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In this paper, we consider a class of singular nth-order nonlocal boundary value problems
in Banach spaces. The existence of multiple positive solutions for the problem is obtained
by using the fixed point index theory of strict set contraction operators. To demonstrate
the applications of our results, two examples are also given in the paper.
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1. Introduction

In the past few years, the theory of ordinary differential equations in abstract spaces has become an important new
branch [1,2]. Recently, much attention has been focused on investigating the existence andmultiplicity of positive solutions
for nonlocal boundary value problems in scalar spaces [3–18] or in abstract spaces [19–25]. However, to the best of our
knowledge, the corresponding results for singular higher-order nonlocal boundary value problems in Banach spaces are
rarely seen (see, for example, [26,27] and the references therein). To fill the gap, we discuss a class of singular higher-order
nonlocal boundary value problems in Banach space in this paper.We shouldmention here that ourwork unifies and extends
some known results both for multi-point boundary value problems [22,25] and for integral boundary value problems [19],
and other relevant results in the literature to some degree. The main technique used in the analysis is the fixed point index
theory of strict set contraction operators.

Let E be a real Banach space with norm ‖ · ‖ and P be a cone of E, and let θ denote the zero element of E, I = [0, 1].
The purpose of this paper is to investigate themultiplicity of positive solutions for the following singular nth-order nonlocal
boundary value problem (BVP) in Banach spaces:

x(n)(t)+ f (t, x(t), x′(t), . . . , x(n−2)(t)) = θ, t ∈ (0, 1),
x(i)(0) = θ, 0 ≤ i ≤ n − 3,

ax(n−2)(0)− bx(n−1)(0) =

∫ 1

0
x(n−2)(s)dA(s),

cx(n−2)(1)+ dx(n−1)(1) =

∫ 1

0
x(n−2)(s)dB(s),

(1.1)
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where a, b, c, d ≥ 0with ρ = ac+ad+bc > 0, f ∈ C[(0, 1)×Pn−1, P] and f may be singular at t = 0 and/or t = 1. A and B
are right continuous on [0, 1), left continuous at t = 1, and nondecreasing on [0, 1], with A(0) = B(0) = 0;

 1
0 x(n−2)(s)dA(s)

and
 1
0 x(n−2)(s)dB(s) denote the Riemann–Stieltjes integrals of x(n−2) with respect to A and B, respectively.

If A and B are step functions on [0, 1] (either A or B may be identical to 0), then BVP (1.1) becomes a generic multi-
point BVP, some special cases of which have been extensively studied. When n = 2, f (t, x(t)) = a(t)F(x(t)), A(t) =
0, t ∈ [0, ξ),
µ1, t ∈ [ξ, 1], B(t) =


0, t ∈ [0, η),
µ2, t ∈ [η, 1], BVP (1.1) reduces to the generalized Sturm–Liouville four-point BVP


x′′(t)+ a(t)F(x(t)) = θ, 0 < t < 1,
ax(0)− bx′(0) = µ1x(ξ), cx(1)+ dx′(1) = µ2x(η).

(1.2)

For the case where nonlinearity is continuous, Liu [25] studied the existence of at least one or two positive solutions to BVP
(1.2) by using the fixed point theorem of cone expansion and compression of strict set contractions.When b = d = 0, c = 1,
A ≡ 0, B(t) =


0, t ∈ [0, η),
ρ, t ∈ [η, 1], BVP (1.1) reduces to the nth-order three-point BVP

x(n)(t)+ f (t, x(t), x′(t), . . . , x(n−2)(t)) = θ, t ∈ I,
x(i)(0) = θ, 0 ≤ i ≤ n − 2,
x(n−2)(1) = ρx(n−2)(η).

(1.3)

For the nonsingular case, Zhang et al. [22] established some existence, nonexistence and multiplicity results of positive
solutions for the BVP (1.3) by using the fixed point principle in cone and the fixed point index theory for strict set contraction
operators.

In addition, for the special case n = 2, a = c = 1, b = d = 0,
 1
0 x(s)dA(s) =

 1
0 g(s)x(s)ds, B ≡ 0 or A ≡ 0, 1

0 x(s)dB(s) =
 1
0 g(s)x(s)ds, f is nonsingular, Feng et al. [19] investigated the existence and multiplicity of positive

solutions for BVP (1.1) by using the fixed point index theory in a cone for strict set contraction operators.
Motivated by the above works, in the present paper, by using the fixed point index theory for strict set contractions, we

prove the multiplicity results for the BVP (1.1) in Banach spaces. The results obtained in this paper unify and extend some
results in [19,22,25] and other relevant papers to some degree.

