ ? (Ṗ / Q̇ ). (25)

Notation 93. For a forcing notion P and p ∈ P, we let Pp denote the principle filter {q ∈ P : q ≥ p}.

Proposition 94. Assume Q ‖ P 4V Ṙ. Then P 4 Q ? Ṙ. Moreover if Q has a minimum element 0Q and Q ‖ pė : P → Ṙ is a
generic embedding over Vq, then p 7→ (0Q , ė(p)) defines a generic embedding; hence, if A ⊆ P is a maximal antichain then

(Q ? Ṙ) / P ∼=
∐
p∈A

(
Q ? Ṙė(p)

)
/ Pp. (26)

Proof. Let G ∈ Gen(V , P) and H ∈ Gen(V [G], Ṙ[G]). In V [G][H], Gen(V , P) 6= ∅, because P 4V Ṙ[G]. Hence P 4 Q ? Ṙ by
definition. It is immediate from Proposition 90 that the defined mapping is a generic embedding. �

The following lemma is well known, at least for the caseM = V .

Lemma 95. Let (Pξ , Q̇ξ : ξ < α) and (P ′ξ , Q̇
′

ξ : ξ < α) both be iterated forcing constructs with resulting forcing notions Pα and
P ′α , respectively; and let M be a transitive model of enough of ZFC. If Pξ 4

i
M P
′

ξ for all ξ < α, then Pα 4iM P
′
α .

Definition 96. When we say that a forcing notion P is densely included in a forcing notion Q , we mean that P is a predense
suborder of Q .

Proposition 97. If P is a suborder of Q and P ∼= Q then P is densely included in Q .
Lemma 98. Let (Pξ , Q̇ξ : ξ < α) and (P ′ξ , Q̇

′

ξ : ξ < α) both be iterated forcing constructs with resulting forcing notions Pα and
P ′α , respectively. If Pξ is densely included in P

′

ξ for all ξ < α, then Pα ∼= P ′α .

The next lemma is important for computing quotients.

Lemma 99. Let O and P ? Q̇ be forcing notions such that O 4 P ? Q̇ . Suppose that for all G ∈ Gen(V ,O), there exists
f : (P ? Q̇ ) / G→ P such that

(a) f (p, q̇) ≥ p,
(b) (p′, q̇) ∈ (P ? Q̇ ) / G for all p′ ≥ f (p, q̇),
(c) (f (p, q̇), q̇) and (f (p′, q̇′), q̇′) are (P ? Q̇ )-compatible whenever f (p, q̇) and f (p′, q̇′) are compatible.

Then (P ? Q̇ ) / O ∼= P.

Proof. Let G ∈ Gen(V ,O). Let D = {(f (p, q̇), q̇) : (p, q̇) ∈ (P ? Q̇ ) / G}. Then D is a dense subset of (P ? Q̇ ) / G by (a)
and (b). And by (b) and (c), for all (p, q̇), (p′, q̇′) ∈ (P ? Q̇ ) / G, (f (p, q̇), q̇) is (P ? Q̇ ) / G-compatible with (f (p′, q̇′), q̇′)
iff f (p, q̇) is P-compatible with f (p′, q̇′). Therefore, for all (p, q̇), (p′, q̇′) ∈ D, (p, q̇) and (p′, q̇′) are (P ? Q̇ ) / G-compatible
iff p and p′ are compatible. Hence, (p, q̇) 7→ p is an isomorphism between D / ∼sep and P / ∼sep. Thus, as D is dense,
((P ? Q̇ ) / G) /∼sep ∼= D /∼sep ∼= P /∼sep. Since G is arbitrary, this proves that O ‖ (P ? Q̇ ) / O ∼= P , as required. �

4.2. Analysis ofQ(H) andR(H)

To obtain generic embeddings of e.g.Q(H)V intoQ(H)W , we shall analyze the maximal antichains ofQ(H) andR(H).
Clearly, if A ⊆ Q(H) is a maximal antichain then π [A] = {xp : p ∈ A} must be predense in (H,⊆); however, it need not
form an antichain. For example, suppose that H is a P-ideal (and thus closed under addition of finite sets), y ∈ ∂H (J) is
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closed and countable, and α > max(y) is not in ∂H (J) butK is a ⊆∗-cofinal subset ofH with α ∈ ∂H (K). Then (y, {J})
and (y ∪ {α}, {K}) are incompatible conditions of Q(H) even though y v y ∪ {α}. Indeed, in analyzing the sets π [A], the
difficulty is when y is in the set and we want to determine whether some z @ y is also present in π [A].
For any H ⊆ [θ ]ℵ0 , the following auxiliary family of countable subsets of H allows us to analyze the maximality of

antichains inQ(H) andR(H).

Definition 100. Let S be a set, andH ⊆ P (S). Define a subcollection Ψ (H) ⊆ [H]≤ℵ0 of all Z ∈ [H]≤ℵ0 for which there
exists y ∈ H such that every finite s ⊆ y has a finite As ⊆ Z such that⋃

Z \ As ⊆ y \ s. (27)

In particular, wheneverH is an ideal,
⋃
Z ∈ H for all Z ∈ Ψ (H).

Lemma 101. LetH be a σ -directed subfamily of ([S]ℵ0 ,⊆∗). Then Ψ (H) is a P-ideal onH .

Proof. Assume thatH is σ -directed. To verify that Ψ (H) is σ -directed, let Zn (n < ω) enumerate a subset of Ψ (H), with
yn ∈ H witnessing Zn ∈ Ψ (H) for each n < ω. SinceH is σ -directed, there exists z ∈ H with yn ⊆∗ z for all n < ω. Choose
finite subsets tn ⊆ S (n < ω) so that

(28) yn \ tn ⊆ z,
(29)

⋃
n<ω tn ⊇ z,

and put sn = yn ∩
⋃n
i=0 ti for each n. Let Asn be the finite subset from Eq. (27) so that

⋃
Zn \ Asn ⊆ yn \ sn ⊆ z. Putting

Y =
⋃
n<ω Zn \ Asn , Zn ⊆

∗ Y for all n < ω. And Y ∈ Ψ (H), because for any finite u ⊆ z, we can find n so that u ⊆
⋃n
i=0 ti,

and then
⋃(
Y \

⋃n
i=0 Ayi∩u

)
⊆ z \ u, where each Ayi∩u is from Eq. (27) with y := yi and Z := Zi.

Moreover, Ψ (H) is obviously downwards closed, and it is an ideal becauseH is directed. �

Lemma 102. LetH be a downwards closed σ -directed subfamily of [S]ℵ0 . Then forK ⊆ H , the following are equivalent:

(a) There exists a countable decomposition ofK into pieces orthogonal to Ψ (H).
(b) There exists a countable familyX of cofinal subsets of (H,⊆∗) such thatK ∩

⋂
J∈X ∂H (J) ⊆ {∅}.

Proof. (a)→ (b): Let K =
⋃
n<ω Ln with each Ln ⊥ Ψ (H). Observe that every y ∈ H has a finite syn ⊆ y such that

↓(y \ syn)∩Ln ⊆ {∅}: Otherwise, letting (αk : k < ω) enumerate y, there exists zk ∈ Ln with ∅ 6= zk ⊆ y \ {α0, . . . , αk} for
all k < ω, and then {zk : k < ω} ∈ [Ln]

ℵ0 ∩Ψ (H), contrary to the fact thatLn ⊥ Ψ (H). Now for each n, let Jn = {y \ syn :
y ∈ H}. Then every Jn is a cofinal subset ofH asH is downwards closed, andK ∩

⋂
n<ω ∂H (Jn) ⊆ K ∩

⋂
n<ω ↓Jn ⊆ {∅}.

(b)→ (a): LetX = {J0,J1, . . . } be as in (b). SinceH is σ -directed, the noncofinal subsets ofH form a σ -ideal; therefore,
each n and each y ∈ H has a finite syn ⊆ y such that y \ syn ∈ ∂H (Jn). Then puttingKn = {y \ syn : y ∈ H} (n < ω) we
getK ∩

⋂
n<ω ↓Kn ⊆ {∅}. For each n, let Ln = K \ ↓Kn. ThenK \ {∅} =

⋃
n<ω Ln, and each Ln ⊥ Ψ (H), becauseKn

is cofinal, and hence if there were a Z ∈ [Ln]ℵ0 ∩ Ψ (H) witnessed by some y ∈ H , then for any z ∈ Kn with y ⊆∗ z we
arrive at the contradiction thatLn ∩ ↓z 6= ∅. �

Notation 103. For any S ⊆ P (θ) and x ⊆ θ , denote Sx = {y ∈ S : x v y} and S[x] = {y \ x : y ∈ Sx}. Analogously, we denote
S(x) = {y \ x : y ∈ S ∩ ↑x} (S ∩ ↑x = {y ∈ S : x ⊆ y}).

Proposition 104. IfH is a P-ideal thenH[x] andH(x) are both P-ideals for all x.

Remark. H[x] andH(x) may fail to be σ -directed ifH is not a P-ideal, even ifH is σ -directed.

Next we see how to ‘freeze’ a maximal antichain A, so that the statement pA is a maximal antichain ofQ(H)q is upwards
absolute.
We are assuming, until Section 4.2.1, thatH is a P-ideal on θ .

Corollary 106. Let A be a maximal antichain of Q(H), and suppose W ⊇ V is an outer model with ([θ ]ℵ0)V = ([θ ]ℵ0)W . If for
every x ∈ H , either

(a) there exists in V , a countable decomposition of π [A][x] into pieces orthogonal to Ψ (H[x]), or
(b) there does not exist in W, a countable decomposition of π [A][x] into pieces orthogonal to Ψ (H[x]),

then A is a maximal antichain ofQ(H)W .

Proof. InW : We have already observed that A is an antichain ofQ(H)W , and hence it remains to establish its maximality.
By assumption, xp ∈ V for all p ∈ Q(H)W . Fix p ∈ Q(H)W , and take any p̄ ∈ Q(H)V with xp̄ = xp.
Case 1. xq v xp for some q ∈ A compatible with p̄.
Then from the definition ofQ(H), xp ∈ ∂H (J) for all J ∈ Xq, and conversely this proves that p is also compatible with q, as
required.
Case 2. There is no q ∈ A compatible with p̄ such that xq v xp.
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Observe that, in V , there is no countable decomposition of π [A][xp] into pieces orthogonal toΨ (H[xp]): For if there was, then
by Lemma 102, and also Proposition 104 using the fact thatH is a P-ideal, there would be a countable familyX of cofinal
subsets of H[xp] with π [A][xp] ∩

⋂
J∈X ∂H[xp]

(J) ⊆ {∅}; then p′ =
(
xp,Xp̄ ∪

{
{xp ∪ y : y ∈ J} : J ∈ X

})
is a condition

of Q(H) extending p̄. Since we are in Case 2, by maximality in V there would exist q ∈ A compatible with p′ with xp @ xq.
However, this would entail that xq \ xp ∈ π [A][xp] ∩

⋂
J∈X ∂H[xp]

(J), contradicting the fact that xq \ xp 6= ∅.
Therefore, by the hypothesis of the corollary, in W there can be no countable decomposition of π [A][xp] into pieces

orthogonal to Ψ (H[xp]). Therefore, Lemma 102 implies that

π [A][xp] ∩
⋂

J∈Xp

∂H[xp]
(J[xp]) 6= ∅, (30)

say y is in the intersection. Then y ∈ π [A][xp] means that there exists q ∈ A such that xp v xq and y = xq \ xp. And Eq. (30)
implies that xq ∈ ∂H (J) for all J ∈ Xp, and thus q is compatible with p as required, because xp v xq. �

Next we establish the analogous result forR(H).

Corollary 107. Let A be a maximal antichain ofR(H), and suppose W ⊇ V is an outer model with ([θ ]ℵ0)V = ([θ ]ℵ0)W . If for
every x ∈ H , either

(a) there exists in V , a countable decomposition of π [A](x) into pieces orthogonal to Ψ (H(x)), or
(b) there does not exist in W, a countable decomposition of π [A](x) into pieces orthogonal to Ψ (H(x)),

then A is a maximal antichain ofR(H)W .

