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Aging and hypertension increase the number of polyploid smooth muscle cells (SMC) in a blood vessel. We assessed the clTect of ploidy on the 
transcription of several genes in SMC cultures derived from newborn and adull rats. In diploid and tetraploid subcultures oTSMC liom newborn 
rats, RNA expression orthc genes assayed is linked with ploidy. However, when phcnotypically different SMC cultures derived from newborn and 
adult rats wcrc compared, transcription levels varied from gene to gene and not linked with the ploidy. Thus, differences in gene expression due 

to polyploidy are superimposed on those due to other phcnotypical features. 

Ploidy; Vascular smooth muscle cell; Atherosclerosis; Rat 

1. INTRODUCTION 

Smooth muscle cell @MC) proliferation is thought to 
play a major role in the development of both athero- 
sclerosis and hypertension [I]. Velican and Velican [2] 
showed that SMC replication is the initial event in the 
formation of atherosclerotic plaques. 

Folkow et al. [3] implicated thickening of the vessel 
wall in established hypertension as an adaptation to the 
increased peripheral resistance. Typically, DNA synthe- 
sis in the aorta and other large blood vessels consists of 
DNA replication without cell division, resulting in the 
accumulation of polyploid cells that account for most 
of the increased mass of hypertensive vessels [4,5]. In 
agreement with those observations, Owens et al. [6] 
found a fixed ratio between protein and DNA content 
in vascular SMC of Wistar-Kyoto rats and those of 
spontaneously hypertensive rats. Moreover, they no- 
ticed that polyploidy does not occur in SMC of pre- 
hypertensive spontaneously hypertensive rats. Poly- 
ploidization takes place after increase of blood pressure 
[73 and, once established, it is permanent. Reversal of 
hypertension failed to decrease the percentage of po- 
lyploid aortic SMC [S]. Only cell death is able to lower 
the DNA content. Therefore, anti-hypertensive therapy 
can prevent DNA ploidy increase only at an early stage 
PI* 
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Polyploidy is a normal change in several types of cells 
during the lifetime of animals [lo] and humans [I l]. It 
is also seen in certain types of cells in culture at late 
passage [12]. Despite the general occurrence of po- 
lyploidy, the tacit assumption that the expression of 
genes is proportional to the ploidy of a cell has never 
been verified. 

In this study, we show the relationship between 
ploidy and transcription of actin, platelet-derived 
growth factor A, collagen III and fibronectin in tet- 
raploid and diploid late passage cultures of aortic 
SMC, isolated from newborn and adult rats, respec- 
tively, as well as in subcloned diploid and tetraploid 
cultures from newborn rats. Our results indicate a 
balanced relationship between ploidy and transcription 
levels in newborn SMC subcultures whereas the ratio 
between transcription levels in SMC derived from 
newborn and adult rats vary from gene to gene. These 
findings facilitate an interpretation of observed dif- 
ferences in gene expression in different phenotypes of 
vascular SMC. 

2. MATERIALS AND METHODS 

2. I. Cell culrure 
Thoracic aortas from l2-day-old (newborn) or 3-month-old (adult) 

male Wistar-Kyoto rats wen removed. The tunica media was isolated 
and SMC were placed into culture as described [I 31. SMC were grown 
in Waymouth’s medium supplemented with 10% FBS (Hyclone, 
Logan, UT). To maximize the diffcrencc in ploidy between newborn 
and adult SMC, the cultures were used at very late passage (between 
tbe sixtieth and eightieth passage). Nearly pure diploid and tetraploid 
cultures of newborn SMC were obtained by growing cultures out of 
*plated single OCIIS in 96-well tissue culture plates (Costar. Badhoe- 
vedorp, The Netherlands) and were assayed by flow cytometry. 
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2,2, Fh)w cytometry 
Cultures to be studied were analyzed in the confluent state after a 

growth arrest for 7 days in serum-free Waymouths mediana. After 
trypsinization, the cells were centrifuged at 1,500 x g for 5 mln, The 
cell pellet was resuspended in ice-cold 70% ethanol and incubated at 
-200C for 12 h. The suspension was Celltrifuged at 1,500 x g for 5 rain 
and the pellet was resuspended in 1 mM phosphate-buffered saline 
(PBS) with 20 ~tg/ml propidium iodide (Fluka, Brussels. Belgium) and 
0. I mg/ml RNas¢ (Boehringer, Mannheim, Germany). The suspension 
was incubated for I h at room temperature and the lack ofcell clumps 
was verified microscopically on the sample before being run on the 
flow cytometer, Chicken er~throcytes were used as an internal stand- 
ard, The area of cell cycle compartments was estimated according to 
the method of Dean and Jet[ [14]. 

