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a b s t r a c t

Kong et al. [Kong, Z., Gao, L., Wang, L., and Li, S., The normal parameter reduction of
soft sets and its algorithm, Computers and Mathematics with Applications 56 (12) (2008)
3029–3037] introduced the definition of normal parameter reduction in soft sets and
presented a heuristic algorithm of normal parameter reduction. However, the algorithm
is hard to understand and involves a great amount of computation. In this paper, firstly, we
give some new related definitions and proved theorems of normal parameter reduction.
Then we propose a new efficient normal parameter reduction algorithm of soft sets based
on the oriented-parameter sum, which can be carried out without parameter important
degree and decision partition. The comparison result on a dataset shows that the proposed
algorithm involves relatively less computation and is easier to implement and understand
as compared with the algorithm of normal parameter reduction proposed by Kong et al.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A lot of practical and complicated problems inmany fields involve uncertain, fuzzy, not clearly defined data. Uncertainties
may be dealt with by making use of a wide variety of theories as diverse as probability theory, fuzzy sets [1], rough sets [2],
intuitionistic fuzzy sets [3], vague sets [4] and interval mathematics [5], each of which has its inherent difficulties as pointed
out in [6]. To overcome these difficulties, Molodtsov initiated soft set theory [7] as a new general mathematical tool for
dealing with uncertainties which is free from the inadequacy of the parameterization tools. Therefore, it is very convenient
and easy to apply soft set theory into practice. It has great potential for applications in several directions, some of which
had already been demonstrated by Molodtsov [7], such as the smoothness of functions, game theory, operations research,
Riemann integration, Perron integration, probability theory, and measurement theory.

Presently, theoretic study on soft set is progressing rapidly.Maji et al. [8] firstly introduced some definitions of the related
operations on soft sets. Ali et al. [9] took into account some errors of former studies and put forward some new operations on
soft sets. Aktas et al. [10] initiated soft groups. Jun and Park [11] gave the definition of soft ideals and idealistic soft BCK/BCI-
algebras. Feng et al. [12] depicted the definitions of soft semirings, soft subsemirings, soft ideals and idealistic soft semirings.
Çağman et al. [13] defined soft matrices and their operations and described products of soft matrices and their properties.
Qin et al. [14] introduced the concept of soft equality and some related properties were derived. Jiang [15] extended soft
sets with description logics. Xiao et al. [16] proposed the notion of exclusive disjunctive soft sets and studied some of its
operations. Xu et al. [17] gave the vague soft sets. It could be shown that soft set theory is closely associated with rough
sets in [18–21]. Maji et al. [22] extended soft sets to fuzzy soft sets and Majumdar and Samanta [23] further generalized the
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concept of fuzzy soft sets. Liu and Yan [24] studied the algebraic structure of fuzzy soft sets and described the notion of fuzzy
soft group.Maji [25],Maji et al. [26,27] extended soft sets to intuitionistic fuzzy soft sets. Soft setmodels in combinationwith
the interval-valued fuzzy set have been proposed as the concept of the interval-valued fuzzy soft set [28] by Yang et al. Jiang
et al. [29] presented the interval-valued intuitionistic fuzzy soft set theory by combining the interval-valued intuitionistic
fuzzy sets and soft sets. As for practical applications of soft set theory, great progress has been made. Maji and Roy [30]
employed soft sets to solve the decision-making problem. Roy andMaji [31] presented a novel method of object recognition
from an imprecise multi-observer data to deal with decision making based on fuzzy soft sets, which was revised by Kong
et al. [32]. Feng et al. [33] showed an adjustable approach to fuzzy soft set based decision making by means of level soft
sets. Jiang et al. [34] presented an adjustable approach to intuitionistic fuzzy soft sets based decision making by using level
soft sets of intuitionistic fuzzy soft sets. Feng et al. [35] gave deeper insights into decision making involving interval-valued
fuzzy soft sets and put forward flexible schemes for decisionmaking based on interval-valued fuzzy soft sets by using reduct
fuzzy soft sets and level soft sets. Qin et al. [36] further presented an adjustable approach to interval-valued intuitionistic
fuzzy soft sets based decision making. Zou and Xiao [37] depicted data analysis approaches of soft sets under incomplete
information. Qin et al. [38] proposed a data filling approach for an incomplete soft set. Xiao et al. [39] described a combined
forecasting approach based on fuzzy soft sets. Herawan andMat Deris [40] proposed a soft set approach for association rules
mining.