Proof. InW : We have already observed that A is an antichain ofR(H)W , and hence it remains to establish its maximality.
By assumption, xp ∈ V for all p ∈ R(H)W . Fix p ∈ R(H)W , and take any p̄ ∈ R(H)V with xp̄ = xp.
Case 1. xq ⊆ xp for some q ∈ A compatible with p̄.
Then applying Proposition 66 to p̄ and q, xp ∈ ∂H (J) for all J ∈ Xq, and conversely this proves that p is also compatible
with q, as required.
Case 2. There is no q ∈ A compatible with p̄ such that xq ⊆ xp.
Observe that, in V , there is no countable decomposition of π [A](xp) into pieces orthogonal toΨ (H(xp)): For if there was, then
by Lemma 102 there would be a countable familyX of cofinal subsets ofH(xp) with π [A](xp) ∩

⋂
J∈X ∂H(xp)

(J) ⊆ {∅}; then
p′ =

(
xp,Xp̄ ∪

{
{xp ∪ y : y ∈ J} : J ∈ X

})
is a condition ofR(H) extending p̄. Since we are in Case 2, by maximality in V

there would exist q ∈ A compatible with p′ with xq * xq. However, this would entail that xq \xp ∈ π [A](xp)∩
⋂

J∈X ∂H(xp)
(J),

contradicting the fact that xq \ xp 6= ∅.
Therefore, by the hypothesis of the corollary, in W there can be no countable decomposition of π [A](xp) into pieces

orthogonal to Ψ (H(xp)). Therefore, Lemma 102 implies that

π [A](xp) ∩
⋂

J∈Xp

∂H(xp)
(J(xp)) 6= ∅, (31)

say y is in the intersection. Then y ∈ π [A](xp) means that there exists q ∈ A such that xp ⊆ xq and y = xq \ xp. And Eq. (31)
implies that xq ∈ ∂H (J) for all J ∈ Xp, and thus it follows from Proposition 66 that q is compatible with p, as required. �

Corollary 108 (V |= (∗)). Suppose that W ⊇ V is an outer model with ([θ ]ℵ0)V = ([θ ]ℵ0)W . Then Q(H)V 4V Q(H)W (and
R(H)V 4V R(H)W ) via the inclusion map. Furthermore, in the case θ = ω1, we can weaken the assumption to CH+ (∗)ω1 .

Proof. Lemma 101 and Corollary 106. In the case θ = ω1, under CH, π [A] has cardinality at most ℵ1 for every antichain
A. �

In particular, ifH has no stationary orthogonal set, so thatQ(H) is completely proper and thus adds no new countable
subsets of θ , then assuming (∗), Q(H) ‖ Q(H)V 4V Q(H). Note that this is weaker than the statement Q(H) ‖

Q(H)V 4 Q(H), that would in particular implyQ(H)×Q(H) is proper by Lemma 57, becauseQ(H) (in particular) forces
thatH has no stationary orthogonal set. This latter property, that is the square being proper, is the essence behind Shelah’s
NNR theory in [8, Ch. XVIII, Section 2]. We have thus been led to the following notion.

Definition 109. Let C be some class. Suppose that P is a forcing notion definable from some parameter a. We say that P(a)
is C-frozen over a transitive modelM 3 P(a) of (enough of) ZFC, if for every outer model N ⊇ M satisfying

(i) N |= pGen(M, P(a)M) 6= ∅q,
(ii) CM = CN ,

we have N |= pP(a)M 4iM P(a)
Nq.
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In other words, in every outer model N extending some generic extension of M by P and preserving C, P(a)M generically
embeds via the identity into P(a)N overM .
Example 110. (∗) implies that Q(H) is [θ ]ℵ0-frozen over V , for any σ -directedH ⊆ [θ ]ℵ0 with no stationary orthogonal
set. In fact, Corollary 108 says that this is true for every outer model preserving [θ ]ℵ0 , and not just those also satisfying (i).
To obtain a model of (?c)ω1 with CH it is necessary (at least in our approach) that for every forcing notion appearing

in our iteration, of the form Q(H), the property that pA is a maximal antichain of Q(H)q is upwards absolute for forcing
extensions derived in various ways from the iteration (of course this will be made precise). Note that this entails preserving
maximal antichains at every stage, because once the maximality of an antichain is lost it can never be restored.
So far we have demonstrated that it is possible to freeze antichains of Q(H) by forcing uncountable sets locally in the

appropriateΨ (H[x]). In fact, one can prove thatQ(H) itself forces an uncountable set locally in each of the requiredΨ (H[x]),
and similarly for R(H). Thus we can strengthen Example 110 by eliminating (∗), as follows, although it should be noted
that (∗) cannot be eliminated from Corollary 108.
Corollary 111. IfH is a P-ideal on θ with stationary orthogonal set thenQ(H) is [θ ]ℵ0-frozen over V . Similarly,R(H) is [θ ]ℵ0-
frozen over V for all P-idealsH on θ .
However, this approach cannot even handle two-stage iterations. By this we mean that it may not be possible to freeze

all antichains of sayR(H) ?R(İ). This is in spite of Corollary 111: For suppose A ⊆ R(H) ?R(İ) is a maximal antichain.
Let G ? H ∈ Gen(V ,R(H) ?R(İ)). Then applying Corollary 111 in V [G], A / G (cf. Proposition 90) is frozen, which means
that A / G is a maximal antichain of R(İ[G]) in every outer model of V [G] preserving [θ ]ℵ0 . This does not however mean
that the maximality of A is preserved because outer models of V need not contain G. What is needed, is anR(H)-name for
an uncountable set locally in Ψ (İ(x)), and we believe that this is generally impossible to obtain.
What has been achieved in this section with Corollaries 106 and 107, is that the problem of preserving the maximality

of antichains of Q(H) and R(H) has been reduced to preserving the property that certain P-ideals have no countable
decompositions of their underlying set into pieces orthogonal to them.

4.2.1. Products of P-ideals
Notation 112. Let (Hi : i ∈ I) be an indexed family where eachHi is a familyHi ⊆ P (Si) of subsets of some fixed set Si. Define⊗

i∈I

Hi =

{∐
i∈I

x(i) : Ex ∈
∏
i∈I

Hi

}
, (32)

where
∐
denotes the coproduct, i.e. disjoint union. Notice that

⊗
i∈I Hi ⊆ P

(∐
i∈I Si

)
.

Definition 113. Let (Xi : i ∈ I) be an indexed family of sets, where each set has a zero 0i ∈ Xi. For Ex ∈
∏
i∈I Xi, write

supp(Ex) = {i ∈ I : x(i) 6= 0i}. TheΣ-product of (Xi : i ∈ I) has the usual meaning:∑(∏
i∈I

Xi

)
=

{
Ex ∈

∏
i∈I

Xi : supp(Ex) is countable

}
. (33)

Notation 114. Suppose that Hi ⊆ P (Si), and moreover that ∅ ∈ Hi, for all i ∈ I . Taking 0i = ∅ for all i ∈ I , we extend the
Σ-product notation as follows∑(⊗

i∈I

Hi

)
=

{∐
i∈I

x(i) : Ex ∈
∑(∏

i∈I

Hi

)}
. (34)

Proposition 115. Let Hi ⊆ [Si]ℵ0 for every i ∈ I . Then
∑(⊗

i∈I Hi
)
⊆
[∐

i∈I Si
]
ℵ0 .

Proposition 116. Let H0, . . . ,Hn−1 be a finite sequence of σ -directed subfamilies of ([Si]ℵ0 ,⊆∗) for each i = 0, . . . , n − 1.
Then

⊗n−1
i=0 Hi is a σ -directed subfamily of ([

∐n−1
i=0 Si]

ℵ0 ,⊆∗).
We can do better with P-ideals:

Lemma 117. Let (Ii : i ∈ I) be an indexed family of P-ideals for some arbitrary I. Then
∑(⊗

i∈I Ii
)
is a P-ideal.

Proof. Let (yn : n < ω) be an enumeration of members of
∑(⊗

i∈I Ii
)
, say each yn =

∐
i∈I xn(i) for some Exn ∈

∑(∏
i∈I Ii

)
.

Then J =
⋃
n<ω supp(Exn) is countable, say J = {ik : k < ω}. For each i ∈ J , since Ii is σ -directed, there exists zi ∈ Ii such

that xn(i) ⊆∗ zi for all n < ω. Hence, as Ii is a P-ideal,
⋃
n∈A xn(i)∪zi ∈ Ii for every finite A ⊆ ω. Therefore, Ew ∈

∑(∏
i∈I Ii

)
,

where supp( Ew) ⊆ J is given by

w(ik) =
k−1⋃
n=0

xn(ik) ∪ zik (35)

for each k < ω. And clearly yn ⊆∗
∐
i∈I w(i) for all n < ω. �
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Lemma 118. Suppose that H0, . . . ,Hn−1 are σ -directed with eachHi ⊆ [Si]ℵ0 , and each Si uncountable. Let J be the set of all
i = 0, . . . , n− 1 for which Si has no countable decomposition into pieces orthogonal toHi. ThenR

(⊗n−1
i=0 Hi

)
forces that there

exists X ⊆
∐n−1
i=0 Si locally in

⊗n−1
i=0 Hi such that X ∩ Si is uncountable for all i ∈ J . Similarly forΣ-products of P-ideals.

Proof. Essentially the same as for Lemma 70. �

Proposition 119. LetH0, . . . ,Hn−1 be a finite sequencewith eachHi ⊆ P (Si). Then (H0⊗· · ·⊗Hn−1,⊆
∗) is order isomorphic

toH0 × · · · ×Hn−1 with the product order obtained from (Hi,⊆∗).

Recall the notion from [12], where a map f : D→ E between two directed posets is called convergent if every e ∈ E has
a d ∈ D such that f (a) ≥ e for all a ≥ d. Notice that f is convergent iff it maps cofinal subsets of D to cofinal subsets of E. We
say that D is cofinally finer than E, written E . D, if there exists a convergent map from D into E. It was established by Tukey
(in [12]) that E . D is equivalent to the existence of a map g : E → D that maps unbounded subsets of E to unbounded
subsets of D. Then . is a quasi-ordering of the class directed posets, which we refer to as the Tukey order. For two directed
quasi-orders A and B, we use the same definition of convergent maps. Then the existence of a convergent map from A into B
is equivalent to the existence of a convergent map from the poset A /∼asym into the poset B /∼asym, i.e. the antisymmetric
quotient. Thus the Tukey ordering . also makes sense between directed quasi-orders. The notation D ∼= E indicates that D
is cofinally equivalent to E, i.e. D . E and E . D. Then ∼= is an equivalent relation, and the equivalence classes are called
cofinal types.
A basic result on this is as follows.

Lemma 120 (Tukey). For any finite sequence D0, . . . ,Dn−1 of directed sets, D0 × · · · × Dn−1 is their least upper bound in the
Tukey order.

Example 121. 1, ω, ω1, ω × ω1 and [ω1]<ℵ0 are five distinct cofinal types, where the first four orders are given by the
∈ relation and [ω1]<ℵ0 is ordered by ⊆. It is proved in [11] that: PFA implies that these five are the only cofinal types of
cardinality at most ℵ1, while on the other hand, CH implies that there are 2ℵ1 many cofinal types of cardinality ℵ1.

Example 122 (CH). IfH ⊆ [ω1]ℵ0 and (H,⊆∗) is σ -directed, then (H,⊆∗) is of cofinal type either 1 or ω1. It has cofinal type
1 iff (H,⊆∗) has a maximal element.

Proposition 123. If D is a directed set and κ . D for some infinite cardinal κ (ordered by ∈), then no bounded subset of κ can
be mapped onto a cofinal subset of D.

Proof. If f : κ → Dmaps a bounded subset of κ onto a cofinal subset of D, then for any convergent g : D→ κ , g ◦ f maps
a bounded subset of κ onto a cofinal subset of κ , which is impossible if κ is an infinite cardinal. �

Lemma 124. For any finite sequenceH0, . . . ,Hn−1 where eachHi is a directed subfamily of ([Si]ℵ0 ,⊆∗),
⊗n−1
i=0 Hi is the.-least

upper bound of the sequence, under the almost inclusion order.

Proof. By Proposition 119 and Lemma 120. �

Corollary 125. IfH and I are⊆∗-directed subfamilies of [S]ℵ0 and [T ]ℵ0 , respectively, and I . H , thenH ∼= H ⊗ I.

Proof. SinceH ⊗ I is the least upper bound ofH and I by Lemma 124. �

We need something more specific.

Lemma 126. Suppose thatH and I are directed subfamilies of ([S]ℵ0 ,⊆∗) and ([T ]ℵ0 ,⊆∗), respectively, and bothH and I have
cofinal type κ for some infinite cardinal κ . Then every cofinalK ⊆ H ⊗ I has a cofinal subsetL ⊆ K such that for every cofinal
subset J ⊆ π [L] = {x ∈ H : xq y ∈ L for some y ∈ I}, (J ⊗ I) ∩L is cofinal inH ⊗ I.