2,3. Chromosome counts 
Chromosome counts were performed as described by Lawse et al. 

[151. 

2.4. RNA probes 
Antisense RNA probes were made using the Riboprobe Gemini 

System (Promega, Madison, WI) according to the manufacturers rec- 
ommendations, The used DNAs were as follows: for actin, a 1,8-kb 
fl-actin eDNA isolated from a rat SMC cDNA library, cloned in 
pBluescript (Stratagene, Heidelberg, Germany); for smooth muscle 
~t-actin, a 25-bp oligonucleotid¢ (5' AGTGCTGTCCTCTTCTTCA- 
CACATA 3'). n ucleotides - 6 to 18 relative to the coding region of the 
human smooth muscle ~t.actin gone kindly provided by Dr. R, Meek 
(Department of Pathology, University of Washington, Seattle, WA, 
USA) [16]; for collagen lit, a 600-bp EcoRI-Pvull fragment from rat 
collagen !II clone RGR-5, cloned in pBlucscribe (kindly donated by 
J.K. M',ikel',t and E, Vuorio, University ofTurku, Turku, Finland); for 
fibronectin, a 500-bp rat cDNA, cloned in pGEM2, kindly donated 
by C, Giac¢lli (University of  Washington, Seattle, WA, USA); for 
PDGF A, a 1,000-bp eDNA isolated from a rat SMC eDNA library. 
cloned in pBluescript, 

2,5. RNA isolat~on and determination of  total RNA 
Total cellular RNA was isolated by the lithium-urea procedure as 

described by Auffray and Rougeon [17]. Cell pellets of newborn and 
adult SMC and cell pellets of newborn clone 1 and clone 10 were 
processed together giving a reproducible yield by this method. 

The amount of total RNA per cell was determined as described by 
Merchant ¢t al. [I 8], based on the measurement of the pentose content 
by the ornicol reaction, In brief, tissue culture cells were counted, 
pelleted and dounced, An aliquot was h~,drolyzcd in 0,3 M KOH and 
the mixture incubated for 30 mi,a at 95°C in 5 vols, coloring reagent. 
The absorption at 665 nm was measured and compared to a yeast 
tRNA calibration curve. The coloring reagent was 0.18 g ornicol 
(Sigma, St, Louis, Me), 6 mg FeCIa (Merck, Darmstadt, Germany) 
in 30 ml 35% HCl (Merck. Darmstadt, Germany), 

2,6. Solution hybridi'.atlon 
Solution hybridization was executed as described by Lee and 

Costlow [19], In brief, fixed amounts of ~:P.labelled antisense RNA 
were co-precipitated with increasing amounts of total RNA isolated 
from 80% confluent SMC cultures. The total amount of RNA was 
adjusted to 100 /~g with yeast tRNA (Boehringer, Mannheim, 
Germany). After centrifugation the pellot was dried briefly, dissolved 
in 50% formamide, 0.4 M NaCl, 20 mM PlPES, pH 6.8, and I mM 
EDTA in a final volume of 20/~l and hybridized for 40 h at 60°C. 65 
/zg RNase A and 150 U RNase TI (Boehrlnger, Mannheim, Germany) 
ware added and incubated at 37°C for 1 h, Protected RNA duplexes 
were precipitated using 10% TeA, filtered through a Glasfaser Vor- 
filter (~qchlelche) and Sob[tell. Dassel, Germany) and the amount of 
protected antisen~e RNA probe was determined by counting in a 
liquid scintillation analyzer. Each experiment was repeated at least 3 
times, Results were compared by Student's t-test and P = 0.05 or less 
wa~ accepted as significant, 

2,7. DNA isolation 
Chromosomal DNA was isolated as follows: cells, scraped in PBS. 

from a 150-cm-" tissue culture flask (Costar, Cambridge, UK) in PBS 
were centrifuged for 5 rain at 1,500 u g, The pellet was washed with 
PBS and dissolved in 10 ml 10 mM Tris-HCI, pH 8,0, 1 mM EDTA 
(TE). 400pl 5 M Noel and 500/~1 10% sodium dodecyl sulphate were 
added and the cells were lysed at room temperature. Proteinase K 
(Boehringcr, Mannheim, Germany) was added to a final concentra- 
tion el" 50/~g/ml and incubated for 2 It at 37"C. After an extraction 
with TE-saturated phenol, the water phase was rmnoved to a clean 
tube and extracted with chloroform, The water phase was removed to 
a clean tube and 2,5 vols. ethanol were added. The DNA was spooled, 
dried briefly and di~olved in 2 ml TE. 200 ~g RNase was added and 
incubated for 20 rain at 37°C. 100/~1 10% sodium dodecyl sulphate 
and proteinase K were added to a final concentration of 50/~g/ml, 
After a phenol and chlorolbrm extraction a 2.5 eel. of 96% ethanol 
was added. The DNA was spooled, dried briefly and dissolved in 0,5 
ml TE. 

