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a b s t r a c t

Pressure–volume–temperature (P–V–T ) data are required in simulating chemical plants
because the latter usually involve production, separation, transportation, and storage of
fluids. In the absence of actual experimental data, the pertinent mathematical model
must rely on phase behaviour prediction by the so-called equations of state (EOS). When
the plant model is a combination of differential and algebraic equations, simulation
generally relies on numerical integration which proceeds in a piecewise fashion unless
an approximate solution is needed at a single point. Needless to say, the constituent
algebraic equations must be efficiently re-solved before each update of derivatives. Now,
Ostrowski’s fourth-order iterative technique is a partial substitution variant of Newton’s
popular second-order method. Although simple and powerful, this two-point variant has
been utilised very little since its publication over forty years ago. After a brief introduction
to cubic equations of state and their solution, this paper solves five of them. The results
clearly demonstrate the superiority of Ostrowski’s method over Newton’s, Halley’s, and
Chebyshev’s solvers.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Successful design and operation of chemical plant require in depth knowledge of the pertinent processes. Simulation
with amathematicalmodel can contribute to understanding how the plant behaves underwidely different conditions. Large
dimensionality, non-linearity, and interaction among process variables notoriously characterise chemical plant models and
frequently necessitate computer usage in this activity. Numerical solution techniques are harnessed very often because
an analytical answer is either unavailable or intractable. Numerical integration proceeds in a piecewise fashion unless an
approximate solution is needed at a single point. Obviously, the constituent algebraic equationsmust be efficiently re-solved
before each update of derivatives.

The objective of this work is to re-introduce Ostrowski’s fourth-order solver as a two-point partial substitution variant of
Newton’s method and investigate the relative boost it can render in iterative solution of cubic EOS and therefore in chemical
plant simulation.

2. Materials and method

2.1. Cubic equations of state (EOS)

This subsection is largely based on a comprehensive coursewaremodule created in [1]. As the name implies, an EOS defines
the state of a fluid and can be used as the basis for generating data such as densities (vapour and liquid), vapour pressures
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of pure components, critical pressures and temperatures for the mixture, vapour–liquid equilibrium (VLE) information, and
thermodynamic properties.

Since the time of the ideal gas law (ideal gas EOS), a great number of EOS have been proposed to describe real gas
behaviour but only relatively simple a few have persisted through the years. Generally, the more complex the EOS, the
more accurate it is. However, this is not always the case; sometimes a rather simple EOS can do a very good job. There have
been a number of attempts to derive a theoretically sound EOS but, generally speaking, not much success has been achieved
along that line. As a result, most EOS used today are semi-empirical in nature, this being so because their parameters are
fitted to available data.

EOS are generally devised for pure substances. Their application to mixtures requires knowledge of composition and
an appropriate mixing rule. EOS development assumes that the system is at equilibrium. Admittedly, this is not a perfect
assumption but is a reasonable one. At equilibrium, the three variables needed to completely define the state are pressure,
volume, and temperature. In other words, the functional form of an EOS can be expressed as f (P, V , T ) = 0.

P–V isotherms for a pure substance at sub-critical conditions (T < Tc) have a discontinuity at the vapour–liquid
transition; as pressure increases, there arises a point of discontinuity that represents the phase change. This is a challenge
for all EOS. What is required here is fitting a continuousmathematical function to a discontinuous, real-life event. Strictly, this
requirement is contradictory. Even though neither cubic nor any other continuous mathematical function is able to follow
the discontinuity in real P–V isotherms, what they can do is good enough for engineering purposes. The cubic behaviour can
reasonably match the liquid and vapour branches for the real, experimental isotherms.

Let v, T , and R be molar volume, absolute temperature, and the universal gas constant, respectively. The following
equation will be immediately recognised as the ideal gas EOS:

Pv = RT . (1)

It is obvious that ideal gas will not condense, no matter what pressure it is subjected to, regardless of the temperature of the
system. In other words, since the ideal gas EOS is continuous it cannot reproduce the P–V behaviour of a pure substance.
Nevertheless, it can approximate real P–V isotherms at low pressures (close to atmospheric) and high temperatures.

An ideal gas is an imaginary gas that satisfies the following conditions: (a) Negligible interactions between themolecules,
(b) its molecules occupy no volume, (c) collisions between molecules are perfectly elastic—that is, no energy is lost after
collision.