Proof. SinceH ⊗ I ∼= κ by Lemma 124, there is a convergent map g : κ → H ⊗ I. For each α < κ , sinceK is cofinal we
can find xα q yα ∈ K such that

g(α) ⊆∗ xα q yα. (36)

We claim that L = {xα q yα : α < κ} satisfies the conclusion: L is cofinal because g is convergent. Suppose J ⊆ π [L] is
cofinal. Then J is cofinal inH as π [L] is by Proposition 119. Thus J = {xα : α ∈ A} for some cofinal A ⊆ κ , because g[B]
is noncofinal for all bounded B ⊆ κ by Proposition 123 as κ . H . And (J ⊗ I) ∩ L ⊇ {xα q yα : α ∈ A}, which is cofinal
by (36) since g is convergent. �

Lemma 127. LetH and I be σ -directed subfamilies of ([S]ℵ0 ,⊆∗) and ([T ]ℵ0 ,⊆∗), respectively. If bothH and I have cofinal
type κ for some infinite cardinal κ , thenR(H) generically embeds intoR(H ⊗ I).
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Proof. Define e : R(H)→ R(H ⊗ I) by e(p) = (xp,Yp)where

Yp = {J ⊗ I : J ∈ Xp}. (37)

Given a maximal antichain A ⊆ R(H), we need to show that e[A] is a maximal antichain ofR(H ⊗I). Take q ∈ R(H ⊗I).
Write xq = y q z (y ∈ H , z ∈ I). For eachK ∈ Xq, apply Lemma 126 to the cofinal set {w ∈ K : xq ⊆ w} to obtain a
cofinal subsetLK as in the conclusion of that lemma. Then clearly

q′ = (y, {π [LK ] : K ∈ Xq}) (38)

is a condition of R(H). Hence there must be p ∈ A compatible with q′. For all J ∈ Xp, xp ∪ y ∈ ∂H (J), and therefore
xp ∪ xq = xp ∪ (y q z) ∈ ∂H⊗I(J ⊗ I); and for all K ∈ Xq, JK = {x ∈ π [LK ] : xp ∪ y ⊆ x} is cofinal, and therefore
(JK⊗I)∩LK is cofinal, which implies that xp∪ xq ∈ ∂H⊗I(K), because xp∪ (yq z) ⊆ w for allw ∈ LK with π(w) ∈ JK .
This proves that e(p) is compatible with q, as required. �

Remark. We do not believe that there is any analogue of Lemma 127 for Q. This embeddability of R(H) is the primary
reason we are interested in the forcing notionR(H) when we are only trying to force clubs with the forcing notion Q(I).
For example, it figures in the analysis of properties of the forcing notionQ(I) in Corollary 132. There is also a secondary use
of the forcing notionR(H) in Section 5 where it is used to force stationary sets.

Corollary 129 (CH). Let H and I be σ -directed subfamilies of ([ω1]ℵ0 ,⊆∗). If I has no countable decomposition of ω1 into
orthogonal pieces, thenR(H) forces that I has no countable decomposition of ω1 into orthogonal pieces.

Proof. LetH and I be as in the hypothesis. By Lemma 118,R(H ⊗ I) forces that there is an uncountable X ⊆ ω1 locally in
I (meaning uncountable in the forcing extension, i.e.R(H ⊗ I) does not collapse ℵ1). In particular,R(H ⊗ I) forces that
there is no countable decomposition of ω1 into pieces orthogonal to I. By CH and Example 122, we know that bothH and
I are of cofinal type either 1 or ω1, and by the hypothesis we know further that I ∼= ω1. In the case H ∼= 1, R(H) is the
trivial forcing notion and thus the conclusion of the corollary is trivial. Assume then thatH ∼= I ∼= ω1 in the Tukey order.
Then by Lemma 127, R(H) 4 R(H ⊗ I), and thus R(H) cannot introduce a countable decomposition of ω1 into pieces
orthogonal to I. �

Corollary 130 (CH). LetH and I be σ -directed subfamilies of ([ω1]ℵ0 ,⊆∗), with Imoreover a P-ideal. ThenR(H) ‖ R(I)V

4iV R(I); hence,R(I) 4 R(H) ?R(I).

Proof. Let G ∈ Gen(V ,R(H)), and setW = V [G]. In V , let A be a maximal antichain ofR(I). Then for all x ∈ I, if π [A](x)
has no countable decomposition, in V , into pieces orthogonal to Ψ (I(x)), then by Corollary 129 with I := Ψ (I(x)), which
is σ -directed by Proposition 104 and Lemma 101, π [A](x) has no countable decomposition, inW , into pieces orthogonal to
Ψ (I(x)). Therefore, A is a maximal antichain ofR(I)W by Corollary 107.

R(I) 4 R(H) ?R(I) is immediate from Proposition 94. �

Corollary 131 (CH). LetH and I be σ -directed subfamilies of ([ω1]ℵ0 ,⊆∗), with I moreover a P-ideal. ThenR(H) ‖ Q(I)V

4iV Q(I); hence,Q(I) 4 R(H) ?Q(I).

Proof. This is the same as the proof of Corollary 130 but using Corollary 106. �

Corollary 132 (CH). Let H and I be σ -directed subfamilies of ([ω1]ℵ0 ,⊆∗), with I moreover a P-ideal. Suppose H has no
countable decomposition ofω1 into orthogonal pieces. IfR(H) forces that I has no stationary orthogonal subset ofω1, thenQ(I)
forces thatH has no countable decomposition of ω1 into orthogonal pieces.

Proof. By Corollary 131, Q(I) 4 R(H) ? Q(I). Now, if R(H) forces that I has no stationary orthogonal set, then
R(H) ? Q(I) is proper by Lemmas 57 and 67, and hence does not collapse ℵ1. Therefore, by our assumption on H ,
R(H) ?Q(I) forces that there exists an uncountable set locally in ↓H . ThusQ(I) cannot force a countable decomposition
of ω1 into pieces orthogonal toH . �

Corollary 133 (CH). Let I be a P-ideal on ω1. Suppose thatR(H) forces that there is no stationary subset of ω1 orthogonal to
I, for every σ -directed subfamilyH of ([ω1]ℵ0 ,⊆∗) having no countable decomposition of ω1 into orthogonal pieces. Then for
every P-ideal J on ω1,Q(I) ‖ R(J)V 4iV R(J); hence,R(J) 4 Q(I) ?R(J).

Proof. Let G ∈ Gen(V ,Q(I)), and setW = V [G]. In V , let A be a maximal antichain ofR(J). Then for all x ∈ J, if π [A](x)
has no countable decomposition, in V , into pieces orthogonal to Ψ (J(x)), then by Corollary 132 withH := Ψ (J(x)), which
is σ -directed by Proposition 104 and Lemma 101, π [A](x) has no countable decomposition, inW , into pieces orthogonal to
Ψ (J(x)). Therefore, A is a maximal antichain ofR(J)W by Corollary 107. �

Similarly:

Corollary 134 (CH). Let I be a P-ideal on ω1. Suppose that R(H) forces that there is no countable decomposition of ω1 into
pieces orthogonal toI, for everyσ -directed subfamilyH of ([ω1]ℵ0 ,⊆∗) having no countable decomposition ofω1 into orthogonal
pieces. Then for every P-ideal J on ω1,Q(I) ‖ Q(J)V 4iV Q(J); hence,Q(J) 4 Q(I) ?Q(J).
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In Corollaries 130, 131, 133 and 134, all four permutations of R(I) (Q(I)) in the extension by R(H) [Q(H)] have
been considered. The next step is to consider iterations. It is immediate from two applications of Corollary 130, that
R(H) ?R(İ) ‖ R(J)V 4iV R(J). But this begs the question of whether

R(J) ‖ [R(H) ?R(İ)]V 4iV [R(H) ?R(İ)]? (39)

The key to answering this is to establish that, under certain conditions, the forcing notionsQ(H) andR(H) commute among
themselves.

Notation 135. For any forcing notion P and any P-name Ȧ, we denote

Ȧ[p] = {x : q ‖ x ∈ Ȧ for some q ≥ p}, (40)

for each p ∈ P.

Proposition 136. If P ‖ Ȧ ⊆ V then p ‖ Ȧ ⊆ Ȧ[p], for all p ∈ P.

Remark. Note that when we say ‘‘p decides Ȧ’’ this means the same thing as ‘‘p ‖ Ȧ = Ȧ[p]’’.

Proposition 138. LetH ⊆ [θ ]ℵ0 . Suppose P is a forcing notion that adds no new countable subsets of θ . If (p, q̇) is a condition
of P ?Q(H) and p decides xq̇, then (xq̇[p], {J̇[p] : J̇ ∈ Xq̇}) ∈ Q(H). Similarly, forR(H).

Proof. By the assumption on P , P ‖ J̇ ⊆ V for all J̇ ∈ Xq̇. The result thus follows from Proposition 136. �

Note that we are implicitly assuming an enumeration ofXq̇ by ℵ0 when referring to J̇ ∈ Xq̇.

Lemma 139. Let H ⊆ [θ ]ℵ0 . For every forcing notion P that adds no new countable subsets of θ , if (p, q̇) ∈ P ? Q(H) and
D ⊆ {r ∈ P : r ≥ p} is predense above p then

(P ?Q(H)) /∼sep |= (p, q̇) ≥
∧
d∈D

(
d, (xq̇, {J̇[d] : J̇ ∈ Xq̇})

)
, (41)

Similarly, forR(H).

Remark. Eq. (41) is equivalent to: for every (p′, q̇′) ≥ (p, q̇) there exists d ∈ D such that (p′, q̇′) is compatible with(
d, (xq̇, {J̇[d] : J̇ ∈ Xq̇})

)
.

Proof (Proof of Lemma 139). We establish Eq. (41) using Remark 140. Given (p′, q̇′) ≥ (p, q̇), since D is predense above p,
there exists d ∈ D compatible with p′, say with common extension d′. By the assumption on P , Proposition 136 applies, and
then by Proposition 41,

d ‖ Q(H) /∼sep |= q̇ ≥ (xq̇, {J̇[d] : J̇ ∈ Xq̇}), (42)

which implies that there is an ṡ such that d ‖ ṡ is a common extension of q̇′ and (xq̇, {J̇[d] : J̇ ∈ Xq̇}). Therefore,
(d′, ṡ) ≥ (p′, q̇′) and (d′, ṡ) ≥

(
d, (xq̇, {J̇[d] : J̇ ∈ Xq̇})

)
, concluding the proof. �

Lemma 141. LetH ⊆ [θ ]ℵ0 . If P is a forcing notion that adds no new countable subsets of θ , and P ‖ Q(H)V 4iV Q(H), then
P ?Q(H) /Q(H) ∼= P.

Proof. First we deal with the pathological case where some q ∈ Q(H) forces that CĠQ(H)
is countable. Let A be a antichain

maximal with respect to every q ∈ A having this property. Then let B ⊆ Q(H) satisfy A ∪ B is a maximal antichain. For all
a ∈ A, clearly Q(H)a is the trivial forcing notion and moreover this is upwards absolute, and thus P ? Q(H)a / Q(H)a ∼=
P ?1/1 ∼= P . Now, by Eq. (26), it suffices to prove that P ?Q(H)b /Q(H)b ∼= P for all b ∈ B. Henceforth, we assumewithout
loss of generality thatQ(H) ‖ CĠQ(H)

is uncountable.
By Proposition 94, the map e : Q(H)→ P ?Q(H) given by

e(q) = (0Q(H), q) (43)

defines a generic embedding ofQ(H) into P ?Q(H). Let G ∈ Gen(V ,Q(H)).
In V [G]: The representation of the quotient given by e is

(P ?Q(H)) / G = {(p, q̇) ∈ Q ? Ṙ : (p, q̇) is Q ? Ṙ-compatible with every member of e[G]}, (44)

with the order inherited from P ? Q(H). Thus, as e[G] = {0Q } × G, (p, q̇) ∈ (P ? Q(H)) / G iff every r ∈ G has a p′ ≥ p
forcing that r is compatible with q̇.

Claim 141.1. For all (p, q̇) ∈ (P ? Q(H)) / G, there exists p′ ≥ p such that p′ decides xq̇ and (p′′, q̇) ∈ (P ? Q(H)) / G for all
p′′ ≥ p′.
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Proof. Let (p, q̇) ∈ (P ? Q(H)) / G be given. Then letting D be the set of all d ≥ p deciding xq̇, D is dense above p by our
assumption on P . Note that (xq̇[d], {J̇[d] : J̇ ∈ Xq̇}) ∈ Q(H) for all d ∈ D by Proposition 138.
Now assume towards a contradiction that Claim 141.1 fails. Let E be the set of all d ∈ D for which there is an rd ∈ G such

that

rd ⊥ (xq̇[d], {J̇[d] : J̇ ∈ Xq̇). (45)

Subclaim 141.1.1. E is dense above p.