2,8, Southern blotting 
Southern blots were made using Hybond N* (Amersham, 's Herto- 

genbosch, The Netherlands) following manufacturers recommenda- 
tions and hybridized with 1-2 × l0 t cpm per ml of ~"P-labelled DNA 
probes according to the method described by Church and Gilbert [20]. 
Membranes were washed at 65°C in 0.1 M sodium phosphate, pH 7.2, 
1% SDS, 1 mM EDTA, pH 8.0, for 2 x 30 rain, 

2,9, Densitotnetr)' 
Intensities of hybridization signals were quantified using a LKB 

Bramma 2202 Ultrascan laser densitomcter (LKB, Uppsala. Sweden) 
Ibllowing manufacturers guidelines, 

3. RESULTS AND DISCUSSION 

3.1. Culture morphology 
Aortic SMC from 3-month-old (adult) Wistar-Kyoto 

rats in culture have a spindle shape morphology and 
grow in overlapping bundles organized in multilayers at 
confluence as described by Gordon et al. [13] (Fig. la). 
In contrast, SMC of 12-day-old (newborn) rats grow in 
a monolayer and have an endothelial-like morphology 
(Fig. lb), yet they do contain mRNA coding for =-actin 
and lack Von Willebrand factor (results not shown), 
clearly indicating the SMC nature of these cells. ~-Actin 
and Von Willebrand factor are established markers for 
SMC and endothelial cells, respectively [13]. 

3.2. Flow cy tometry  
Flow c y t o m e t r y  ( F C M )  revealed  tha t  86% o f  the late 

passage adu l t  S M C  h a d  a D N A  c o n t e n t  c o r r e s p o n d i n g  
to a d ip lo id  ra t  cell. 14% of  the  cells were t e t rap lo id  
(Fig. 2a). Mos t  o f  these cells are  t rue  t e t rap lo id  cells a n d  
no t  d ip lo id  cells in the G 2  phase  because  [3H]thymidine 
i n c o r p o r a t i o n  expe r imen t s  ind ica te  t h a t  less t h a n  1% of  
the a du l t  cells repl ica te  after  1 week se rum s t a r v a t i o n  
(resul t  n o t  shown) ,  F C M  of  la te  passage  n e w b o r n  S M C  
revealed that  15% of  the  cells were diploid,  66% tet- 
r ap lo id  a n d  16% of  the  cells h a d  a D N A  c o n t e n t  corre-  
s p o n d i n g  with a n  oe t ap lo id  ra t  ceil (Fig .  2b). I n s t ead  of  
t rue  t e t rap lo id  a n d  oc tap lo id  cells, these  cells cou ld  also 
be d iv id ing  d ip lo id  a n d  t e t r ap lo id  ceils, respectively. In  
o rder  to  o b t a i n  m o r e  h o m o g e n e o u s  cu l tu res  o f  d iploid  
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Fig. I. Morphology of rat aortic SMC in vitro. Adult (P) and newborn (b) rat aortic SMC wcrc grown to confluence and photogmphcd by 
phase-contrast light microscopy. 

and tetraploid newborn SMC, we subcloned the initial 
culture of newborn SMC, re-plating out cells at an 
average cell density of I cell per well. Thus we obtained 
an almost pure diploid (clone 1) and tetraploid (clone 
10) newborn SMC subculture, as assayed by FCM (Fig. 
2c and d, respectively). 

3.3. C~lrorPzoson1e COUnlS 
Chromosome counts were performed on mctaphase 

spreads of the 4 rat aortic SMC cultures. In general, the 
chromosome counts fit our FCM data for the different 
cultures (Table I). Diploid and tetraploid spreads were 
clearly present but with some dispersion in the actual 
counts, caused by errors when counting many very 
small rat chromosomes. 

determined. Southern blots containing equal amounts 
of EcoRl-digested chromosomal DNA were hybridized 
with DNA probes for actin, collagen III, fibronectin 
and PDGF A. Densitometric scanning of the autora- 
diogram revea!ed equal intensities in all lanes, indicat- 
ing a linear relationship between the hybridization 
signal intensities and the amount of DNA used (results 
not shown). This observation, together with FCM anal- 
ysis and chromosome counts, indicates that the gene 
dose of the genes included in this study is directly 
proportional to the ploidy of a particular culture of 
SMC. 