The rest of this paper is organized as follows. We shall introduce some lemmas and notations in the rest of this section.
In Section 2, we provide some preliminary lemmas. In Section 3, the main results will be stated and proved. Finally, we give
two examples to illustrate the applications of our results in Section 4.

It is well known that E is partially ordered by cone P , i.e., x ≤ y if and only if y − x ∈ P . P is said to be normal if there
exists a positive constant N such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖ (the smallest N is called the normal constant of P) and
P is said to be solid if its interior P̊ is not empty. When P is solid, we denote x ≪ y if y − x ∈ P̊ . For details on cone theory,
see [28].

Let C[I, E] denote the Banach space of all continuous mapping x from I into E with norm ‖x‖C = maxt∈I ‖x(t)‖. Clearly,
Q = {x ∈ C[I, E] : x(t) ≥ θ} is a cone of C[I, E]. For any r > 0, set Pr = {x ∈ P : ‖x‖ ≤ r}, Qr = {x ∈ Q : ‖x‖C ≤ r}.
x ∈ Cn−1

[I, E]∩Cn
[(0, 1), E] is called a solution of BVP (1.1) if it satisfies (1.1). x is a positive solution of (1.1) if x is a solution

of (1.1) and x(t) ≥ θ, x(t) ≢ θ .
For a bounded set V in Banach space E, we denote by α(V ) the Kuratowski measure of noncompactness. The operator

A : D → E (D ⊂ E) is said to be a k-set contraction if A : D → E is continuous and bounded and there is a constant k ≥ 0
such that α(A(S)) ≤ kα(S) for any bounded S ⊂ D; a k-set contraction with k < 1 is called a strict set contraction. Let α(·)
and αC (·) denote Kuratowski’s measure of noncompactness in E and C(I, E), respectively. For details on the definition and
properties of the measure of noncompactness, the reader is referred to [29].

Throughout this paper, we set

φ1(t) =
at + b
ρ

, φ2(t) =
−ct + c + d

ρ
, R+ = [0,+∞),

κ1 =

∫ 1

0
φ1(s)dB(s), κ2 =

∫ 1

0
φ2(s)dA(s), Λ =

1
1 − κ1

,

κ3 =

∫ 1

0
φ2(s)dB(s), κ4 =

∫ 1

0
φ1(s)dA(s), Γ =

1
1 − κ2

,

κ5 =

∫ 1

0
dB(s), κ6 =

∫ 1

0
dA(s), M0 =

(a + b)(c + d)
ρ

,

M = 1 +
Λ[(a + b)+ Γ κ4(c + d)]κ5

ρ(1 −ΛΓ κ3κ4)
+
Γ [Λκ3(a + b)+ (c + d)]κ6

ρ(1 −ΛΓ κ3κ4)
.
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Lemma 1.1 ([29]). If H ⊂ C[I, E] is bounded and equicontinuous, then

αC (H) = α(H(I)) = max
t∈I

α(H(t)),

where H(I) = {u(t) : u ∈ H, t ∈ I}, H(t) = {u(t) : u ∈ H}.

We also need the following lemma which is concerned with the fixed point index of strict set contractions [29].

Lemma 1.2. Let K be a cone in a real Banach space E and Ω be a nonempty bounded open convex subset of K . Suppose that
A : Ω → K is a strict set contraction and A(Ω) ⊂ Ω , whereΩ denotes the closure of Ω in K . Then

i(A,Ω, K) = 1.

2. The preliminary lemmas

To establish the existence of multiple positive solutions of BVP (1.1), let us list the following assumptions:

(H1) f (t, u1, u2, . . . , un−1) ∈ C((0, 1) × Pn−1, P), for every [α, β] ⊂ (0, 1) and any r > 0, f is uniformly continuous on
[α, β] × Pn−1

r with respect to t .
(H2) For any r > 0,

0 <
∫ 1

0
G(t, t)fr(t)dt < +∞,

where G(t, s)will be given in (2.3), and for t ∈ (0, 1),

fr(t) = sup

‖f (t, u1, u2, . . . , un−1)‖ : (u1, u2, . . . , un−1) ∈ Pn−1

r


.