Proof. Take p0 ≥ p. Pick d ≥ p0 in D. By our assumption that the claim fails, there exists p1 ≥ d such that (p1, q̇) /∈
(P ? Q(H)) / G. Hence there is an r ∈ G and p2 ≥ p1 forcing that r is incompatible with q̇. Since p2 ‖ xq̇ = xq̇[d], by
Proposition 42, either xq̇[d] is not comparable under end-extension with xr , in which case it is clear that rd := r witnesses
that d ∈ E, or else p2 forces that there exists J ∈ Xq̇ ∪Xr with xq̇[d] ∪ xr /∈ ∂H (J). If it is the case that xq̇[d] /∈ ∂H (J) for
some J ∈ Xr , then rd := r witnesses that d ∈ E. Otherwise, in the remaining case there exists p3 ≥ p2 and J̇ ∈ Xq̇ such
that p3 ‖ xr /∈ ∂H (J̇). Hence, there exists y ∈ H and p4 ≥ p3 forcing that there is no z ⊇∗ y in J̇ with xr ⊆ z. Therefore,
there is no z ∈ J̇[p4]with y ⊆∗ z and xr ⊆ z, i.e. xr /∈ ∂H (J̇[p4]). Now d := p4 and rd := r witness that p4 ∈ E. �

Subclaim 141.1.2. There exists d ∈ E such that (xq̇[d], {J̇[d] : J̇ ∈ Xq̇}) ∈ G.

Proof. Suppose not. Then there exists r ∈ G such that r ‖ (xq̇[d], {J̇[d] : J̇ ∈ Xq̇}) /∈ ĠQ(H) for all d ∈ E. This means that

r ⊥ (xq̇[d], {J̇[d] : J̇ ∈ Xq̇}) for all d ∈ E. (46)

However, (p, q̇) ∈ (P?Q(H))/G implies that there exists (p′, q̇′) ≥ (p, q̇) in P?Q(H) such that p′ ‖ q̇′ ≥ r . And by Subclaim
141.1.1, and Lemma 139 with D := E, there exists d ∈ E such that (p′, q̇′) is compatible with

(
d, (xq̇, {J̇[d] : J̇ ∈ Xq̇})

)
=(

d, (xq̇[d], {J̇[d] : J̇ ∈ Xq̇})
)
. This clearly implies that r is compatible with (xq̇[d], {J̇[d] : J̇ ∈ Xq̇}), contradicting (46). �

Let d be as in Subclaim 141.1.2. Then as in Eq. (45), there exists r ∈ G such that r ⊥ (xq̇[d], {J̇[d] : J̇ ∈ Xq̇}). This
obviously contradicts (xq̇, {J̇[d] : J̇ ∈ Xq̇) ∈ G. �

Claim 141.1 allows us to define f : (P ? Q(H)) / G→ P so that for all (p, q̇) ∈ (P ? Q(H)) / G, f (p, q̇) ∈ D, f (p, q̇) ≥ p
and (p′, q̇) ∈ (P ? Q(H)) / G for all p′ ≥ f (p, q̇). Thus f satisfies clauses (a) and (b) of Lemma 99 with O := Q(H) and
Q̇ := Q(H)V [ĠP ]. Observe that for all (p, q̇) ∈ (P ?Q(H)) / G,

f (p, q̇) ‖ q̇ is compatible with r for all r ∈ G. (47)

It remains to verify clause (c) that (f (p, q̇), q̇) and (f (p′, q̇′), q̇′) are P ? Q̇ -compatible whenever f (p, q̇) and f (p′, q̇′) are
compatible. Then Lemma 99 will yield (P ?Q(H)) /Q(H) ∼= Q(H).
Suppose then that f (p, q̇) and f (p′, q̇′) are compatible, say p′′ is a common extension. By our assumption that CG is

uncountable, there exists r ∈ G such that xr * xq̇[f (p, q̇)] and xr * xq̇′ [f (p′, q̇′)]. Therefore, by (47) and Proposition 42,
xq̇[f (p, q̇)] and xq̇′ [f (p′, q̇′)] are both initial segments of xr and are thus comparable under end-extension. Again by (47)
and Proposition 42, f (p, q̇) ‖ xr ∈ ∂H (J̇) for all J̇ ∈ Xq̇ and f (p′, q̇′) ‖ xr ∈ ∂H (J̇) for all J̇ ∈ Xq̇′ . Thus
p′′ ‖ pxq̇ ∪ xq̇′ ⊆ xr ∈ ∂H (J) for all J ∈ Xq̇ ∪Xq̇′q, proving that p′′ ‖ q̇ and q̇′ are compatible, by Proposition 42. �

Lemma 142. LetH ⊆ [θ ]ℵ0 . If P is a forcing notion that adds no new countable subsets of θ , and P ‖ R(H)V 4iV R(H), then
P ?R(H) /R(H) ∼= P.

Proof. Essentially the same as Lemma 141 but using Proposition 66. �

Corollary 143 (CH). LetH and I be σ -directed subfamilies of ([ω1]ℵ0 ,⊆∗), with I moreover a P-ideal. Then

(a) R(H) ?R(I) /R(I) ∼= R(H),
(b) R(H) ?Q(I) /Q(I) ∼= R(H).

Proof. For conclusion (a), we can apply Lemma 142 with P := R(H) andH := I, becauseR(H) ‖ R(I)V 4iV R(I) by
Corollary 130.
For (b), we can apply Lemma 141 with P := R(H), by Corollary 131. �

Corollary 144 (CH). LetH and I be P-ideals on ω1. Suppose that R(J) forces that there is no stationary set orthogonal toH
for every σ -directed subfamily J of ([ω1]ℵ0 ,⊆∗) having no countable decomposition of ω1 into orthogonal pieces. Then

(a) Q(H) ?R(I) /R(I) ∼= Q(H),
(b) Q(H) ?Q(I) /Q(I) ∼= Q(H).

Proof. By the hypothesis, Corollary 133 applies so that Q(H) ‖ R(I)V 4iV R(I), and thus conclusion (a) holds by
Lemma 142.
Similarly, Corollary 134 applies so thatQ(H) ‖ Q(I)V 4iV Q(I), and thus conclusion (b) holds by Lemma 141. �
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We have now achieved commutativity.

Corollary 145 (CH). LetH and I be P-ideals on ω1. Then

R(H) ?R(I) ∼= R(H)×R(I) ∼= R(I)×R(H) ∼= R(I) ?R(H). (48)

Proof. Corollary 143(a) is equivalent to R(H) ? R(I) ∼= R(I) × R(H). The remaining equivalences are by the
commutativity of products and another application of Corollary 143(a). �

Corollary 146 (CH). LetH and I be P-ideals on ω1. Suppose that R(J) forces that there is no stationary set orthogonal toH
for every σ -directed subfamily J of ([ω1]ℵ0 ,⊆∗) having no countable decomposition of ω1 into orthogonal pieces. Then

Q(H) ?R(I) ∼= Q(H)×R(I) ∼= R(I)×Q(H) ∼= R(I) ?Q(H). (49)

Proof. We have Q(H) ? R(I) ∼= R(I) × Q(H) by Corollary 144(a), and R(I) ? Q(H) ∼= Q(H) × R(I) by
Corollary 143(b). �

Corollary 147 (CH). LetH and I be P-ideals onω1. Suppose thatR(J) forces that there is no stationary set orthogonal toH and
that there is no stationary set orthogonal toI for everyσ -directed subfamilyJ of ([ω1]ℵ0 ,⊆∗) having no countable decomposition
of ω1 into orthogonal pieces. Then

Q(H) ?Q(I) ∼= Q(H)×Q(I) ∼= Q(I)×Q(H) ∼= Q(I) ?Q(H). (50)

Proof. By two applications of Corollary 144(b). �

Remark. This is already very significant. For example, by Corollary 145,R(H) × R(I) ∼= R(H) ? R(I) which is proper.
This can easily be extended arbitrary finite products, whence R(H0) × · · · × R(Hn−1) is proper. This strongly suggests
that Shelah’s NNR theory from [8, Ch. XVIII, Section 2] applies to our classes of forcing notions (see Section 4.4 for more
discussion). This would be the first instance we are aware of where the theory applies to forcing notions of cardinality ℵ2
or greater. All of the examples in [8, Ch. XVIII, Sections 1, 2] are forcing notions of cardinality ℵ1.

Note for example that, at least when dealing with P-ideals, Corollary 130 strengthens to:

Corollary 149 (CH). Let H and I be P-ideals on ω1. Then R(H) ‖ R(I)V ∼= R(I); hence, R(H) ‖ pR(I)V is densely
included inR(I)q.

Proof. By Corollary 145 and Proposition 97. �

We are going to extend e.g. Corollary 129 to countable support iterations. For example, we shall prove:

Theorem 4 (CH). Suppose that (Pξ ,R(Ḣξ ) : ξ < δ) is a countable support iteration, where each Ḣξ is a Pξ -name for a P-ideal
onω1, and I is a P-ideal onω1 with no countable decomposition ofω1 into orthogonal pieces. Let then the limit Pδ of the iteration
forces that I has no countable decomposition of ω1 into pieces orthogonal to I.

We do not however obtain a preservation theorem for countable support iterations not decomposing ω1 into countably
many pieces orthogonal to I, and we doubt that this property is preserved under the iteration of any general class of proper
forcing notions (as opposed to the specific classR).

4.3. Coding iterations

While the forcing notions Q and R are viewed as classes with one parameter, we need to generalize definability to
iterations, to also allow iterations of Q andR to be interpreted in the relevant model. This is necessary for our analysis of
embedability, and will be necessary for our handling of the NNR iteration as well.

Definition 150. Let θ be an ordinal of uncountable cofinality. We describe a coding of those iterations consisting of
combinations of the forcing notions Q(H) and R(H), with H ⊆ [θ ]ℵ0 . We define a class Cθ of sequences, or codes, and
forcing notions P(Ea) for each Ea ∈ Cθ , by recursion on ξ = len(Ea). Let Cθ � 0 be the singleton containing the null sequence 〈〉
and let P(∅) be the trivial forcing notion. Having defined Cθ � ξ , let Cθ � ξ + 1 be the collection of all sequences of the form
Ea_(Ḣ,O)where Ea ∈ Cθ � ξ , Ḣ is a P(Ea)-name for a σ -directed subfamily of ([θ ]ℵ0 ,⊆∗) and O is eitherQ orR; then let

P(Ea_(Ḣ,O)) =
{
P(Ea) ?Q(Ḣ), if O = Q,
P(Ea) ?R(Ḣ), if O = R.

(51)

For limit δ, let Cθ � δ = lim
←−

ξ<δCθ � ξ be the inverse limit, i.e. all sequences Ea of length δ with Ea � ξ ∈ Cθ for all ξ < δ; then
for each Ea ∈ Cθ � δ, we let P(Ea) be the corresponding countable support iteration. Thus P(Ea) is the limit of (Pξ : ξ < δ) of the
iterated forcing (Pξ , Q̇ξ : ξ < δ), where each Q̇ξ is the second iterand in Eq. (51) plugging in Ea := Ea � ξ and (Ḣ,O) := Ea(ξ),
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inverse limits are taken at limits of countable cofinality and direct limits are taken at limits of uncountable cofinality. Denote
the class Cθ =

⋃
ξ∈On C

θ � ξ . For each Ea ∈ Cθ and each ξ < len(Ea), we let Ḣ(Ea(ξ)) = Ḣ where Ea(ξ) = (Ḣ,O).
Let Pθ ⊆ Cθ be the set of all codes Ea such that for all ξ < len(Ea), if Ea(ξ) is of the form (Ḣ,Q) then P(a � ξ) ‖ pthere is

no stationary subset of θ orthogonal to Ḣq.
For Ea ∈ Cθ , let D(Ea) be the set of codes generated by the operation Ea_(Ḣ,R), where P(Ea) forces that Ḣ is σ -directed

(and thus len(Eb) < len(Ea)+ ω for all Eb ∈ D(Ea)). Then define Qθ ⊆ Cθ as the set of all codes Ea such that for all ξ < len(Ea), if
Ea(ξ) is of the form (Ḣ,Q), then for all Eb ∈ D(Ea � ξ), P(Eb) forces that there is no stationary subset of θ orthogonal to Ḣ .
We also define Gθ ⊆ Qθ as the set of all codes Ea such that for all ξ < len(Ea), if Ea(ξ) is of the form (Ḣ,Q), then for

every Ec ∈ D(Ea � ξ) and every Eb ∈ C(Ec) with Ea � ξ ⊆ Eb (cf. Definition 172), P(Eb) forces that there is no stationary subset of θ
orthogonal to Ḣ .
Define CθP ⊆ C

θ as the set of all codes Ea such that P(Ea � ξ) ‖ pḢ(Ea(ξ)) is a P-idealq for all ξ < len(Ea). Let PθP = P
θ
∩CθP ,

QθP = Q
θ
∩ CθP and G

θ
P = G

θ
∩ CθP .