Since chromosomes are easily lost or rearranged in 
long term tissue culture, relative copy numbers of the 
genes used for measuring transcription prevalence were 

3.4. Quanriratiotz of trattscriprion of several genes itt 
ad& and ttewborn SMC does not marcit ploidy 

In each of the SMC cultures the amount of total RNA 
was determined using a quantitative RNA-isolation 
procedure (see Materials and Methods). It appeared 

Table I 

Chromosome counts on mctaphnse spreads of aortic SMC in cultures of adult and newborn rats 

SMC culture Pcrccntage of spreads in cluster Total number of spreads 

Diploid” Tetraploidb Octaploid’ 

Adult 92 8 47 
Newborn 3 89 37 
Newborn clone I 89 5 
Newborn clone IO 91 :: 

Metaphase sprends were made and assayed as described in Materials and Methods. 
“The diploid (= 42 chromosomes) cluster consisted of counts in the 39-45 chromosomes range. 
bThe tctraploid cluster consisted of counts in the 78-90 chromosomes range. 
‘The octaploid cluster consisted of counts in the 156-l 80 ch:omosomcs range. 
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Fig. 2. Flow cytometry (FCM) of cloned populations of smooth muscle cells. (a) Adult SMC culture showing 86% 2C and 14% 4C (including diploid 
cells in the G2 phase) cells. (b) Newborn SMC culture showing 15% 2C, 66% 4C (including diploid cells in the G2 phase) and 16% 8C (including 
tetraploid cells in the G2 phase). (c) Diploid newborn SMC subelone (clone 1) showing 92% 2C and 8% 4C (including diploid cells in the G2 phase). 
(d) Tetraploid newborn SMC ~ubelon¢ (clone 10) ~howing 92% 4C and 8% 8C (including tetraploid cells in the (32 phase). Ploidy was determined 

using chicken erythrocytes as an internal standard. The experiments were carried out in 2 sets: a + b is one set. c ÷ d is another set. 

that  the amount  of  total  R N A  per SMC matched the 
ploidy o f  the cell; in tetraploid cultures, cells contained 
about  2-fold more R N A  than diploid cultures (Table  
II). To  quanti tate transcription levels of  single genes in 
the newborn and adult cultures, solution hybridizat ion 
assays were conducted using a panel of  genes (Fig. 3). 

Table II 
Quantitation of the total amount of RNA per cell in SMC cultures of 

adult and newborn rats 

SMC cultures Ploidy percentage of cells pg RNA/celP 

2C 4C 8C 

Adult 86 14 - 26:1:5 
Newborn 15 66 16 56 +- 10 
Newborn clone 1 92 8 - 38 :I: 4 
Newborn clone 10 - 92 8 58 +_ 2 

Total RNA was isolated from l& cells as dcsoribed in Materials and 
Methods. The ploldy percentage of the cultures was determined by 
flow cytometry. 
Values represent mean of 3 separate experiments performed in dupli- 
cate. 

Our  results show that  the ratio o f  transcription in 
newborn and adult  $ MC varies f rom gene to gene and 
does not  depend on gene doses (ploidy) alone. There-  
fore, we conclude f rom the experiments specified below 
that newborn and adul t  SMC represent clearly distinct 
phenotypes.  

Actin expression is raised significantly in newborn 
SMC (Fig. 3a). Newborn  cells contain 3-fold more actin 
transcripts than adult  cells. Corrected for ploidy, this 
represents a 1.5-fold relative overexpression in newborn 
SMC. Due to the high homology amongst  members of  
the actin gene family, the ~/-aetin probe used hybridized 
to all aetin transcripts giving no  information about  only 
smooth  muscle-specific ~-actin expression. However,  
Nor thern  analysis with a S MC ~-actin-speeifie oligonu- 
eleotide suggests that  this differentiation marker  is more  
abundant  in adult  SMC, again indicating that these 
newborn and adult  SMC represent different phenotypes 
(result not  shown). On the other  hand solution hy- 
bridizations to R N A  from the diploid newborn SMC 
subelone (clone 1) and  the tetraploid newborn $MC 
subelone (clone 10) show that  in these cells, for all genes 
assayed, the transcript ion level is linked with ploidy 
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Pig. 3. Solution hybridization assay of various transcripts in newborn and adult SMC cultures. Total RNA was isolated as described in Materials 
and Methods and hybridized in solution to the following probes and concentrutions: (a) /Sactin, 4 ng; (b) folIageen 111, I ng; (c) platclct-dcrivcd 
groWI factor A, 0.15 ng; and (d) fibronectin, 1 ng. (0) Experiments with total RNA from newborn smooth muscle cells. (4) Experiments with 