(H3) There exist nonnegative constants Lk (k = 1, 2, . . . , n − 1)with

2M0M


n−2−
k=1

Lk
(n − k − 2)!

+ Ln−1


< 1

such that

α(f (t, B1, B2, . . . , Bn−1)) ≤

n−1−
k=1

Lkα(Bk)

for any t ∈ (0, 1) and bounded sets Bk ⊂ P (k = 1, 2, . . . , n − 1).
(H4) κ1, κ2 ∈ [0, 1), ΛΓ κ3κ4 ∈ [0, 1).

In order to overcome the difficulty due to the dependence of f on derivatives, we first consider the following singular
second-order nonlinear integro-differential equation:

y′′(t)+ f (t, An−2y(t), . . . , A1y(t), A0y(t)) = θ, t ∈ (0, 1),

ay(0)− by′(0) =

∫ 1

0
y(s)dA(s), cy(1)+ dy′(1) =

∫ 1

0
y(s)dB(s),

(2.1)

where A0 is the identity operator, and

(Ajy)(t) =

∫ t

0

(t − s)j−1

(j − 1)!
y(s)ds, j = 1, 2, . . . , n − 2.

For the proof of our main results, we will make use of the following lemmas.

Lemma 2.1. The nth-order nonlocal BVP (1.1) has a solution if and only if the nonlinear second-order integro-differential
equation (2.1) has a solution.

Proof. If x is a solution of the nth-order nonlocal BVP (1.1), let y(t) = x(n−2)(t), then it follows from the boundary conditions
of the BVP (1.1) and also by exchanging the integral sequence that

(A1y)(t) = x(n−3)(t), . . . , (An−3y)(t) = x′(t), (An−2y)(t) = x(t).

Thus y(t) = x(n−2)(t) is a solution of the second-order integro-differential equation (2.1).
Conversely, if y is a solution of the second-order integro-differential equation (2.1), let x(t) = (An−2y)(t), then we have

x′(t) = An−3y(t), . . . , x(n−3)(t) = A1y(t), x(n−2)(t) = y(t),

which imply that x(0) = θ, x′(0) = θ, . . . , x(n−3)(0) = θ . Consequently, x(t) = An−2y(t) is a solution of the nth-order
nonlocal BVP (1.1). �
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Lemma 2.2. Assume that ΛΓ κ3κ4 ≠ 1 holds. Then for any g ∈ C[(0, 1), E], the problem
y′′(t)+ g(t) = θ, t ∈ (0, 1),

ay(0)− by′(0) =

∫ 1

0
y(s)dA(s),

cy(1)+ dy′(1) =

∫ 1

0
y(s)dB(s),

(2.2)

has a unique solution

y(t) =

∫ 1

0
H(t, s)g(s)ds,

where

H(t, s) = G(t, s)+ γ1(t)
∫ 1

0
G(τ , s)dB(τ )+ γ2(t)

∫ 1

0
G(τ , s)dA(τ ),

G(t, s) = ρ


φ1(t)φ2(s), 0 ≤ t ≤ s ≤ 1,
φ1(s)φ2(t), 0 ≤ s ≤ t ≤ 1,

γ1(t) =
Λφ1(t)+ΛΓ κ4φ2(t)

1 −ΛΓ κ3κ4
, γ2(t) =

ΛΓ κ3φ1(t)+ Γ φ2(t)
1 −ΛΓ κ3κ4

.

(2.3)

Proof. The proof is similar to Lemma 2.1 of [26], so we omit it. �

Lemma 2.3. Suppose that (H4) is satisfied, we have

0 ≤ G(t, s) ≤ G(s, s) ≤ M0, 0 ≤ H(t, s) ≤ MG(s, s), ∀t, s ∈ I,

and for any σ ∈

0, 1

2


,

G(t, s) ≥ γG(s, s), t ∈ [σ , 1 − σ ], s ∈ I, (2.4)

where

γ = min

aσ + b
a + b

,
cσ + d
c + d


.

By Lemmas 2.2 and 2.3, we can obtain the following lemma.

Lemma 2.4. Let (H4) be satisfied. If g ∈ Q , then the unique solution y of problem (2.2) satisfies y(t) ≥ θ , that is y ∈ Q .