In reality, no gas behaves ideally. Therefore, the ideal gas EOS is not useful for practical applications. It is important
however as the basis of understanding of gas behaviour and as the starting point of all modern approaches.

A monumental breakthrough by van der Waals in 1873 won for him a Nobel Prize. In his Ph.D. Thesis, he proposed to
semi-empirically remove the key weaknesses that the ideal EOS carried with it. The proposal accounted for the non-zero
molecular volume and non-zero force of attraction of a real substance by correcting the pressure and volume in the ideal
model. Themodified ideal EOS (or vdW EOS) is

(P + a/v2)(v − b) = RT . (2)

Imposition of the so-called criticality conditions on (2) leads to expressions for the parameters a and b as functions of critical
properties: a = 27R2T 2

c /(64Pc) and b = RTc/(8Pc).
To extend this concept to a system of more than one component, one needs a mixing rule. He suggested a linear mixing

rule and a quadratic mixing rule to weight the contributions of each component using their mole compositions.
The principle of corresponding states (PCS) was stated by van der Waals and reads ‘‘Substances behave alike at the same

reduced states. Substances at the same reduced states are at corresponding states’’. Reduced properties provide a measure of
the departure of the conditions of the substance from its own critical conditions and are defined as follows:

Pr = P/Pc, Tr = T/Tc, vr = v/vc, vc = 3RTc/(8Pc).

The reduced form of the vdW EOS is obtained by inserting these reduced quantities into (2) and simplifying:

(Pr + 3/v2
r )(3vr − 1) = 8Tr . (3)

This universal equation is basically used for thermodynamic correlations.Most thermodynamic correlations have beenmade
viable and general because of the application of the principle of corresponding states.

The vdW EOS (2) can be rearranged into

v3
− (b + RT/P)v2

+ (a/P)v − ab/P = 0, (4)

Z3
−


1 +

bP
RT


Z2

+


aP

R2T 2


Z −

abP2

(RT )3
= 0. (5)

As observed, the first of these equations is cubic in molar volume v and the second is cubic in compressibility factor Z .
By definition, Z = Pv/(RT ). So, the vdW EOS is a cubic EOS as are all the transformations and modifications that it has
undergone since its publication in 1873.
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In summary, the contribution of the vdWEOSwasmanifold: (a) Itwas the first to predict the continuity ofmatter between
gas and liquid, (b) it radically improved the predictive capability over ideal gas EOS, (c) it formulated the PCS, and (d) it laid
foundations for modern cubic EOS.

The achievements of van der Waals are still recognised as crucial in revolutionizing the thinking about EOS. The vdW
EOS is talked about because of pedagogical reasons, not because it finds any practical application in today’s world. In fact,
the vdW EOS is not used for any practical design purposes. However, most of the EOS being used widely today for practical
design purposes have been derived from the vdW EOS.

Themost popular and reliable cubic EOS are: (a) Redlich–KwongEOS, (b) Soave–Redlich–KwongEOS (very popular among
chemical engineers), and (c) Peng–Robinson EOS (very popular among petroleum and natural gas engineers). There are other
more complex EOS: Lee–Kesler EOS, Benedict–Webb–Rubin EOS, and Benedict–Webb–Rubin–Starling EOS.

Cubic EOS are explicit in P but the latter is not the common unknown to be calculated in the typical problem. More
probably, P and T are known and v (or its reciprocal, molar density) or Z (the most likely case) is needed. Hence, the
application requires a numerical or analytical technique to solve a cubic function. This will be considered in the next
subsection.

Cubic equations are S-shaped and have three roots. Either one or all three of themwill be real. Since cubic EOS deal with
physical quantities (v or Z), only real roots are of interest to engineers. More specifically, v must be greater than b and Z
must be greater than Pb/(RT ). The possibility of three real roots is restricted to the case of sub-critical conditions (T < Tc).
If there are indeed three v roots here, then the smallest is assigned to liquid and the largest to vapour; the intermediate
root is discarded as it is physically meaningless. Anywhere else only one real root is expected. The largest root is always the
correct choice for the gas phase molar volume of pure components.

2.2. Analytical solution of cubic equations

Adewumi [1] describes an analytical way to find the real roots of the cubic polynomial f (x) = x3 + c2x2 + c1x + c0. The
procedure can be summarised as follows. Let

Q1 = (c22 − 3c1)/9, Q2 = (2c32 − 9c1c2 + 27c0)/54, M = Q 2
2 − Q 3

1 , θ = cos−1(Q2/Q
3/2
1 ).