It is worthwhile to mention that some effort has been made towards issues concerning reduction of soft sets. Chen
et al. [41] pointed out that the conclusion of soft set reduction offered in [30] was incorrect, and then present a new notion
of parameterization reduction in soft sets in comparison with the definition to the related concept of attributes reduction
in rough set theory. The concept of normal parameter reduction was introduced in [42], which overcomes the problem of
suboptimal choice and added parameter set of soft sets. An algorithm for normal parameter reduction was also presented
in [42]. However, the algorithm is hard to understand and involves a great amount of computation. In order to make the
reduction of soft sets easy to implement and reduce computation, in this paper, we propose a simpler and more easily
understandable algorithm which is referred to as a new efficient normal parameter reduction algorithm of soft sets.

The rest of this paper is organized as follows. Section 2 reviews the basic notions of soft set theory. Section 3 analyzes
the normal parameter reduction of soft set put forward in [42]. Section 4 gives some new related definitions and proved
theorems and then proposes a novel normal parameter reduction algorithm of soft sets. Section 5 firstly compares the
proposed algorithm with the algorithm of [42] in terms of computational complexity, and then elaborates the comparison
result for capturing the normal parameter reduction through a Boolean data set. Finally Section 6 presents the conclusion
from our study.

2. Soft set theory

In this section, we review some definitions and properties with regard to soft sets. Let U be a non-empty initial universe
of objects, E be a set of parameters in relation to objects in U, P (U) be the power set of U , and A ⊂ E. The definition of soft
set is given as follows.

Definition 2.1 (See [6]). A pair (F , A) is called a soft set over U , where F is a mapping given by F : A → P(U).

That is, a soft set over U is a parameterized family of subsets of the universe U . As an illustration, let us consider the
following example, which is quoted directly from [6].

Example 2.1. A soft set (F , E) describes the ‘‘attractiveness of houses’’ that Mr. X is going to purchase. Suppose that

U = {h1, h2, h3, h4, h5, h6} and E = {e1, e2, e3, e4, e5} ,

where there are six houses in the universe U and E is a set of parameters, ei (i = 1, 2, 3, 4, 5) standing for the parameters
‘‘expensive’’, ‘‘beautiful’’, ‘‘wooden’’, ‘‘cheap’’, and ‘‘in green surroundings’’ respectively.

Suppose that we have

F(e1) = {h2, h4}, F(e2) = {h1, h3}, F(e3) = φ, F(e4) = {h1, h3, h5}, and F(e5) = {h1},

where F (ei)means a subset of U which elementsmatch the parameter ei. Thenwe can view the soft set (F , E) as a collection
of approximations as below:

(F , E) =


expensive houses = {h2, h4} ,
beautiful houses = {h1, h3}

wooden houses = φ
cheap houses = {h1, h3, h5}

in green surroundings houses = {h1}

 .
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Each approximation has two parts, a predicate p and an approximate value set v. For example, for the approximation
‘‘expensive houses = {h2, h4}’’, we have the predicate name of expensive houses and the approximate value set or value
set is {h2, h4}. Thus, a soft set (F , E) can be viewed as a collection of approximations below:

(F , E) = {p1 = v1, p2 = v2, p3 = v3, . . . , pn = vn} .

The soft set is amapping from theparameter to the crisp subset of the universe. Fromsuch a case,wemay see the structure
of a soft set can classify the objects into two classes (yes/1 or no/0). Thuswe canmake a one-to-one correspondence between
a Boolean-valued information system and a soft set, as stated in Proposition 2.1.