Define an operator T : Q → C[I, E] by

(Ty)(t) =

∫ 1

0
H(t, s)f (s, An−2y(s), . . . , A1y(s), y(s)) ds, t ∈ I. (2.5)

It is easy to see that if y ∈ Q \ {θ} is a fixed point of operator equation y = Ty, then y = y(t) is the positive solution of BVP
(2.1).

Lemma 2.5. Suppose that (H1)–(H4) are satisfied. Then, for any r > 0, the operator T : Qr → Q is a strict set contraction.

Proof. For any y ∈ Qr and t ∈ (0, 1), by (2.5) and (H2), we have

‖(Ty)(t)‖ ≤ M
∫ 1

0
G(s, s)fr(s)ds < +∞, (2.6)

and thus T (Qr) ⊂ Q is bounded. Now we show that T is continuous. For any y ∈ Qr and t1, t2 ∈ I ,

‖(Ty)(t1)− (Ty)(t2)‖ ≤

∫ 1

0
|G(t1, s)− G(t2, s)|fr(s)ds + κ5|γ1(t1)− γ1(t2)|

∫ 1

0
G(s, s)fr(s)ds

+ κ6|γ2(t1)− γ2(t2)|
∫ 1

0
G(s, s)fr(s)ds.

Then for every V ⊂ Qr , (TV )(t) is equicontinuous on I .
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Let yp, y ∈ Qr with ‖yp − y‖C → 0 as p → +∞, i.e., ‖yp(t) − y(t)‖ → 0 as p → +∞ for t ∈ I . From the Lebesgue
dominated convergence theorem and (2.6), it follows that

‖(Typ)(t)− (Ty)(t)‖ → 0 as p → +∞, t ∈ I. (2.7)

Thus, {(Typ)(t)} is relatively compact for every t ∈ I , and it follows by the equicontinuity of {(Typ)(t)} and the Ascoli–Arzela
theorem that {Typ} is relatively compact in Q .

Next we show that ‖Typ − Ty‖C → 0 as p → +∞. In fact, if this is not true, then there is a constant ϵ0 > 0 and a
subsequence {ypi} ⊂ {yp} such that

‖Typi − Ty‖C ≥ ϵ0, i = 1, 2, 3, . . . . (2.8)

Since {Typ} is relatively compact, there is a subsequence of {Typi}which converges to some z ∈ Q . Without loss of generality,
we may assume that {Typi} itself converges to z, that is

‖Typi − z‖C → 0, i → +∞. (2.9)

By virtue of (2.7) and (2.9) we have z = Ty, and so, (2.9) contradicts (2.8). Therefore, T is continuous.
Finally,we show that T : Qr → Q is a strict set contraction. LetV ⊂ Qr be given arbitrarily, aswe have shown in the above

that the functions {Ty : y ∈ V } are uniformly bounded and equicontinuous, by Lemma 1.1, αC (TV ) = maxt∈I α((TV )(t)).
For any y ∈ V , we define

(Tpy)(t) =

∫ 1− 1
p

1
p

H(t, s)f (s, An−2y(s), . . . , A1y(s), y(s)) ds, t ∈ I.

By (2.6) we know that

(Tpy)(t) → (Ty)(t) as p → +∞ for y ∈ S, t ∈ I uniformly.

So, for any ε > 0, there exists X > 0, for p > X, t ∈ I, y ∈ V such that ‖(Tpy)(t) − (Ty)(t)‖ < ε. Thus for any p > X and
y ∈ V , t ∈ I , we obtain

d((Tpy)(t), (TV )(t)) = inf
y∈V

{‖(Tpy)(t)− (Ty)(t)‖} ≤ ‖(Tpy)(t)− (Ty)(t)‖ < ε,

then

sup
y∈V

d((Tpy)(t), (TV )(t)) ≤ ε, t ∈ I.

Similarly,

sup
y∈V

d((TpV )(t), (Ty)(t)) ≤ ε, t ∈ I.

Hence, we have

dH((TpV )(t), (TV )(t)) = max

sup
y∈V

d((Tpy)(t), (TV )(t)), sup
y∈V

d((TpV )(t), (Ty)(t))


≤ ε, (2.10)

where dH(·, ·) denotes the Hausdorff metric. Thus, by (2.10) we obtain for p > X ,

|α((TpV )(t))− α((TV )(t))| < 2dH((TpV )(t), (TV )(t)) ≤ 2ε, t ∈ I.