Proposition 151. If Ea, Eb ∈ Cθ then Ea_Eb ∈ Cθ and P(Ea_Eb) = P(Ea) ? P(Eb). More generally, if (Eaξ : ξ < µ) is a sequence of
elements ofCθ , then the concatenation Eb = Ea0_Ea1_ · · · _Eaξ _ · · · is inCθ and P(Eb) is the limit of the countable support iteration
determined by (P(Eaξ ) : ξ < µ).

Lemma 152. For all Ea ∈ Pθ , P(Ea) is proper.

Proof. By Lemmas 57 and 67. �

Proposition 153. Gθ ⊆ Qθ ⊆ Pθ .

Proof. For all ξ < len(Ea), Ea � ξ ∈ D(Ea � ξ) and Ea � ξ ∈ C(Ea � ξ). �

Proposition 154. For all Ea ∈ Cθ , for all ξ < len(Ea), P(Ea � ξ) ‖ Ea � [ξ, len(Ea)) ∈ Cθ , i.e. we are taking Cθ as a class with
parameter θ that is being interpreted in the forcing extension by P(Ea � ξ). Similarly, for all Ea ∈ Pθ (Qθ ) [CθP ], for all ξ < len(Ea),
P(Ea � ξ) ‖ Ea � [ξ, len(Ea)) ∈ Pθ (Qθ ) [CθP ].

Proof. These are immediate from the associativity of iterated forcing. �

Remark. Proposition 154 may fail forGθ , because in some forcing extension by P(Ea � ξ) there may be new elements of C(Ėc)
that do not correspond to elements of C(Ea)V , because for example elements of C(Ėc) include uncountable concatenations.

We also have a converse.

Proposition 156. For all Ea ∈ Cθ , and every P(Ea)-name Ėc, if P(Ea) ‖ Ėc ∈ Cθ then Ea_Ėc ∈ Cθ (assuming a suitable representation
of Ėc). Similarly, for Pθ , Qθ and CθP .

Now we can generalize Corollary 107 using our coding of iterations in the definition of frozen (Definition 109).

Lemma 157 (CH). Let I be a P-ideal on ω1 and let Ea ∈ Q
ω1
P . If P(Ea) adds no new reals, then all of the following are true:

(a) If there is no countable decomposition ofω1 into pieces orthogonal toI, then P(Ea) forces thatI has no countable decomposition
of ω1 into orthogonal pieces.

(b) P(Ea) ‖ R(I)V 4iV R(I); hence,R(I) 4 P(Ea) ?R(I).
(c) R(I) ‖ P(Ea)V 4iV P(Ea); hence, P(Ea) 4 R(I) ? P(Ea).
(d) P(Ea) ?R(I) /R(I) ∼= P(Ea).
(e) P(Ea) ?R(I) ∼= P(Ea)×R(I) ∼= R(I)× P(Ea).
(f) P(Ea) ?R(I) ∼= R(I) ? P(Ea).
(g) R(I) ‖ pP(Ea)V is densely included in P(Ea)q.
(h) (I,R)_Ea ∈ Pω1P .
(i) Let G ∈ Gen(V ,R(I)) and G?H ∈ Gen(V ,R(I) ?P(Ea)). Then for every P(Ea)-name Ḣ for a σ -directed subfamily of [ω1]ℵ0 ,
if V [H] |= pḢ[H] has no countable decomposition into orthogonal setsq, then so does V [G ? H] |= pḢ[H] has no such
countable decomposition of ω1q.

Proof. All clauses (a)–(i) are proved simultaneously by induction on len(Ea).
Base case: len(Ea) = 0.
P(Ea) is the trivial forcing notion. Thus clauses (a)–(h) are trivial, while (i) reduces to Corollary 129.
Successor case: len(Ea) = ξ + 1.

Then Ea is either of the form Eb_(J̇,R) or Eb_(J̇,Q), i.e. P(Ea) is either of the form P(Eb)?R(J̇) or P(Eb)?Q(J̇) (possibly Eb = 〈〉).
For clause (a), let G ∈ Gen(V , P(Eb)) and let G ? H ∈ Gen(V , P(Ea)). By the induction hypothesis, I has no countable

decomposition, in V [G], of ω1 into orthogonal pieces. In the first case Ea = Eb_(J̇,R), applying Corollary 129 in V [G], this
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remains true in V [G?H]. In the other case Ea = Eb_(J̇,Q). Then, in V [G], J̇[G] is a P-ideal since Ea ∈ Cω1P ; andR(I) forces there
is no stationary set orthogonal to J̇[G], because, in V , Ea ∈ Qω1 and thus Ea�ξ _(I,R) ∈ D(Ea�ξ) implies that P(Eb)?R(I) forces
there is no stationary subset of ω1 orthogonal to J̇. Therefore, Corollary 132 applies in V [G], establishing that in V [G ? H]
there is no countable decomposition of ω1 into pieces orthogonal to I.
Clause (b) follows from clause (a), just as in the proof of Corollary 130.
For clause (c), given a maximal antichain A ⊆ P(Ea), we need to show that R(I) ‖ pA is a maximal antichain

of P(Ea)q. First suppose Ea is of the form Eb_(J̇,R). Fix I ∈ Gen(V ,R(I)). Then take J ∈ Gen(V [I], P(Eb)V [I]), so that
I ? J ∈ Gen(V ,R(I) ? P(Eb)). By Proposition 90, we have that P(Eb) forces A / P(Eb) is a maximal antichain ofR(J̇). Therefore,
by the induction hypothesis that clause (c) holds for Eb, J ∈ Gen(V , P(Eb)) and hence putting B = (A / P(Eb))[J], V [J] |= pB
is a maximal antichain of R(J̇[J])q. We apply Corollary 107 with V := V [J], H := J̇[J], A := B and W := V [I ? J].
For any x ∈ J̇[J], applying the induction hypothesis that clause (i) holds for Eb, with J̇ := Ψ (J̇(x)), we see that if, in V [J],
there is no countable decomposition into sets orthogonal to Ψ (J̇(x))[J] = Ψ (J̇[J](x)), then, in V [I ? J], there is also no such
decomposition. Therefore, Corollary 107 yields V [I ? J] |= p(A / P(Eb))[J] is a maximal antichain of R(J̇[J])q. Since J is
arbitrary, this proves that V [I] |= pA is a maximal antichain of R(Ea)q by Proposition 90, as desired. The other case where
Ea = Eb_(J̇,Q), is exactly the same but Corollary 106 is used instead.
For (d), the hypothesis of Lemma 142, with P := P(Ea), is satisfied because P(Ea) adds no new countable subsets of ω1 and

by clause (b). Then clause (d) is the conclusion of the lemma.
Clause (e) is a restatement of clause (d) together with the fact that products commute.
Clause (f) is proved algebraically. First consider Ea = Eb_(J̇,R). Since P(Eb) adds no new reals, P(Eb) ‖ CH, and thus

P(Eb) ‖ R(J̇) ?R(I) ∼= R(I) ?R(J̇) (52)

by applying Corollary 145 in this forcing extension. Now by associativity of iterated forcing for the first equivalence, by
Eq. (52) for the second equivalence, and by the induction hypothesis that (f) holds for Eb for the third equivalence,

P(Ea) ?R(I) ∼= P(Eb) ? [R(J̇) ?R(I)]

∼= [P(Eb) ?R(I)] ?R(J̇)

∼= R(I) ? [P(Eb) ?R(J̇)]

= R(I) ? P(Ea),

(53)

as required.
Now we consider the other case Ea = Eb_(J̇,Q). If Ḣ is a P(Eb)-name for a σ -directed family with no countable

decomposition of ω1 into orthogonal pieces, then Eb_(Ḣ,R) ∈ D(Eb) and hence P(Eb) ‖ R(Ḣ) ‖ pthere is no stationary
set orthogonal to J̇q because Ea ∈ Qω1 . Therefore, the hypothesis of Corollary 146 holds in the extension by P(Eb), and hence
by the corollary,

P(Eb) ‖ Q(J̇) ?R(I) ∼= R(I) ?Q(J̇). (54)

Now we can obtain the result in exactly the same manner as Eq. (53).
Clause (g) is an immediate consequence of (e) and (f) and Proposition 97.
For (h), put Ec = (I,R)_Ea. First of all note that Ec ∈ Cω1 by clause (c). Take ξ < len(Ec). We can assume ξ > 0 since

Ec(0) = (I,R) is not of the form (Ḣ,Q), say ξ = 1+η. Then η < len(Ea). We have to deal with the situation where Ea(η) is of
the form (Ḣ,Q), in which casewemust show thatR(I)?P(Ea�η) forces there is no stationary set orthogonal to Ḣ . Applying
the induction hypothesis that clause (f) holds for Ea �η,R(I) ?P(Ea �η) ∼= P(Ea �η) ?R(I). Now Ed = (Ea �η)_(I,R) ∈ D(Ea �η),
and thus P(Ed) forces there is no stationary set orthogonal to Ḣ , because Ea ∈ Qω1 . Since P(Ec � ξ) = R(I) ? P(Ea � η) ∼= P(Ed),
this concludes the proof that Ec ∈ Pω1 .
For clause (i), let Ḣ be a P(Ea)-name for a σ -directed family. Let G ∈ Gen(V ,R(I)) and H ∈ Gen(V [G], P(Ea)V [G]) (thus

G ? H ∈ Gen(V ,R(I) ? P(Ea))). Then H ∈ Gen(V , P(Ea)) by clause (c). We assume that, in V [H], there is no countable
decomposition into sets orthogonal to Ḣ[H]. But then by (f), we know that V [G ? H] is anR(I)-generic extension of V [H],
and therefore there is no countable decomposition, in V [G ? H], into sets orthogonal to Ḣ[H] by Corollary 129.
Limit case: len(Ea) equals some limit ordinal δ.
First we establish clause (c). Let G ∈ Gen(V ,R(H)). In V [G]: P(Ea) is the limit of (P(Ea � ξ) : ξ < δ) (Proposition 151).

And by the induction hypothesis, P(Ea � ξ)V 4iV P(Ea � ξ) for all ξ < δ. Therefore, by Lemma 95, the limit, let us call it Q , of
(P(Ea � ξ)V : ξ < δ) is generically included in P(Ea) over V . Since we are dealing with countable support iterations, and since
R(H) adds no new reals, the limit of (P(Ea � ξ)V : ξ < δ) is the same whether taken here in V [G] or in the ground model V .
Hence P(Ea)V = Q 4iV P(Ea)

V [G].
For clause (h), we first of all have (I,R)_Ea ∈ Cω1P by clause (c). It then follows immediately from the induction

hypothesis that (I,R)_P(Ea � ξ) ∈ Pω1 for all ξ < δ, that (I,R)_P(Ea) ∈ Pω1 .
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Nextwe deal with clause (a). If there is no countable decomposition ofω1 into pieces orthogonal to I, thenR(I) forces an
uncountable set locally in I. Moreover,R(I) ?P(Ea) is proper, and in particular does not collapseℵ1, by Lemma 152, because
(I,R)_Ea ∈ Pω1 by clause (h). Therefore, as P(Ea) 4 R(I) ? P(Ea) by (c), P(Ea) cannot force a countable decomposition of ω1
into pieces orthogonal to I.
Clause (b) follows from clause (a) as before.
Clause (d) follows from clause (b) exactly as in the successor case; similarly for clause (e).
For clause (f), let G ∈ Gen(V ,R(I)). In V [G]: By the induction hypothesis that clause (g) holds for Ea � ξ for all ξ < len(Ea),

we have that P(Ea � ξ)V is densely included in P(Ea � ξ) for all ξ < δ. Therefore, by Lemma 98, the limit of (P(Ea � ξ) : ξ < δ),
call it Q , is isomorphic as a forcing notion to P(Ea). Since R(I) adds no reals, and the iterations are of countable support,
P(Ea)V = Q ∼= P(Ea). Now, back in V , we have established that R(I) × P(Ea) ∼= R(I) ? P(Ea), and thus the result is now a
consequence of (e).
Clause (g) follows as for the successor case.
Clause (i) follows from (c), (f) and Corollary 129 identically as for the successor case. �

Lemma 158 (CH). Let I be a P-ideal on ω1 and let Ea ∈ Q
ω1
P . If P(Ea) adds no new reals, then all of the following are true:

(a) P(Ea) ‖ Q(I)V 4iV Q(I); hence,Q(I) 4 P(Ea) ?Q(I).
(b) If Ea_(I,Q) ∈ Qω1 thenQ(I) ‖ P(Ea)V 4iV P(Ea); hence, P(Ea) 4 Q(I) ? P(Ea).
(c) P(Ea) ?Q(I) /Q(I) ∼= P(Ea).
(d) P(Ea) ?Q(I) ∼= P(Ea)×Q(I) ∼= Q(I)× P(Ea).
(e) If Ea_(I,Q) ∈ Qω1 then P(Ea) ?Q(I) ∼= Q(I) ? P(Ea).
(f) If Ea_(I,Q) ∈ Qω1 thenQ(I) ‖ pP(Ea)V is densely included in P(Ea)q.
(g) If Ea_(I,Q) ∈ Qω1 then (I,R)_Ea ∈ Pω1P .
(h) Let G ∈ Gen(V ,Q(I)) and G ?H ∈ Gen(V ,Q(I) ? P(Ea)). Then for every P(Ea)-name Ḣ for a σ -directed subfamily of [ω1]ℵ0 ,
if
(1) V [H] |= pḢ[H] has no countable orthogonal decompositionq,
(2) V [H] |= pR(Ḣ[H]) forces that there is no stationary set orthogonal to Iq,
then so does V [G ? H] |= pḢ[H] has no countable orthogonal decomposition of ω1q.