Definition 2.2. An information system is a 4-tuple (quadruple) S = (U, A, V , f ), where U =

u1, u2, . . . , u|U|


is a non-

empty finite set of objects, A =

a1, a2, . . . , a|A|


is a non-empty finite set of attributes, V =


a∈A Va, Va is the domain

(value set) of attribute a, f : U × A → V is an information function such that f (u, a) ∈ Va, for every (u, a) ∈ U × A, called
the information (knowledge) function.

An information system is also called a knowledge representation system or an attribute-valued system and can be
intuitively expressed in terms of an information table. In an information system S = (U, A, V , f ), if Va = {0, 1}, for every
a ∈ A, then S is called a Boolean-valued information system.

Proposition 2.1. If (F , E) is a soft set over the universe U, then (F , E) is a Boolean-valued information system S = (U, A,
V{0,1}, f ).

Proof. Let (F , E) be a soft set over the universe U , we define a mapping

F = {f1, f2, . . . , fn} ,

where

f1 : U → V1 and f1 (x) =


1, x ∈ F (e1)
0, x ∉ F (e1)

f2 : U → V2 and f2 (x) =


1, x ∈ F (e2)
0, x ∉ F (e2)

...

fn : U → Vn and fn (x) =


1, x ∈ F (en)
0, x ∉ F (en)

.

Thus, if A = E, V =


ei∈A Vei , where Vei = {0, 1}, then a soft set (F , E) can be considered as a Boolean-valued information
system S =


U, A, V{0,1}, f


. �

Obviously, for the reverse process, an information system of Boolean-value can be represented as a soft set.
According to Proposition 2.1, the soft set (F , E)mentioned in Example 2.1 can be represented as a Boolean table as shown

in Table 1.

3. Analysis of the normal parameter reduction of soft sets in [42]

In this section, we briefly discuss the normal parameter reduction of soft sets and its algorithm, which were presented
by Kong et al. in [42].

3.1. The normal parameter reduction of soft sets

Suppose U = {h1, h2, . . . , hn} , E = {e1, e2, . . . , em} , (F , E) is a soft set with tabular representation. Define fE (hi) =∑
j hij, where hij are the entries in the table of (F , E).

Definition 3.1 (See [42]).With every subset of parameters B ⊆ A, an indiscernibility relation IND (B) is defined by

IND (B) =


hi, hj


∈ U × U : fB (hi) = fB

hj


.

For soft set (F , E) ,U = {h1, h2, . . . , hn}, the decision partition is referred to as

CE =


{h1, h2, . . . , hi}f1 ,


hi+1, . . . , hj


f2

, . . . , {hk, . . . , hn}fs


,

where for subclass {hv, hv+1, . . . , hv+w}fi , fE(hv) = fE(hv+1) = · · · = fE(hv+w) = fi, and f1 ≥ f2 ≥ · · · ≥ fs, s is the
number of subclasses. In other words, objects in U are classified and ranked according to the value of fE(.) based on the
indiscernibility relation.
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Definition 3.2 (See [42]). For soft set (F , E) , E = {e1, e2, . . . , em}, if there exists a subset A =

e′

1, e
′

2, . . . , e
′
p


⊂ E satisfying

fA (h1) = fA (h2) = · · · = fA (hn), then A is dispensable, otherwise, A is indispensable. B ⊂ E is a normal parameter reduction
of E, if the two conditions as follows are satisfied

(1) B is indispensable
(2) fE−B (h1) = fE−B (h2) = · · · = fE−B (hn).

3.2. Algorithm of normal parameter reduction

Definition 3.3 (See [42]). The decision partition mentioned above is CE =

Ef1 , Ef2 , . . . , Efs


, similarly, decision partition

deleted ei is figured as

CE−ei =


E − eif ′1 , E − eif ′2 , . . . , E − eif ′s


.