Hence, we have

lim
p→+∞

α((TpV )(t)) = α((TV )(t)) for t ∈ I. (2.11)

In what follows, we estimate α((TpV )(t)) for each t ∈ I . It follows by the formula∫ 1− 1
p

1
p

y(t)dt ∈


1 −

2
p


co


y(t) : t ∈

[
1
p
, 1 −

1
p

]
and (H3) that

α((TpV )(t)) = α

∫ 1− 1
p

1
p

H(t, s)f (s, An−2y(s), . . . , A1y(s), y(s)) ds : y ∈ V



≤


1 −

2
p


M0Mα


co


f (s, An−2y(s), . . . , A1y(s), y(s)) : s ∈ Ip, y ∈ V
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≤ M0Mα

f

Ip, (An−2V )(Ip), . . . , (A1V )(Ip), V (Ip)


≤ M0M


n−1−
k=1

Lkα((An−k−1V )(Ip))


, t ∈ I,

where Ip =


1
p , 1 −

1
p


, and then

αC (TpV ) ≤ M0M


n−1−
k=1

Lkα((An−k−1V )(Ip))


. (2.12)

Similarly,

α((AkV )(Ip)) ≤
1

(k − 1)!
α(V (Ip)), k = 1, 2, . . . , n − 2. (2.13)

On the other hand, using a similar method as in the proof of Lemma 2 in [25], we can get that

α(V (Ip)) ≤ 2αC (V ). (2.14)

Therefore, it follows from (2.11)–(2.14) that

αC (TV ) ≤ 2M0M


n−2−
k=1

Lk
(n − k − 2)!

+ Ln−1


αC (V ).

Noticing that 2M0M
∑n−2

k=1
Lk

(n−k−2)! + Ln−1


< 1, we claim that T is a strict set contraction. �

3. Main results

In the following, we give the main results of this paper.

Theorem 3.1. Assume that (H1)–(H4) are satisfied, P is normal and solid, and the following four conditions are satisfied:

(i) For ui ∈ P (i = 1, 2, . . . , n − 1), there exist q1, q2 ∈ L[(0, 1),R+] and F ∈ C[Rn−1
+ ,R+] such that

‖f (t, u1, . . . , un−1)‖ ≤ q1(t)+ q2(t)F(‖u1‖, ‖u2‖, . . . , ‖un−1‖), t ∈ (0, 1).

(ii) For ui ∈ P (i = 1, 2, . . . , n − 1), there exists q3 ∈ L[(0, 1),R+] such that

lim
n−1∑
k=1

‖uk‖→+∞

‖f (t, u1, . . . , un−1)‖

q3(t)
n−1∑
k=1

‖uk‖

= 0

uniformly for t ∈ (0, 1).
(iii) For ui ∈ P (i = 1, 2, . . . , n − 1), there exists q4 ∈ L[(0, 1),R+] such that

lim
n−1∑
k=1

‖uk‖→0

‖f (t, u1, . . . , un−1)‖

q4(t)
n−1∑
k=1

‖uk‖

= 0

uniformly for t ∈ (0, 1).
(iv) There exist v ≫ θ, t ∈ [σ , 1 − σ ] and h(t) ∈ C([σ , 1 − σ ],R+) such that

f (t, u1, . . . , un−1) ≥ h(t)v, t ∈ [σ , 1 − σ ], un−1 ≥ v, ui ≥ θ (i = 1, 2, . . . , n − 2), (3.1)

and

γ

∫ 1−σ

σ

G(s, s)h(s)ds > 1, (3.2)

where γ is given in Lemma 2.3. Then the BVP (1.1) has at least two positive solutions.

Proof. Let T be the cone preserving, strict set contraction that was defined by (2.5). Let

q∗

i =

∫ 1

0
G(s, s)qi(s)ds, (i = 1, 2, 3, 4), ε1 =

1

2Mq∗

3

[
1 +

n−2∑
i=1

1
(i−1)!

] .
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By virtue of conditions (i) and (ii), given the above ε1 > 0, there exists r1 > 0 such that

‖f (t, u1, u2, . . . , un−1)‖ ≤ ε1q3(t)
n−1−
i=1

‖ui‖, t ∈ (0, 1), ui ∈ P,
n−1−
i=1

‖ui‖ ≥ r1,

and

‖f (t, u1, u2, . . . , un−1)‖ ≤ q1(t)+ M1q2(t), t ∈ (0, 1), ui ∈ P,
n−1−
i=1

‖ui‖ ≤ r1

where
M1 = max {F(x1, x2, . . . , xn−1) : 0 ≤ xi ≤ r1, i = 1, 2, . . . , n − 1} .