Proof. The proof is by induction on len(Ea). The base case len(Ea) = 0 is completely straightforward, and the limit case is the
same as for the proof of Lemma 157. Hence we only deal with the successor case len(Ea) = ξ + 1.
Clause (a) follows from Lemma 157(a), just as in the proof of Corollary 131.
For clause (b), given a maximal antichain A ⊆ P(Ea), we need to show that Q(I) ‖ pA is a maximal antichain

of P(Ea)q. First suppose Ea is of the form Eb_(J̇,R). Fix I ∈ Gen(V ,Q(I)). Then take J ∈ Gen(V [I], P(Eb)V [I]), so that
I ? J ∈ Gen(V ,Q(I) ? P(Eb)). By Proposition 90, we have that P(Eb) forces A / P(Eb) is a maximal antichain ofR(J̇). Therefore,
by the induction hypothesis that clause (b) holds for Eb, J ∈ Gen(V , P(Eb)) and hence putting B = (A / P(Eb))[J], V [J] |= pB
is a maximal antichain of R(J̇[J])q. We apply Corollary 107 with V := V [J], H := J̇[J], A := B and W := V [I ? J].
For any x ∈ J̇[J], suppose that, in V [J], there is no countable decomposition into sets orthogonal to Ψ (J̇[J](x)). Since
Eb_(Ψ (J̇(x)),R) ∈ D(Eb), and since the hypothesis on I clearly entails that Eb_(I,Q) ∈ Qω1 , we have that P(Eb) ?R(Ψ (J̇(x)))

forces there is no stationary set orthogonal to I, i.e. V [J] |= pR(Ψ (J̇[J](x))) forces there is no stationary set orthogonal to
Iq. Therefore, the induction hypothesis (h) applies to Eb with Ḣ := Ψ (J̇(x)), and thus, in V [I ? J], there is also no countable
decomposition into sets orthogonal to Ψ (J̇[J](x)). Therefore, Corollary 107 yields V [I ? J] |= p(A / P(Eb))[J] is a maximal
antichain ofR(J̇[J])q. Since J is arbitrary, this proves that V [I] |= pA is a maximal antichain ofR(Ea)q by Proposition 90, as
desired. The other case where Ea = Eb_(J̇,Q), is exactly the same but Corollary 106 is used instead.
Clause (c) is a consequence of Lemma 141 with P := P(Ea), by the hypothesis that P(Ea) does not add reals and clause (a).
Clause (d) is a restatement of clause (c).
Clause (e) is proved algebraically. First consider Ea = Eb_(J̇,R). Since P(Eb) adds no new reals, P(Eb) ‖ CH; and for every

P(Eb)-name Ḣ for a σ -directed family, it follows from the fact that Ea_(I,Q) ∈ Qω1 that P(Eb) ‖ R(Ḣ) ‖ pthere is no
stationary set orthogonal to Iq; and thus

P(Eb) ‖ R(J̇) ?Q(I) ∼= Q(I) ?R(J̇) (55)

by applying Corollary 146 the forcing extension by P(Eb). Using by Eq. (55) for the second equivalence, and the induction
hypothesis (e) for Eb for the third equivalence,

P(Ea) ?Q(I) ∼= P(Eb) ? [R(J̇) ?Q(I)]

∼= [P(Eb) ?Q(I)] ?R(J̇)

∼= Q(I) ? [P(Eb) ?R(J̇)]

= Q(I) ? P(Ea),

(56)

as required.



188 J. Hirschorn / Annals of Pure and Applied Logic 157 (2009) 161–193

Now we consider the other case Ea = Eb_(J̇,Q). If Ḣ is a P(Eb)-name for a σ -directed family, then Eb_(Ḣ,R) ∈ D(Eb)
and hence P(Eb) ‖ R(Ḣ) ‖ pthere is no stationary set orthogonal to J̇q because Ea ∈ Qω1 ; and furthermore, we saw above
that P(Eb) ‖ R(Ḣ) ‖ pthere is no stationary set orthogonal to Iq. Therefore, the hypothesis of Corollary 147 holds in the
extension by P(Eb), and hence by the corollary,

P(Eb) ‖ Q(J̇) ?Q(I) ∼= Q(I) ?Q(J̇). (57)

Now we can obtain the result in exactly the same manner as Eq. (56).
Clause (f) is an immediate consequence of Proposition 97.
For (g) is immediate from (e).
For clause (h), let Ḣ be a P(Ea)-name for a σ -directed family. Let G ∈ Gen(V ,Q(I)) and H ∈ Gen(V [G], P(Ea)V [G]). Then

H ∈ Gen(V , P(Ea)) by clause (b); and by (e), we know that V [G ?H] is aQ(I)-generic extension of V [H]. We assume that (1)
and (2) hold, and therefore, in V [H], the hypotheses of Corollary 132 hold withH := Ḣ[H], and hence, in V [G ?H], there is
no countable decomposition into sets orthogonal to Ḣ[H] by the corollary. �

The following theorem is the absoluteness result we have been working towards.

Theorem 5 (CH). Let Ea, Eb ∈ Cω1P . Suppose Ea
_Eb ∈ Qω1 . If P(Ea_Eb) adds no new reals, then P(Ea) ‖ P(Eb)V 4iV P(Eb), and hence

P(Eb) 4 P(Ea_Eb). Moreover,

P(Ea_Eb) = P(Ea) ? P(Eb) ∼= P(Ea)× P(Eb)
∼= P(Eb)× P(Ea) ∼= P(Eb) ? P(Ea) = P(Eb_Ea).

(58)

Proof. This is proved by a straightforward induction from Lemmas 157 and 158. �

Let us next describe how Theorem 5 is applied, after introducing notation for concatenating sequences of sequences.

Definition 159. For X ⊆ On and any sequence EEx = (Exγ : γ ∈ X) of sequences (i.e. functions whose domains are
ordinals), let ρ(EEx) be the concatenation under the ordinal ordering, i.e. ρ(EEx) is a sequence of length

∑
γ∈X len(Exγ ) and

ρ(EEx) � [ζγ , ζγ+1) = Exγ for all γ ∈ X , where ζγ =
∑

ξ∈X,ξ<γ len(Exξ ).

Proposition 160. Suppose that EEa = (Eaγ : γ ∈ X) where each Eaγ ∈ Cθ . Then every p ∈ P(ρ(EEa)) is of the form ρ(Ep) where
Ep = (pγ : γ ∈ X) and each pγ ∈ P(Eaγ ).

Definition 161. For all Ea, Eb ∈ Cθ , let e(Ea, Eb) : P(Eb)→ P(Ea_Eb) be given by

e(Ea, Eb)(p) = 0P(Ea)_p (59)

for all p ∈ P(Eb).
More generally, suppose that EEa = (Eaγ : γ < δ) is a sequence with each Eaγ ∈ Cθ . For X ⊆ δ, let f (EEa, X) : P(ρ(EEa � X))→

P(ρ(EEa)) be given by f (EEa, X)(p) = ρ(Eq)where Eq = (qγ : γ < δ) is given by

qγ =
{
pγ , if γ ∈ X,
0P(Eaγ ), if γ /∈ X,

(60)

and p = ρ(Ep) as in Proposition 160.

The following are corollaries of Theorem 5.

Corollary 162 (CH). Let Ea, Eb ∈ Cω1P . Suppose Ea
_Eb ∈ Qω1 and P(Ea_Eb) adds no new reals. Then e(Ea, Eb) is a generic embedding.

Corollary 163 (CH). Let Eaγ ∈ C
ω1
P (γ < δ). Suppose that ρ(EEa) ∈ Qω1 and P(ρ(EEa)) adds no new reals. Then f (EEa, X) is a generic

embedding for all X ⊆ δ.

Remark. The argument in Example 85 applies so that the antisymmetric quotient of P(ρ(EEa)) is a complete semilattice and
themap from P(ρ(EEa�X))/∼asym into P(ρ(EEa))/∼asym induced by f (EEa, X) has an upward order closed range. Hence Lemma 84
justifies the following definition.

Definition 165. Letπ(Ea, Eb) : P(Ea_Eb)→ P(Eb) be the projection defined in Eq. (23) from e(Ea, Eb); and let ν(EEa, X) : P(ρ(EEa))→
P(ρ(EEa � X)) be the projection defined in Eq. (23) from f (EEa, X).

Proposition 166. π(Ea, Eb) is a left inverse of e(Ea, Eb).

Proposition 167. ν(EEa, X) is a left inverse of f (EEa, X).
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The important properties of π , and more generally of ν are:

Lemma 168 (CH). Let Ea, Eb ∈ Cω1P . Suppose Ea
_Eb ∈ Qω1 and P(Ea_Eb) adds no new reals. If q ∈ gen+(M, P(Ea_Eb)) then

π(Ea, Eb)(q) ∈ gen+(M, P(Eb)).

Proof. Proposition 88, Corollary 162 and Proposition 166. �

Lemma 169 (CH). Suppose that EEa is a sequence of members of Cω1P , with ρ(EEa) ∈ Qω1 , and P(ρ(EEa)) adds no new reals. If
q ∈ gen+(M, P(ρ(EEa))), then for all X ⊆ δ, ρ(Eq) ∈ gen+(M, P(ρ(EEa � X))) where

qγ = π
(
ρ(EEa � γ ), Eaγ

)(
q � len(ρ(EEa � γ )_Eaγ )

)
(61)

for all γ ∈ X.

Proof. By Proposition 88, Corollary 163 and Proposition 167, ν(EEa, X)(q) ∈ gen+(M, P(ρ(EEa � X))). Eq. (61) is established by
verifying that

π
(
ρ(EEa � γ ), Eaγ

)(
q � len(ρ(EEa � γ )_Eaγ )

)
∼sep pγ for all γ ∈ X, (62)

where ν(EEa, X)(q) = ρ(Ep) and Ep = (pγ : γ ∈ X). �

4.4. trind-properness

In [8, Ch. XVIII, Definition 2.1], the notation trindα(t) is used to denote all labelings Eβ = (βx : x ∈ t) of some finite tree t
with ordinals at most α, i.e. βx ≤ α for all x ∈ t , so that

x <t y implies βx ≤ βy. (63)

An operation is defined on iterations EP = (Pξ , Q̇ξ : ξ < α) of length α by members of Eβ ∈ trindα(t), where EPEβ is the
collection of all sequences (px : x ∈ t) such that

(i) px ∈ Pβx for all x ∈ t ,
(ii) x <t y implies py � βx = px.