The importance degree of ei for the decision partition is defined by

rei =
1

|U|


α1,ei + α2,ei + · · · + αs,ei


,

where |.| denotes the cardinality of set and

αk,ei =

Efk − E − eifz′
 , if there exist z ′ such that fk = f ′

z , 1 ≤ z ′
≤ s′, 1 ≤ k ≤ sEfk  , otherwise.

Based on the parameter importance degree, Kong et al. [42] presented the algorithm of normal parameter reduction as
shown in Fig. 1.

It is clear that this algorithm is hard to understand and implement. Besides, parameter importance degree involves a great
amount of computation. In order to make reduction of soft sets easy to implement and reduce computation, we propose a
new efficient normal parameter reduction algorithm of soft sets below.

4. A new efficient normal parameter reduction algorithm

4.1. The proposed technique

Given a soft set (F , E) with a tabular presentation, U = {h1, h2, . . . , hn} is the object set, E = {e1, e2, . . . , em} is the
parameter set, and hij are the entries in the table of (F , E).

Definition 4.1. For soft set (F , E) ,U = {h1, h2, . . . , hn} , E = {e1, e2, . . . , em}, we denote fE (hi) =
∑

j hij as an oriented-
object sum.

Definition 4.2. For soft set (F , E) ,U = {h1, h2, . . . , hn} , E = {e1, e2, . . . , em}, we denote S

ej


=
∑

i hij as an oriented-
parameter sum.

Definition 4.3. For soft set (F , E) ,U = {h1, h2, . . . , hn} , E = {e1, e2, . . . , em}, we denote SA =
∑

j S

ej

, for A ⊆ E as the

overall sum of A.

Theorem 4.1. For soft set (F , E) ,U = {h1, h2, . . . , hn} , E = {e1, e2, . . . , em}, if there exists a subset A =

e′

1, e
′

2, . . . , e
′

P


⊂

E, such that E − A is the normal parameter reduction of E, then we have SA = qn, for q = 0, 1, 2, . . . ,m, where n is the number
of the universe U.

Proof. Suppose A =

e′

1, e
′

2, . . . , e
′

P


⊂ E. According to Definition 3.2, if B ⊂ E is defined as a normal parameter

reduction of E, then fE−B (h1) = fE−B (h2) = · · · = fE−B (hn). In other words, if A = E − B can be reduced, then
fA (h1) = fA (h2) = · · · = fA (hn). Therefore the following equations must be satisfied.

h′

11 + h′

12 + · · · + h′

1P = q
h′

21 + h′

22 + · · · + h′

2P = q
...

h′

n1 + h′

n2 + · · · + h′

nP = q.
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Table 1
Tabular representation of a soft set in the above
example.

U e1 e2 e3 e4 e5

h1 0 1 0 1 1
h2 1 0 0 0 0
h3 0 1 1 1 0
h4 1 0 1 0 0
h5 0 0 1 1 0
h6 0 0 0 0 0

Table 2
A soft set (F , E).

U/E e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 f (.)

h1 1 0 1 1 1 0 1 0 0 1 6
h2 0 0 1 1 1 1 0 0 0 0 4
h3 0 0 0 0 0 1 0 1 0 1 3
h4 1 0 1 0 0 0 0 0 1 1 4
h5 1 0 1 0 0 0 1 1 0 1 5
h6 0 1 1 1 0 1 0 0 0 0 4
S

ej


3 1 5 3 2 3 2 2 1 4 SE = 26

We can easily get

SA = S(e′

1) + S(e′

2) + · · · + S(e′

P)

= (h′

11 + h′

21 + · · · + h′

n1) + (h′

12 + h′

22 + · · · + h′

n2) + · · · + (h′

1P + h′

2P + · · · + h′

nP)

= (h′

11 + h′

12 + · · · + h′

1P) + (h′

21 + h′

22 + · · · + h′

2P) + · · · + (h′

n1 + h′

n2 + · · · + h′

nP)

= n · q.

Namely, SA is a multiple of n. This completes the proof. �

In order to explicitly clarify this theorem, the following example is given.