IfM < 0, there are three distinct roots. Calculate them as:

x1 = −2

Q1 cos


θ

3


−

c2
3

, x2 = −2

Q1 cos


θ + 2π

3


−

c2
3

, x3 = −2

Q1 cos


θ − 2π

3


−

c2
3

.

IfM > 0, then there is only one real root given by x1 =
3


−Q2 +
√
M +

3


−Q2 −
√
M − c2/3.

2.3. Numerical solution of cubic equations

Note the complexity and overhead of this analytical process. There are many numerical alternatives to chose from. These
generally involve the solution of x = g(x) by a repetitive scheme xk+1 = gk = g(xk) where k is the iteration count. The
fixed-point z of the iteration function g is a zero (root) of f . Let εk = xk − z. Suppose there exist a real number n and a
non-zero constant c such that limk→+∞(|εk+1|/|εk|

n) = c. Then n and c are respectively called the convergence order and
the asymptotic error constant. According to Traub [2], if n is integral, then c = limk→+∞ εk+1/ε

n
k = g(n)(z)/n!.

Linear or first-order methods (n = 1) are those where g ′(z) ≠ 0 and εk+1 is proportional to εk in the neighbourhood of
z. Quadratic convergence (n = 2) means that g ′(z) = 0, g ′′(z) ≠ 0, and εk+1 is proportional to ε2

k near z. Cubic or higher
convergence (n > 2) occurs if g ′(z) = g ′′(z) = · · · = g(n−1)(z) = 0 and g(n)(z) ≠ 0.

Note that when functions are written in this text without an argument the latter is x. Let g be defined and differentiable
on an interval I with all values g(x) ∈ I . Further, let K be a constant. If |g ′

| ≤ K < 1 on I , then, as proved in [3], g has a unique
fixed-point z on I and the sequence {xk} converges to z for any choice of x1 ∈ I . Moreover, limx→∞(εk+1/εk) = g ′(z). If, in
addition, 0 ≤ g ′

≤ K < 1, then convergence is monotonic, that is, without oscillation. In practice, however, it is difficult to
determine a priori the bounds of the convergence interval I .

Newton’s popular technique [2–8], is a computationally simple method given by

gN = x − f /f ′. (6)
It is a piecewise linearization of f since it extends the current tangent to intersect the x-axis and suggests this value as the
next approximation to z. As shown by Traub [2], nN = 2 and cN = f ′′(z)/(2f ′(z)) for simple roots. By direct differentiation,

g ′

N = ff ′′/f ′2
= L (7)

where L is called the logarithmic degree of convexity. Thus, the convergence condition of gN is that |L| ≤ K < 1 in the
vicinity of z.

Repetition of z means f ′(z) = 0 also. This demotes gN ’s convergence from quadratic to superlinear or geometrical and
slows down the iteration process. If r is the multiplicity of z, then g ′(z) = (r − 1)/r ≠ 0 and gNr = x − rf /f ′ restores
second-order convergence [6]. Two possibilities are worthy of mention where gN may fail. First, it can oscillate around a
local minimum or maximum of f in the neighbourhood of a simple root. Secondly, it can diverge to another root when f ′ is
small making the value of f /f ′ too large.
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Table 1
Test cases II–V come from [1].

Case Function Roots

II v3
− 7.8693v2

+ 13.3771v − 6.5354 5.7357
III v3

− 15.6368v2
+ 30.315v − 14.8114 0.807582, 1.36174, 13.4675

IV z3 − 1.0595z2 + 0.2215z − 0.01317 0.8045
V z3 − z2 + 0.089z − 0.0013 0.0183012, 0.0786609, 0.903038

Applied to Newton’s scheme, partial substitution gives gNps = x − Gf /f ′ where G is a gain. Note that gNr is a gNps with a
fixed gain G = r . There are many well known, third-order gNps like Halley’s and Chebyshev’s solvers [8]:

gH = x − Gf /f ′, G = (1 − L/2)−1
= 1 + L/2 + L2/4 + · · · , (8)

gC = x − Gf /f ′, G = 1 + L/2. (9)

Notice that L requires both f ′ and f ′′.
Ostrowski’s fourth-order solver is also a gNps. Its definition is [2]:

gO = x − Gf /f ′, G = 1 + f (gN)/(f − 2f (gN)) = (f − f (gN))/(f − 2f (gN)). (10)

As is clear, this powerful, two-point method is an attempt to improve Newton’s technique by utilising two f values and one
f ′ value at each iteration. Unlike gC and gH , there is no need for f ′′. The next section presents applications to solve cubic EOS
numerically and shows that Ostrowski’s little-known method really deserves more attention than it has received so far. If
gN is convergent, then gO should be expected to accelerate the solution.