total RNA from adult smooth muscle cells. For other details see Materials and Methods. 

(Fig. 4). Therefore, the observed difference in actin gene 
expression must be viewed as a difference between 
newborn and adult SMC rather than a difference be- 
tween diploid and tetraploid SMC. Clearly, the expres- 
sion of actin genes in newborn and adult SMC is con- 
trolled in a different manner. 

The solution hybridization experiments show i 
pioidydependent expression of collagen III mRNA in 
adult and newborn SMC (Fig. 3b). The expression in 
the newborn subclones also is ploidydependent (Fig. 
4b). Collagen III is a component of both the normal 
vessel wall and the atherosclerotic plaque in which no 
significant rise in the amount of collagen III is observed 
[2I]. 

PDGF A is expressed &fold higher in newborn SMC 
than in adult SMC (Fig. 3~). Since an adult SMC con- 
tains half the amount of DNA compared to a newborn 

SMC, this reflects a 2-fold raise in transcriptional activ- 
ity per gene copy. In solution hybridizations to RNA 
from newborn SMC clone 1 and clone 10 the transcrip- 
tion level correlates with ploidy (Fig. 4c). PDGF A is 
a mitogen for cultured SMC [22]. In the vascular system 
PDGF A-expressing cells found in the intima were en- 
dothelial cells and neointimal SMC showed PDGF A 
expression. Medial SMC did not express PDGF A [23]. 
Majesky et al. 1241 hybridized Northern blots with equal 
amounts of RNA isolated from newborn and adult 
SMC cultures using a probe for PDGF A. They showed 
an equal hybridization intensity in both lanes. It is un- 
known whether the difference in amount of mRNA we 
observe is re!ated to the late passage number of the 
cultures or, more likely, reflects the better accuracy of 
the solution hybridization technique. 

Fibronectin expression correlates with ploidy (Fig. 
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Fig. 4, Solution hybridization assays of various transcripts in diploid and tetraploid subcultures of newborn SMC, Total RNA w~s isolated as 
described in Materials and Methods and hybridized in solution to the following probes and concentrations: (a) fl-actin, 4 ng; (b) collagen Iii, I 
ng; (c) platelet-derived growth factor A, 0.15 rig; and (d) fibron~tin, 1 ng, (E) Exl~rimcnts with total RNA from clone 1 {diploid n~wborn .smooth 
muscle cells). (/~) Ezperiments with total RNA from clone 10 (tetraplold newborn smooth muscle cells). For other details see Materials and Methods, 

3d). On a per cell basis, newborn SMC contain 2-fold 
more fibronectin mRNA than adult $MC. Fibronectin 
expression in clone 1 and clone 10 also matches ploidy 
(Fig. 4d). Fibronectins are large glycoproteins that play 
a role in many biological processes including cellular 
adhesion, morphology and eytoskeletal organization 
[25]. 

All together these results indicate a different control 
of gent expression in cultures of SMC derived from 
newborn and adult rats which is not strictly linked with 
ploidy. Neonatal SMC in culture are able to produce 
the peptide growth factors required for their own 
growth [26]. The reduced expression of  the genes coding 
for contractile proteins suggests that neonatal $MC, 
compared to adult SMC, represent a lesser differen. 
dated SMC [27]. The phenotyl~ o f  newborn SMC is 
also seen when neointimal SMC are brought in culture 

[28] or when adult SMC are cultured in platelet- 
deprived serum [29]. These observations suggest that 
the coat of  a blood vessel may be heterogeneous, con- 
taining SMC with different functions and phenotypes 
[30]. Less differentiated SMC could serve as the stem 
cell population maintaining the regenerative potential 
whereas differentiated SMC controls the contractile 
properties of a blood vessel. The newborn and adult 
SMC culture system provides a useful tool for studying 
those differences that are relevant to the development 
of atheroselerosis and hypertension. 
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