Example 4.1. Let a soft set (F , E)with the tabular representation displayed as in Table 2, which is quoted from [42]. Suppose
that

U = {h1, h2, h3, h4, h5, h6} , E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10} ,

where n = 6.

In [42], it turns out that {e1, e2, e5, e6, e8, e9} , {e6, e7, e9}, or {e1, e4, e6, e8, e9} can be deleted from E. The subsets
{e3, e4, e7, e10} , {e1, e2, e3, e4, e5, e8, e10} and {e2, e3, e5, e7, e10} are the normal parameter reductions of soft set. It is clear
that

S{e6,e7,e9} = 6 = 1 × 6 and S{e1,e2,e5,e6,e8,e9} = S{e1,e4,e6,e8,e9} = 12 = 2 × 6,

which are the multiples of 6, respectively.

Theorem 4.2. For soft set (F , E) ,U = {h1, h2, . . . , hn} , E = {e1, e2, . . . , em}, suppose a subset A ⊆ E and its complement A.
Check whether SA = qn, for q = 0, 1, 2, . . . ,m, at the same time, we can determine if SA = pn, for p = 0, 1, 2, . . . ,m, where
n is the number of the universe U.

Proof. Let SE be the overall sum of the whole table. It is obvious that SA + SA = SE . Hence by checking SA, then SA can also
be determined. �

Example 4.2. In Table 2, n = 6, SE = 26, Se6,e7,e9 = 1 × 6 = 6. Due to

S{e6,e7,e9} + S{e1,e2,e3,e4,e5,e8,e10} = 26,

we can come to the conclusion that S{e1,e2,e3,e4,e5,e8,e10} = 26 − 6 = 20, which is not a multiple of n.

Theorem 4.3. For soft set (F , E) ,U = {h1, h2, . . . , hn} , E = {e1, e2, . . . , em}, and A =

e′

1, e
′

2, . . . , e
′

P


⊂ E. If the value

re′1 + re′2 +· · ·+ re′P is a nonnegative integer, then we have SA = qn, for q = 0, 1, 2, . . . ,m, where n is the number of the universe
U; vice versa, if SA = qn, for q = 0, 1, 2, . . . ,m, then we have re′1 + re′2 + · · · + re′P is a nonnegative integer.
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Proof. Let

CE =

Ef1 , Ef2 , . . . , Efs


=


{h1, h2, . . . , hi}f1 ,


hi+1, . . . , hj


f2

, . . . , {hk, . . . , hm}fs


be a decision partition of objects in U . If the parameter e′

i is deleted from set E, then the decision partition is changed and it
can be denoted as

CE−e′i
=


{h1, h2, . . . , hi}f1 ,


hi+1, . . . , hj


f2

, . . . , {hk′ , . . . , hm′}fs


.

Now we can calculate the importance degree of e′

i . Based on Definition 3.3, for the parameter e′

i , if hij = 0, it means that
there is no change, the corresponding object will be deleted; otherwise if hij = 1, it means that there is a change and the
corresponding object will be reserved. In other words, for the parameter e′

i , if the number of hij = 1 is x,

rei =
x

|U|
, namely,

s−
i=1

αi,e′j
= S


e′

j


.

Therefore,

re′1 + re′2 + · · · + re′P =
1

|U|


s−

i=1

αi,e′1
+

s−
i=1

αi,e′2
+ · · · +

s−
i=1

αi,e′P



=
1

|U|


S

e′

1


+ S


e′

2


+ · · · + S


e′

P


=

1
|U|

SA

=
SA
n

.

Therefore, if the value re′1 +re′2 +· · ·+re′P is a nonnegative integer, thenwe have SA = qn, for q = 0, 1, 2, . . . ,m, where n is
the number of the universeU; vice versa, if SA = qn, for q = 0, 1, 2, . . . ,m, thenwe have re′1 +re′2 +· · ·+re′P is a nonnegative
integer. That is, SA = qn, for q = 0, 1, 2, . . . ,m and re′1 + re′2 + · · · + re′P being a nonnegative integer are equivalent. �

Example 4.3. In Table 2, we can get that re1 =
3
6 , re2 =

1
6 , re3 =

5
6 , re4 =

3
6 , re5 =

2
6 , re6 =

3
6 , re7 =

2
6 , re8 =

2
6 , re9 =

1
6 ,

and re10 =
4
6 . It is clear that

re1 + re2 + re5 + re6 + re8 + re9 = 2, re6 + re7 + re9 = 1,

accordingly,

S{e1,e2,e5,e6,e8,e9} = 12 = 2 × 6, and S{e6,e7,e9} = 6 = 1 × 6.