Thus for example, if t is a finite tree of height 1 then for every Eβ ∈ trindα(t), EPEβ is a finite product of the form Pβ0×· · ·×Pβn−1
where βi ≤ α for all i = 0, . . . , n− 1.
Then (in [8, Ch. XVIII, Definition 2.2]) the notion of an NNR2-iteration is defined, which in particular entails that the

iteration is completely proper. Then the new theorem for iterations not adding new reals is [8, Ch. XVIII, Main Lemma 2.8]
stating that if (Pξ : ξ ≤ δ) an iteration where Pξ is NNR2 for all ξ less than the limit δ, then Pδ is NNR2. Without reviewing
the details of the definition of NNR2, we refer to this theory as the trind-properness NNR theory.
Unexpectedly, in overcoming the difficulties in constructing a properness parameter suitable for forcing (?c), we came

very close to satisfying the hypotheses for the trind-properness NNR theory. Indeed, using the methods we have already
presented, our Theorem 5 can be extended to say: P(Ea)Eβ is proper for all Ea ∈ G

ω1
P and all Eβ ∈ trindα(t) for every finite tree

t . Thus our iteration, which will be of the form P(Ea) for some Ea ∈ Gω1P , is trind-proper, i.e. it remains proper after operating
on it with members of trindα(t).
We think it is most likely that Shelah’s above-mentioned theorem can be strengthened to something like: if (Pξ , Q̇ξ : ξ <

δ) is a countable support iteration such that Pξ ‖ pQ̇ξ isD-completeq for all ξ < δ, and (Pξ , Q̇ξ : ξ < δ) is trind-proper, then
Pδ adds no new reals (probably this would require a slightlymore general operation than trind). This seems to agreewith his
description of the essence of the theory in [8, page 868]; however, at present we do not have a good enough understanding
of his proof to make a conjecture.
Such a theorem would result in a better (or at least shorter) proof of Theorem 1 than the one here using properness

parameters. However, as it stands, the definition of EP = (Pξ , Q̇ξ : ξ < δ) being NNR2 requires the properness of EP ′Eβ for

β ∈ trindα(t) where EP ′ is some arbitrary completely proper extension of some initial segment of EP . Our iteration will not
satisfy this requirement of NNR2.

5. Model of CH

We begin with an arbitrary ground model V (of enough of ZFC) satisfying GCH. Set κ = ℵ2 and λ = ℵ3 as in Eq. (7).
As usual, NS([A]ℵ0) denotes the nonstationary ideal on [A]ℵ0 and NS∗([A]ℵ0) is the dual filter, and thus is generated by

the family of closed cofinal subsets of [A]ℵ0 .

Definition 170. Whenever V |= pE ∈ NS∗([Hκ ]ℵ0)q, let NS∗(E; V ) =
{
F ⊆ E : F ∩ S 6= ∅ for all S ∈

(
NS∗([Hκ ]ℵ0)

)V}.
Let NS∗(V ) denote NS∗(([Hκ ]ℵ0)V , V ), when Hκ is understood.
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Proposition 171. Suppose P is proper and Ṫ is a P-namewhere P ‖ Ṫ ⊆ E[ĠP ] (cf. Notation 30). The following are equivalent:

(a) P ‖ Ṫ ∈ NS∗(E; V ).
(b) For all M ≺ Hλ with P, E ∈ M and M ∩ Hκ ∈ E , every p ∈ P ∩ M has an (M, P)-generic extension q such that
q ‖ M ∩ Hκ ∈ Ṫ .

5.1. The properness parameters

The cardinal sequence

µα = ℵ
+

2+α (α < ω1) (64)

is suitable for a λ-properness parameter, andwe let EA be any fixed skeleton, e.g.Aα = {M ∈ [Hµα ]
ℵ0 : M ≺ Hµα } (α < ω1).

We begin by motivating the definitions to follow. Let H be a σ -directed subfamily of ([ω1]ℵ0 ,⊆∗) with no stationary
subset of ω1 orthogonal to it. In Lemma 59 we saw that for a given map Ω on lim

−→
A, a sufficient condition for Q(H)

to be ( EA,DΩ)-proper is that there exist yM ∈ Ω(M) ∩ ↓H for all M ∈ lim
−→

A of positive rank satisfying ϕ∗(M,H, y).
Conversely, suppose that X ⊆ M(q) ∩ M for some q ∈ gen(M,Q(H)). Since CĠQ(H)

names a club (cf. Corollary 51),
q ‖ tr supω1(X) ⊆ CĠQ(H)

. Therefore, every initial segment of tr supω1(X)must be in ↓H .
Consider the next simplest case: an iteration of the form R(I) ? Q(Ḣ) where Ḣ names an H as above. In order that

R(I) ?Q(Ḣ) isDΩ-proper, wemust in particular have for everyM of positive rank, that every finite sequence (p0, ṡ0), . . . ,
(pn−1, ṡn−1) ∈ R(I) ? Q(Ḣ) ∩ M has (qi, ṫi) ∈ gen(M,R(I) ? Q(Ḣ), pi) (i = 0, . . . , n − 1) and an X ∈ DΩ(M) such
that X ⊆

⋂n−1
i=0 M(qi, ṫi). Let us focus on the case n = 2. We shall need y0, y1 ∈ Ω(M) such that qi ‖ yi ∈ ↓Ḣ and

qi ‖ ϕ∗(M,H, yi) for i = 0, 1. Then to ensure thatDΩ(M) 6= ∅we would apply Lemma 23.
In particular, to satisfy property (iii) in the definition of instantiation, this means that we must be able to find cofinally

many K ∈ lim
−→

A ∩M with

sup(ω1 ∩ K) ∈ y0 ∩ y1. (65)

This can be achieved as follows. Let Ea be the code forR(I), let Eb be the code forR(I) ? Q(Ḣ). Assume that Eb ∈ Gω1 . First
of all we choose r ∈ gen+(M, P(Ea_Ea), p0_p1). Then we let q0 = π(∅, Ea)(r � len(Ea)) ∈ P(Ea) and q1 = π(Ea, Ea_Ea)(r) ∈ P(Ea).
It follows from an application of Lemma 169 that q0_q1 ∈ gen+(M, P(Ea_Ea)). Then by extending q0 and q1 wemay assume
that there exist y0 and y1 as above. Now for some fixed b ∈ M ∩ Hλ and ξ < rank(M), suppose that we want to find
K ∈ Aξ ∩ M with b ∈ K satisfying (65). Since Aξ ∈ M is stationary, S = tr sup(Aξ ) ⊆ ω1 is a stationary set in M . By the
assumption that P(Ea) forces that Ḣ has no stationary orthogonal set and by Lemma 71, P(Ea) ?R(Ḣ) forces that S∩XG̈R(Ḣ)

is

stationary. Since in particular, Eb ∈ Qω1 , we know that P(Ea) ?R(Ḣ) forces there is no stationary set orthogonal to Ḣ . It then
follows from Lemma 89 that P(Ea) ?R(Ḣ) forces that there is no stationary set orthogonal to e∗(Ea, Ea)(Ḣ). Hence applying
Lemma 71 again, P(Ea) ?R(Ḣ) ?R(e∗(Ea, Ea)(Ḣ)) forces that

S ∩ XG̈R(Ḣ)
∩ XG̈R(e∗(Ea,Ea)(Ḣ))

is stationary. (66)

The whole point of invoking the embedding e(Ea, Ea) is that we want the name Ḣ to be interpreted according to q1 (in
particular, e∗(Ea, Ea)(Ḣ) is independent of q0, unlike Ḣ ∩M which is determined by q0). It is now straightforward to produce
K ∈ Aξ ∩M with b ∈ K satisfying (65).
The argument just outlined is a simplified version of our main lemma, Lemma 182. The general case, were Ea codes an

initial segment of our iteration, is where we need to use Gω1 .
Definition 172. Suppose Ea ∈ Cθ . Let C(Ea) be the set of all codes generated by restriction and concatenations of arbitrary
length, i.e. Eb ∈ C(Ea) implies that b � ξ ∈ C(Ea) for all ξ < len(Eb), and Ebγ ∈ C(Ea) (γ < δ) implies that Ec ∈ C(Ea), where

Ec = Eb0_ · · ·_ Ebγ _ · · · (γ < δ). (67)

For κ an infinite cardinal, we let C(Ea, κ) be the subfamily of C(Ea) generated by restrictions, and concatenations of length
less than κ .
Proposition 173. Let κ be an infinite regular cardinal. Then C(Ea, κ) consists of all codes of the form (Ea � ξ0)_ · · ·_ (Ea � ξγ )_ · · ·
(γ < δ) where each ξγ < len(Ea) and δ < κ .

Notation 174. For each Ea ∈ Cθ , and each ordinalγ , we let Eaγ denote the concatenation Ea_Ea_ · · · iteratedγ times, i.e. len(Eaγ ) =
len(Ea) · γ and Eaγ (len(Ea) · ζ +ρ) = Ea(ρ) for all ζ < γ and ρ < len(Ea) (and considering P(Ea)-names to also be P(Ea_Eb)-names).
Definition 175. Define a (class) function ψ = ψθ : Cθ × On→ Cθ by recursion on len(Ea) by ψ(〈〉, γ ) = 〈〉, and

ψ(Ea, γ ) :=
⋃

ξ<len(Ea)

ψ(Ea � ξ)

= (Ea � 1)γ _(Ea � 2)γ _ · · ·_ (Ea � ξ)γ _ · · · (ξ < len(Ea)).
(68)
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Proposition 176. ψθ (Ea, γ ) ∈ C(Ea,max{len(Ea), |γ |}+) for all Ea ∈ Cθ .
Henceforth, θ = ω1.

Definition 177. We let

Φ
(
Ea, (rM , qMξγ , y

M
ξγ : M ∈ lim−→A, Ea ∈ M , ξ < len(Ea) and γ < ω1 are inM)

)
be a formula expressing the following state of affairs: Ea ∈ Gω1 ; and for allM ∈ lim

−→
Awith Ea ∈ M ,

(i) rM ∈ gen+(M, P(ψ(Ea, ω1))),

and for all ξ < len(Ea) and all γ < ω1 with ξ, γ ∈ M ,

(ii) qMξγ ∈ P(Ea � ξ),
(iii) qMξγ ≥ π

(
Ea � ξ,

⋃
ζ<ξ ψ(Ea � ζ )

_(Ea � ξ)γ
)(
rM � len

(⋃
ζ<ξ ψ(Ea � ζ )

_(Ea � ξ)γ
))
,

(iv) qMξγ ‖ y
M
ξγ ∈ Ḣ(Ea(ξ)),

(v) qMξγ ‖ x ⊆
∗ yMξγ for all x ∈ Ḣ(Ea(ξ)) ∩M .

We abbreviate the above expression asΦ
(
Ea, (Er, Eq, Ey)

)
.

AssumingΦ
(
Ea, (Er, Eq, Ey)

)
, for each Ec ∈ C(Ea,ℵ0), say Ec = (Ea � ξ0)_ · · ·_ (Ea � ξk−1) (cf. Proposition 173), and each α < ω1,

define a P(Ec)-name

ḂEcα =
{
M ∈ Aα : qMξ0γ0

_
· · ·

_ qMξk−1γk−1 ∈ ĠP(Ec) for some γ0 < · · · < γk−1 in ω1 ∩M
}
. (69)

We also defineΩ(Ey)(M) ∈ [[θ ]ℵ0 ]≤ℵ0 by

Ω(Ey)(M) =
{
yMξγ : ξ < len(Ea), γ < ω1, ξ, γ ∈ M

}
, (70)

and we put

Z(Ea) =
{
(P(Ec), ḂEc) : Ec ∈ C(Ea,ℵ0)

}
. (71)

Lemma 178. For all Ec = (Ea � ξ0)_ · · ·_ (Ea � ξk−1) in C(Ea,ℵ0),

qMξ0γ0
_
· · ·

_ qMξk−1γk−1 ∈ gen
+(M, P(Ec)) (72)

for all γ0 < · · · < γk−1 in ω1 ∩M.
Proof. This is a straightforward application of Lemma 169. �
The reason that the codes are repeated ω1 times (rather than just ω times) is so that we have the following.

Lemma 179. For all Ec = (Ea � ξ0)_ · · ·_ (Ea � ξk−1) in C(Ea,ℵ0), every p ∈ P(Ec) ∩M has γ0 < · · · < γk−1 in ω1 ∩M such that

qMξ0γ0
_
· · ·

_ qMξk−1γk−1 ≥ p. (73)

Proof. Standard density argument since we have countable supports with an iteration of uncountable cofinality. �
Lemma 180. P(Ec) ‖ ḂEcα ∈ NS

∗(Aα, V ) for all α < ω1.
Proof. We apply Proposition 171. Find N ≺ Hµα+1 with Aα ∈ N and M = N

˜
∈ Aα . Take p ∈ P(Ec) ∩ M . Then

qMξ0γ0
_
· · ·

_ qMξk−1γk−1 ≥ p for some γ0 < · · · < γk−1 in ω1 ∩ M by Lemma 179. Then qMξ0γ0
_
· · ·

_ qMξk−1γk−1 ‖ M ∈ ḂEcα
as wanted. �
Notation 181. For an iterated forcing notion of the form R = P0 ? Q̇0 ? Q̇1 ? · · · ? Q̇n, a R-name Ȧ and r = (p, q̇(0), . . . , q̇(n)) ∈
gen+(M, R), we let Ȧ[p, q̇(0), . . . , q̇(n)] denote the interpretation of Ȧ by ĠR[M, r] (cf. Section 1.1).