Hence

‖f (t, u1, u2, . . . , un−1)‖ ≤ ε1q3(t)
n−1−
i=1

‖ui‖ + q1(t)+ M1q2(t), t ∈ (0, 1), ui ∈ P. (3.3)

Choose

R > max

2M(q∗

1 + M1q∗

2),
2
σ

‖v‖


(3.4)

and set U1 = {y ∈ Q : ‖y‖C < R}, then U1 = {y ∈ Q : ‖y‖C ≤ R}. For any y ∈ U1, by (3.3), we have

‖(Ty)(t)‖ ≤ M
∫ 1

0
G(s, s)


ε1q3(s)

n−2−
i=0

‖(Aiy)(s)‖ + q1(s)+ M1q2(s)


ds

≤ Mε1q∗

3


1 +

n−2−
i=1

1
(i − 1)!


‖y‖C + M(q∗

1 + M1q∗

2)

≤
1
2
‖y‖C + M(q∗

1 + M1q∗

2) < ‖y‖C , t ∈ I, (3.5)

i.e.,

‖Ty‖C < ‖y‖C , ∀y ∈ U1,

which implies that

T (U1) ⊂ U1. (3.6)

Let

ε2 =
1

2
[
1 +

n−2∑
i=1

1
(i−1)!

]
Mq∗

4

.

By (iii), for ε2 > 0, there exists r2 > 0 such that

‖f (t, u1, u2, . . . , un−1)‖ ≤ ε2q4(t)
n−1−
i=1

‖ui‖, t ∈ (0, 1), ui ∈ P,
n−1−
i=1

‖ui‖ ≤ r2.

Choose

0 < r < min

r2


1 +

n−2−
i=1

1
(i − 1)!

−1

,
‖v‖

N
, R


and set U2 = {y ∈ Q : ‖y‖C < r}. Then U2 = {y ∈ Q : ‖y‖C ≤ r}, and, for any y ∈ U2, we have

‖(Ty)(t)‖ ≤ Mε2

∫ 1

0
G(s, s)q4(s)

n−2−
i=0

‖(Aiy)(s)‖ds

≤ ε2Mq∗

4


1 +

n−2−
i=1

1
(i − 1)!


‖y‖C

≤
1
2
‖y‖C < ‖y‖C , t ∈ I,
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i.e.,

‖Ty‖C < ‖y‖C , ∀y ∈ U2,

which implies that

T (U2) ⊂ U2. (3.7)

Let

U3 = {y ∈ Q : ‖y‖C < R, y(t) ≫ v, ∀t ∈ [σ , 1 − σ ]}.

As in the proof of Theorem 1 in [30], we can show that U3 is an open set of Q . Let e(t) =
2
σ
tv, it is easy to see that

e ∈ Q , ‖e‖C ≤
2
σ
‖v‖ < R and e(t) ≥ 2v ≫ v for t ∈ [σ , 1 − σ ]. Hence, e ∈ U3, and so, U3 ≠ ∅. Let y ∈ U3, by

(3.5), we have ‖Ty‖C < R. On the other hand, (2.4), (3.1) and (3.2) imply

(Ty)(t) =

∫ 1

0
H(t, s)f (s, An−2y(s), . . . , A1y(s), y(s)) ds

≥

∫ 1−σ

σ

G(t, s)f (s, An−2y(s), . . . , A1y(s), y(s)) ds

≥


γ

∫ 1−σ

σ

G(s, s)h(s)ds

v

≫ v, t ∈ [σ , 1 − σ ].

Hence,

T (U3) ⊂ U3. (3.8)

Since U1, U2 and U3 are nonempty bounded convex open sets of Q , it follows from (3.6)–(3.8) and Lemma 1.2 that

i(T ,Ui,Q ) = 1, i = 1, 2, 3. (3.9)

On the other hand, for y ∈ U3, we have y(σ ) ≫ v, and so

‖y‖C ≥ ‖y(σ )‖ ≥ N−1
‖v‖.

Consequently,

U2 ⊂ U1, U3 ⊂ U1, U2 ∩ U3 = ∅. (3.10)

It follows from (3.9) and (3.10) that

i(T ,U1 \ (U2 ∪ U3),Q ) = i(T ,U1,Q )− i(T ,U2,Q )− i(T ,U3,Q ) = −1.