Irrespective of its convergence order n, there is always a risk that an iterative methodmay diverge if trials are not started
close enough to z. According to Adewumi [1], if the aim is to solve Eq. (5), the usual recommendation is to begin with
z1 = bP/(RT ) for the liquid phase and z1 = 1 for the vapour root. Of course, an educated guess for the largest root of (4)
would be the ideal answer v1 = vid = RT/P .

Suppose f (v) = v3
+ c2v2

+ c1v + c0 is the function to be solved. Comparison with (4) renders the results b = −c0/c1,
c2 = −b − RT/P = −b − vid, and so v1 = vid = −c2 + c0/c1. What if f (Z) = Z3

+ c2Z2
+ c1Z + c0 is the function to be

solved? Comparison with (5) shows that iterations for the liquid phase root should start from z1 = bP/(RT ) = −1 − c2.

2.4. Description of test cases

Taken from [3], Case I is a search for themolar volume of carbon dioxide at P = 10 atm (or 1013.250 KPa) and T = 300 K.
Harnessing a = 188.33 Pa m6 kg−2

= 36,461 Pa m6 kmol−2, b = 9.77 × 10−4 m3 kg−1
= 0.0430 m3 kmol−1, and R =

8.314 kJ kmol−1 K−1 in (4) yields the equation f (v) = v3
− 2.5046v2

+ 0.3598v − 0.0155 = 0. The ideal gas law gives
the educated guess as v1 = vid = RT/P = 2.46158401 m3 kmol−1. Note that f has a local maximum at v =

0.0752 m3 kmol−1 and a local minimum at v = 1.5945 m3 kmol−1. Convergence problems can occur if the starting point is
less than the latter.

The remaining four test cases in Table 1 are from Adewumi [1]. Only the largest root (say E) is located in the current work
using numerical solvers gN or gO. Once E is found, the other two roots can be deduced by a reduction technique. Adewumi [1]

sets F1 = c2 + E and F2 = −c1/E and obtains the remaining roots as (−F1 +


F 2
1 − 4F2)/2 and (−F1 −


F 2
1 − 4F2)/2.

3. Results and discussion

A flexible Matlab program was written to implement the desired solvers. Iteration was stopped when absolute f or
absolute change in v (or Z) was less than 10−8. Table 2 depicts the progress of gN , gC , gH , and gO in Case I. It is evident
that gN requires 4 iterations for convergence while the others need only 3. As expected, f vanishes fastest with gO. Table 3
depicts the progress of gN and gO in Cases II–V. Superiority of Ostrowski’s method is clear again.

Newton’s method is the usual choice when equations of state are to be solved. This work has shown that a switch to
Ostrowski’s iterator can be highly beneficial especially in dynamic simulation where these equations are re-solved at each
step prior to derivative updates. It must be remembered, however, that this two-point method is a partial substitution
variant of Newton’s famous second-order solver.

4. Conclusions

Analytical and numerical solution techniques for cubic equations of state (EOS) are the subject of this article. These were
treated after a brief description of their role in chemical plant simulation and a review of their historical development.
Ostrowski’s little-known fourth-order iterator is a two-point method that is a partial substitution variant of Newton’s
famous second-order solver. As in many other applications, Ostrowski’s method has shown superiority here over Newton’s
technique.
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Table 2
Test results using gN , gC , gH , and gO .