Lemma 182. Φ
(
Ea, ĖH, (Er, Eq, Ey)

)
implies that for all M ∈ lim

−→
A with rank(M) > 0, for all Ec ∈ C(Ea,ℵ0) ∩ M, say as in (67), for

all γ0 < · · · < γk−1 in ω1 ∩M, for all b ∈ M ∩ Hλ, for all α < rank(M) there exists K ∈ Aα ∩M such that

(a) b ∈ K ,
(b) sup(θ ∩ K) ∈

⋂k−1
i=0 y

M
ξiγi
,

(c) K ∈ Ḃ
Eb
α

[
qMξ0γ0 , . . . , q

M
ξk−1γk−1

]
.

Proof. Working inM[ĠP(Ec)[qMξ0γ0 , . . . , q
M
ξk−1γk−1

]]: Lemma 180 in particular implies thatC =
{
K ∈ ḂEcα[q

M
ξ0γ0
, . . . , qMξk−1γk−1 ] :

b ∈ K
}
is a cofinal subset of [Hµα ]

ℵ0 . Let S = tr supθ (C), which is thus stationary. We define Ṡn and Edn ∈ D(〈〉) by recursion
on n = 0, . . . , k so that Ṡ0 = S, Ed0 = 〈〉 and

(74) Ṡn+1 is a P(Ec)?R
(
e∗(Ed0, Ea �ξ0)(Ḣ(Ea(ξ0)))

)
? · · ·?R

(
e∗(Edn, Ea �ξn)(Ḣ(Ea(ξn)))

)
-name for a stationary subset of Ṡn locally

in e∗(Edn, Ea � ξn)(Ḣ(Ea(ξn))),
(75) Edn+1 = Edn_

(
e∗(Edn, Ea � ξn)(Ḣ(Ea(ξn))),R

)
.
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This is possible by Lemma71, by the hypothesis that Ea ∈ Gω1 , and thus forcing notions as in (74) donot add stationary subsets
of ω1 orthogonal to any Ḣ(Ea(ξ)), and therefore do not add stationary subsets orthogonal to any e∗(Edn, Ea � ξn)(Ḣ(Ea(ξn))) by
Lemma 89.
We can find (an infinite) x ∈ [θ ]ℵ0 and Ep ∈ R

(
e∗(Ed0, Ea � ξ0)(Ḣ(Ea(ξ0)))

)
? · · · ?R

(
e∗(Edk−1, Ea � ξk−1)(Ḣ(Ea(ξk−1)))

)
so that

Ep ‖ x ⊆ Ṡk. Nowby equation (74), x ∈ e∗(Edn, Ea�ξ0)(Ḣ(Ea(ξn)))[e(Edn, Ea�ξ0)(qMξnγn)] = Ḣ(Ea(ξn))[qMξnγn ] for all n = 0, . . . , k−1.
Thus, as x ∈ M by complete properness, x ⊆∗ yMξnγn by equation (v), for all n. Hence there exists δ ∈ x∩y

M
ξ0γ0
∩· · ·∩yMξk−1γk−1 .

And then by elementarity, there exists K ∈ C ∩M with sup(θ ∩ K) = δ. �

Corollary 183. Φ
(
Ea, ĖH, (Er, Eq, Ey)

)
implies thatDΩ(Ey)(A;Z(Ea)) is a properness parameter.

Proof. We apply Lemma 29. LetM ∈ lim
−→

Awith rank(M) > 0 be given. Each (P, Ḃ) ∈ Z ∩M is of the form (P(Ec), ḂEc) for
some Ec ∈ C(Ea) ∩M , say Ec = (Ea � ξ0)_ · · ·_ (Ea � ξnEc−1). Using Lemmas 178 and 179, we can find pairwise disjoint sequences

Eγ Ecp ∈ ω
nEc
1 ∩M (p ∈ P(Ec) ∩M). We can also arrange that (the ranges of) Eγ

Ec
p and Eγ

Ec ′
p′ are disjoint whenever Ec 6= Ec

′. Define

q̄M
P(Ec),ḂEc

(p) = qM
ξ0γ
Ec
p (0)

_
· · ·

_ qM
ξ
nEc−1

γ Ecp (nEc−1)
(76)

for each Ec ∈ C(Ea) ∩M and p ∈ P(Ec) ∩M .
To apply Lemma 29, let A ⊆ Ω(Ey) be finite, say A = {yMξ0γ0 , . . . , y

M
ξk−1γk−1

}, Ec0, . . . , Ecm−1 be codes for members
of Z ∩ M , let Oi ⊆ Pi ∩ M be finite for each i = 0, . . . ,m − 1, let b ∈ M ∩ Hλ and ξ < rank(M). By
extending both A and the subset of Z ∩ M , we may assume without loss of generality that {(ξ0, γ0), . . . , (ξk−1, γk−1)} =⋃m−1
i=0

⋃
p∈Oi
{(ξ0, γ

Eci
p (0)), . . . , (ξnEc−1, γ

Eci
p (nEci − 1))}. Then an application of Lemma 182 yields K ∈ Aξ ∩ M with b ∈ K ,

sup(θ ∩ K) ∈
⋂k−1
i=0 y

M
ξiγi
=
⋂
A and K ∈ Ḃ

Ec_0 ···
_(Ecm−1)

ξ [qMξ0γ0 , . . . , q
M
ξk−1γk−1

]. It follows that q̄M
P(Eci),ḂEci

(p) ‖ K ∈ Ḃ
Eci
ξ for

all i = 0, . . . ,m − 1 and all p ∈ Oi. We have therefore found K witnessing (i), (ii), (iii) and (v) of Lemma 29. Moreover,
conditions (iv) and (vi) automatically follow from the definitions ofΩ(Ey) and Ḃ

Eci
ξ . �

Corollary 184. Φ
(
Ea, (Er, Eq, Ey)

)
implies that P(Ec) isDΩ(Ey)( EA;Z(Ea))-proper for all Ec ∈ C(Ea).

Proof. By Corollary 183, Corollary 28, Eq. (71), the definition of ḂEcα and Proposition 178. �

Remark. What we actually need (see the proof of Lemma 187), is that P(Ec) is long DΩ(Ey)( EA;Z(Ea))-proper. This can be
proved using the ideas already presented.

The following says thatΦ is ‘‘preserved’’ at successors.

Lemma 186. AssumeΦ
(
Ea, (Er, Eq, Ey)

)
. If Ea_(Ḣ,Q) ∈ Gω1 , then there exists (Er∗, Eq∗, Ey∗) such thatΦ

(
Ea, (Er∗, Eq∗, Ey∗)

)
holds.

Proof (Sketch of Proof). Set Eb = Ea_(Ḣ,Q). By Corollary 184 and Theorem 3, we can find rMp ∈ gen
+(M, P(ψ(Ea, ω1)), p)

for all M ∈ lim
−→

A with Ea ∈ M , and all p ∈ P(ψ(Ea, ω1)) ∩ M . Then for each p, we can find qMp ≥ r
M
p and y

M
p ∈ [ω1]

ℵ0 such
that qMp ‖ y

M
p ∈ Ḣ and x ⊆∗ yMp for all x ∈ Ḣ ∩M . For each α < ω1, define a P(ψ(Ea, ω1))-name

Ċα =
{
M ∈ Aα : qMp ∈ ĠP(ψ(Ea,ω1)) for some p ∈ P(ψ(Ea, ω1))

}
. (77)

Let G ∈ Gen(V , P(ψ(Ea, ω1))). It is easy to see that Ċα[G] is stationary for all α < ω1. Then definingΩ(M) ∈ [[ω1]ℵ0 ]≤ℵ0
byΩ(M) = Ω(Ey)(M) ∪ {yMp : p ∈ P(ψ(Ea, ω1)) ∩M},Q(Ḣ[G]) is ( EC[G],DΩ)-proper by Lemma 59. This proves that P(Eb) is
( EA,DΩ)-proper.
Now this allows us to use the parameterized properness theory to find rM

∗
∈ gen+(M, ψ(Eb, ω1)) for allM . It is then clear

how to find Eq∗ and Ey∗ so thatΦ
(
Ea, (Er∗, Eq∗, Ey∗)

)
holds. �

The following says thatΦ is ‘‘preserved’’ at limits.

Lemma 187. Let Ea ∈ Cθ . If for all ξ < len(Ea), there exists (Erξ , Eqξ , Eyξ ) satisfyingΦ
(
Ea � ξ, (Erξ , Eqξ , Eyξ )

)
, then there exists (Er, Eq, Ey)

satisfyingΦ
(
Ea, (Er, Eq, Ey)

)
.

Proof. This is a straightforward application of Lemma 34. �

Proof (Proof of Theorem 1). We are going to recursively define an iterated forcing construct (Pξ , Q̇ξ : ξ < ω2) of length ω2
with countable supports, and let Pω2 denote the limit of the iteration. At the same time, we are going to choose Eaξ ∈ G

ω1

such that

(i) len(Eaξ ) < ω2,
(ii) Pξ = P(Eaξ ),
(iii) aξ ⊆ aη for all ξ ≤ η;
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we will also find (Erξ , Eqξ , Eyξ ) as in Definition 177, so that

(iv) Φ
(
Eaξ , (Erξ , Eqξ , Eyξ )

)
holds.

Observe that from this information we can already deduce that

(v) Pξ has the ℵ2-cc for all ξ ≤ ω2,
(vi) Pξ has a dense suborder of cardinality at most ℵ2 for all ξ ≤ ω2,
(vii) Pξ ‖ 2ℵ1 = ℵ2 for all ξ ,
(viii) Pξ is completely proper for all ξ ≤ ω2.

This is so because (i) and (ii) imply that Pξ is an iteration of length at most ω2, where each iterand satisfies the properness
isomorphism condition by Lemmas 61 and 69; hence, we can conclude condition (v). Conditions (vi) and (vii) are established
simultaneously by induction as usual: If Pξ ‖ 2ℵ1 = ℵ2, then Pξ ‖ |Q̇ξ | = |P(Eaξ+1) / P(Eaξ )| ≤ ℵ2, and therefore
by the ℵ2-cc, Pξ+1 satisfies (vi) and (vii). Condition (viii) is of course by the parameterized properness theory: By (iv) and
Corollaries 183 and 184,DΩ(Eyξ )(

EA;Z(Eaξ )) is a properness parameter for which Pξ is proper. Since Pξ = P(Eaξ ) is an iteration
with D-complete iterands by Lemmas 60 and 68, Pξ adds no new reals by the NNR theorem (Theorem 3).
Using conditions (v)–(vii), by standard bookkeeping, and regarding Pξ -names as also being Pη-names for ξ ≤ η, we can

arrange an enumeration (Ḣξ : ξ < ω2) of Pξ -names in advance such that, for every ξ < ω2 and every Pξ -name Ḣ for a
σ -directed subfamily of [ω1]ℵ0 ,

(ix) there exists ℵ2 many η ≥ ξ such that Pη ‖ Ḣη = Ḣ .

Nowwe describe the construction. First we deal with the successor stage ξ +1 of the construction.We separate into two
cases:

Case 1 Eaξ _(Ḣξ ,Q) ∈ Gω1 .
Case 2 Eaξ _(Ḣξ ,Q) /∈ Gω1 .

In Case 1, we put Eaξ+1 = Eaξ _(Ḣξ ,Q). Therefore,

Pξ+1 forces that there exists a club locally in Ḣξ (78)

by Lemma 39. And there exists (Erξ+1, Eqξ+1, Eyξ+1) satisfyingΦ
(
Eaξ+1, (Erξ+1, Eqξ+1, Eyξ+1)

)
by Lemma 186.

In Case 2, there exists Ec ∈ D(Ea) and Eb ∈ C(Ec)with len(Eb) < ω2, with a condition p ∈ P(Eb) such that

p ‖ there exists a stationary set orthogonal to Ḣξ . (79)

We set Eaξ+1 = Eb. By Corollary 184, P(Eb) isDΩ(Ey)-proper and thus we can take (Erξ+1, Eqξ+1, Eyξ+1) = (Erξ , Eqξ , Eyξ ).
At limit stages δ, we let Eaδ =

⋃
ξ<δ Eaξ . Then there exists (Erδ, Eqδ, Eyδ) satisfying (iv) by Lemma 187.

Having completed the construction, let G ∈ Gen(V , Pω2). Then ℵ1 is not collapsed, i.e. ℵ
V [G]
1 = ℵ1, and V [G] |= CH by

condition (viii). Since V |= CH, by the ℵ2-cc and by condition (ix), every σ -directed family H of ([ω1]ℵ0 ,⊆∗) is equal to
Ḣξ [G] for cofinally many ξ < ω2. Then assuming standard bookkeeping, we can ensure that there exists ξ < ω2 such that
H = Ḣξ [G] and either Eq. (78) holds, or else there exists p ∈ G as in Eq. (79). Therefore, V [G] |= p(?c)ω1q. �
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