Therefore, the operator T has two fixed points y∗
∈ U3 and y∗∗

∈ U1 \(U2∪U3)with y∗(t) ≫ v, t ∈ [σ , 1−σ ], ‖y∗∗
‖C > r ,

and hence y∗(t) ≢ θ and y∗∗(t) ≢ θ . This and Lemma 2.1 complete the proof. �

Remark 3.1. Condition (iii) and the continuity of f imply that f (t, θ, θ, . . . , θ) = θ for t ∈ (0, 1). Hence, under the
conditions of Theorem 3.1, BVP (1.1) has the trivial solution y(t) ≡ θ in addition to two positive solutions y∗ and y∗∗.

Theorem 3.2. Let conditions (H1)–(H4), (i) and (ii) be satisfied. Assume that there exist v > θ, t ∈ [σ , 1 − σ ] and
h(t) ∈ C([σ , 1 − σ ],R+) such that (3.1) holds and

γ

∫ 1−σ

σ

G(s, s)h(s)ds ≥ 1.

Then the BVP (1.1) has at least one positive solution.
Proof. Choose R satisfying (3.4) and let

U4 = {y ∈ Q : ‖y‖C ≤ R, y(t) ≥ v, ∀t ∈ [σ , 1 − σ ]}.

It is clear that U4 is a bounded closed convex set in Q . U4 ≠ ∅ because e ∈ U4. Let y ∈ U4, by (3.5) we have ‖Ty‖C < R. On
the other hand, as in the proof of Theorem 3.1, we can show that

(Ty)(t) ≥ v, ∀t ∈ [σ , 1 − σ ], y ∈ U4.

Hence,

T (U4) ⊂ U4.

Then, the Schauder fixed point theorem implies that T has at least one fixed point u∗
∈ U4 with u∗(t) ≥ v, t ∈ [σ , 1 − σ ].

The theorem is proved. �
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4. Examples

In this section, in order to illustrate the applications of our results, we consider two examples.

Example 4.1. Consider the following four-point boundary value problem for a finite system of third-order scalar differential
equations

x′′′(t)+
16

√
t(1 − t)


x(t)+ x′(t)

1 + x(t)+ x′(t)

2

= 0, t ∈ (0, 1),

x(0) = 0, x′(0)− x′′(0) =
1
4
x′


1
3


+

1
9
x′


2
3


,

x′(1)+ x′′(1) =
1
2
x′


1
3


+ x′


2
3


.

(4.1)

Conclusion. BVP (4.1) has at least two positive solutions x∗ and x∗∗.

Proof. Let E = R and P = R+. Then P is a normal and solid cone in E and BVP (4.1) can be regarded as a boundary value
problem of the form of (1.1) in E. In this situation, a = b = c = d = 1, and

A(t) =



0, t ∈

[
0,

1
3


,

1
4
, t ∈

[
1
3
,
2
3


,

13
36
, t ∈

[
2
3
, 1

]
,

B(t) =



0, t ∈

[
0,

1
3


,

1
2
, t ∈

[
1
3
,
2
3


,

3
2
, t ∈

[
2
3
, 1

]
,

f (t, u1, u2) =
16

√
t(1 − t)


u1 + u2

1 + u1 + u2

2

, t ∈ (0, 1), u1, u2 ≥ 0.

Evidently, f ∈ C[(0, 1)× P2, P] and is singular at t = 0 and t = 1. (H1) is obviously satisfied and (H3) holds automatically
when E is finite dimensional (here, E = R). Note that for t ∈ (0, 1) and r > 0,

fr(t) ≤
16

√
t(1 − t)

,

and so (H2) is satisfied. By calculations, we get

ρ = 3, φ1(t) =
1 + t
3

, φ2(t) =
2 − t
3

, κ1 =
7
9
, κ2 =

61
324

, κ3 =
13
18
, κ4 =

14
81
.

So, (H4) is satisfied. On the other hand, conditions (i)–(iii) are satisfied for

q1(t) = 0, q2(t) = q3(t) = q4(t) =
16

√
t(1 − t)

, F(y1, y2) =


y1 + y2

1 + y1 + y2

2

.