Case Method v f f ′ gN gC gH gO

I

Newton

2.46158401 0.60982389 6.20759771 2.36334570 2.35575864 2.35512363 2.35458547

2.36334570 0.04614940 5.27770876 2.35460149 2.35453506 2.35453455 2.35453417

2.35460149 0.00034994 5.19774560 2.35453417 2.35453416 2.35453416 2.35453416

2.35453417 0.00000002 5.19713170 2.35453416 2.35453416 2.35453416 2.35453416

Chebyshev
2.46158401 0.60982389 6.20759771 2.36334570 2.35575864 2.35512363 2.35458547

2.35575864 0.00637058 5.20830097 2.35453548 2.35453417 2.35453417 2.35453416

2.35453417 0.00000001 5.19713169 2.35453416 2.35453416 2.35453416 2.35453416

Halley
2.46158401 0.60982389 6.20759771 2.36334570 2.35575864 2.35512363 2.35458547

2.35512363 0.00306514 5.20250754 2.35453447 2.35453416 2.35453416 2.35453416

2.35453416 0.00000000 5.19713167 2.35453416 2.35453416 2.35453416 2.35453416

Ostrowski
2.46158401 0.60982389 6.20759771 2.36334570 2.35575864 2.35512363 2.35458547

2.35458547 0.00026668 5.19759953 2.35453417 2.35453416 2.35453416 2.35453416

2.35453416 0.00000000 5.19713167 2.35453416 2.35453416 2.35453416 2.35453416

Table 3
Iteration outputs for the last four test cases.

Case Method v or z f gN gO

II

Newton

7.380749 65.583559 6.299240 5.818682

6.299240 15.429513 5.835573 5.738841

5.835573 2.271284 5.739718 5.735709

5.739718 0.087669 5.735711 5.735704

5.735711 0.000150 5.735704 5.735704

Ostrowski
7.380749 65.583559 6.299240 5.818682

5.818682 1.873791 5.738504 5.735706

5.735706 0.000055 5.735704 5.735704

III

Newton

15.148217 332.292349 13.791817 13.479861

13.791817 52.345552 13.483245 13.467516

13.483245 2.421372 13.467526 13.467486

13.467526 0.006127 13.467486 13.467486

13.467486 0.000000 13.467486 13.467486

Ostrowski
15.148217 332.292349 13.791817 13.479861

13.479861 1.900490 13.467510 13.467486

13.467486 0.000000 13.467486 13.467486

IV

Newton

1.000000 0.148830 0.865007 0.811511

0.865007 0.032902 0.813050 0.804691

0.813050 0.004005 0.804738 0.804532

0.804738 0.000095 0.804532 0.804531

0.804532 0.000000 0.804531 0.804531

Ostrowski
1.000000 0.148830 0.865007 0.811511

0.811511 0.003266 0.804671 0.804531

0.804531 0.000000 0.804531 0.804531

V
Newton

1.000000 0.087700 0.919467 0.903504

0.919467 0.012449 0.903636 0.903039

0.903636 0.000437 0.903039 0.903038

0.903039 0.000001 0.903038 0.903038

Ostrowski 1.000000 0.087700 0.919467 0.903504

0.903504 0.000340 0.903038 0.903038



M.Ç. Koçak / Journal of Computational and Applied Mathematics 235 (2011) 4736–4741 4741

References

[1] M. Adewumi, PNG 520 phase relations in reservoir engineering, Pennsylvania State University, retrieved September 9, 2009 from https://www.e-
education.psu.edu/png520/resources/l1.html.

[2] J.F. Traub, Iterative Methods for Solution of Equations, Prentice-Hall, Englewood Cliffs, NJ, 1964.
[3] A.F. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Springer-Verlag, New York, 2000.
[4] K.E. Atkinson, An Introduction to Numerical Analysis, John Wiley and Sons, New York, 1978.
[5] L.V. Fausette, Numerical Methods: Algorithms and Applications, Prentice-Hall, New Jersey, 2003.
[6] C.-E. Fröberg, Introduction to Numerical Analysis, second ed., Addison-Wesley Publishing Co., Reading, 1972.
[7] R.G.E. Franks, Modeling and Simulation in Chemical Engineering, John Wiley Interscience, New York, 1972.
[8] M.Ç. Koçak, Simple geometry facilitates iterative solution of a nonlinear equation via a special transformation to accelerate convergence to third order,

J. Comput. Appl. Math. 218 (2) (2008) 350–363.

https://www.e-education.psu.edu/png520/resources/l1.html
https://www.e-education.psu.edu/png520/resources/l1.html
https://www.e-education.psu.edu/png520/resources/l1.html

	Ostrowski's fourth-order iterative method speedily solves cubic equations of state
	Introduction
	Materials and method
	Cubic equations of state (EOS)
	Analytical solution of cubic equations
	Numerical solution of cubic equations
	Description of test cases

	Results and discussion
	Conclusions
	References