Choosing σ =
1
4 , then γ =

5
8 . For t ∈

 1
4 ,

3
4


and u1 ≥ 0, u2 ≥ 1, we have

f (t, u1, u2) ≥
16

√
t(1 − t)


1
2

2

=
4

√
t(1 − t)

= h(t),

and

γ

∫ 3
4

1
4

G(t, t)h(t)dt =
5
6

∫ 3
4

1
4

(1 + t)(2 − t)
√
t(1 − t)

dt ≥
175
96

∫ 3
4

1
4

1
√
t(1 − t)

dt =
175
96

·
π

3
> 1,

so condition (iv) is satisfied. Thus, our conclusion follows from Theorem 3.1. �

Example 4.2. Consider the infinite system of scalar fourth-order differential equations
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x(4)n (t)+
2
√
2

√
n
√
t(1 − t)

(1 + xn − cos x′

2n + x′′

n+1)
1
2 = 0, t ∈ (0, 1),

xn(0) = x′

n(0) = 0, x′′

n(0)− x′′′

n (0) =
1
4
x′′

n


1
3


+

1
9
x′′

n


2
3


,

x′′

n(1)+ x′′′

n (1) =
1
2
x′′

n


1
3


+ x′′

n


2
3


, n = 1, 2, 3, . . . .

(4.2)

Conclusion. BVP (4.2) has at least one positive solution.

Proof. Let E = c0 = {x = (x1, x2, . . . , xn, . . .) : xn → 0} with the norm ‖x‖ = supn |xn|, and P = {x =

(x1, x2, . . . , xn, . . .) ∈ c0 : xn ≥ 0, n = 1, 2, 3, . . .}. Then P is a normal cone in E. Now, BVP (4.2) can be regarded as
a boundary value problem of the form of (1.1) in E. In this situation, a = b = c = d = 1, A, B are as in Example 4.1,
u = (u1, u2, . . . , un, . . .), ξ = (ξ1, ξ2, . . . ξn, . . .), ζ = (ζ1, ζ2, . . . ζn, . . .), f = (f1, f2, . . . , fn, . . .), in which

fn(t, u, ξ , ζ ) =
2
√
2

√
n
√
t(1 − t)

(1 + un − cos ξ2n + ζn+1)
1
2 , ∀t ∈ (0, 1), u, ξ , ζ ∈ P.

Evidently, f ∈ C[(0, 1) × P3, P] and is singular at t = 0 and t = 1. (H1) is obviously satisfied. Note that for t ∈ (0, 1) and
r > 0,

fr(t) ≤
4

√
t(1 − t)

(1 + r)
1
2 ,

and so (H2) is satisfied. For any ψ = (ψ1, ψ2, . . . , ψn, . . .) ∈ f (t, P3
r ), we have

0 ≤ ψn ≤
4

√
n
√
t(1 − t)

(1 + r)
1
2 , ∀t ∈ (0, 1), n = 1, 2, 3, . . . ,

and the relative compactness of f (t, P3
r ) in c0 follows directly from a known result (see [31]): a bounded set W of c0 is

relatively compact if and only if

lim
p→+∞


sup
w∈W

[max{|wm| : m ≥ p}]


= 0.

Hence, condition (H3) is satisfied for Lk = 0 (k = 1, 2, 3). As in Example 4.1, condition (H4) is satisfied. On the other hand,

‖f (t, u, ξ , ζ )‖ ≤
2
√
2

√
t(1 − t)

(2 + ‖u‖ + ‖ζ‖)
1
2 , t ∈ (0, 1), u, ξ , ζ ∈ P,

which implies that conditions (i)–(ii) are satisfied for

q1(t) = 0, q2(t) = q3(t) =
2
√
2

√
t(1 − t)

, F(y1, y2, y3) = (2 + y1 + y3)
1
2 .

Let σ =
1
4 , v =


1, 1

2 , . . . ,
1
n , . . .


, h(t) =

2
√
2

√
t(1−t)

. Then γ =
5
8 , v > θ . For t ∈

 1
4 ,

3
4


and u ≥ θ, ξ ≥ θ, ζ ≥ v, we have

fn(t, u, ξ , ζ ) ≥
2
√
2

n
√
t(1 − t)

=
1
n
h(t),

and

γ

∫ 3
4

1
4

G(t, t)h(t)dt ≥
175

√
2

192

∫ 3
4

1
4

1
√
t(1 − t)

dt =
175

√
2

192
·
π

3
> 1.

Thus, our conclusion follows from Theorem 3.2. �
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