Definition 4.4. For soft set (F , E) ,U = {h1, h2, . . . , hn}, and E = {e1, e2, . . . , em}. For ej ∈ E, if h1j = h2j = · · · = hnj = 1,
we denote ej as e1j .

Definition 4.5. For soft set (F , E) ,U = {h1, h2, . . . , hn}, and E = {e1, e2, . . . , em}. For ej ∈ E, if h1j = h2j = · · · = hnj = 0,
we denote ej as e0j .

4.2. The proposed algorithm

Based on above theorems and definitions, we give our algorithm in Fig. 2.
The algorithm of [42] and the proposed algorithm represent two different approaches to normal parameter reduction of

the soft set. There are some differences between them as follows.

(1) We directly put e1j and e0j into the reduced parameter set, which leads to the number of subsets in the candidate
parameter reduction set of the proposed algorithm being much less than that of subsets in the feasible parameter
reduction set of the algorithm in [42]. Hence computation is reduced.

(2) We compute the oriented-parameter sum rather than parameter importance degree. It is evident that the oriented-
parameter sum is much more easily obtained and involves much less relative computation than the parameter
importance degree.

(3) If SA is a multiple of |U|, we refer to A as a candidate parameter reduction in the proposed algorithm; while a subset
is regarded as a feasible parameter reduction if the sum of all of parameter importance degrees in this subset is a
nonnegative integer in [42].
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Table 3
A soft set (F , E).

U/E e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 f (.)

h1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 0 6
h2 1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 5
h3 1 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 8
h4 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 0 7
h5 0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 9
h6 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 5
h7 0 1 1 0 1 1 1 0 1 0 0 1 0 0 1 0 8
h8 1 1 1 1 0 1 0 0 1 1 0 1 0 1 1 0 10
S

ej


5 4 3 4 4 5 4 2 6 4 2 4 0 1 8 2 SE = 58

5. The comparison result

In this section, we compare the proposed algorithm with the algorithm of [42]. Firstly, we compare them in terms of
computational complexity. And then, a comparison for capturing the normal parameter reduction is elaborated through a
Boolean data set as shown in Table 3. Both algorithms are implemented in the C++ program. They are executed sequentially
on an Intel Core 2 Duo CPU processer. The total main memory is 1 GB and the operating system is Windows XP Professional
SP3.

5.1. The comparison of computational complexity

In this section, we compare the algorithm in [42] with our algorithm in view of computational complexity from three
aspects, which are as follows:

5.1.1. The parameter importance degree vs. oriented-parameter sum
We estimate the computational complexity of the algorithm by counting the number of the basic operation. Because the

basic operation perhaps varies with different implementation of the algorithm, we consider element access here as the basic
operation.

The algorithm in [42].
For computing parameter importance degree rej , 1 ≤ j ≤ m, the following steps must be taken,

1. Compute fE (hi) =
∑

j hij, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Every entry will be accessed once, so the number of element access is
m · n.

2. Get CE =

Ef1 , Ef2 , . . . , Efs


, that is, classify objects according to fE (hi). The column of fE (hi) will be accessed once, so the

number of element access is n.
3. Obtain decision partition deleted ej. This step includes two sub steps:

(1) Compute fE−ej (hi) , 1 ≤ i ≤ n, 1 ≤ j ≤ m − 1.
(2) Partition, i.e. get CE−ej .
These two steps are similar to Steps 1 and 2. So the numbers of element access are n · (m − 1) and n respectively.

4. Calculate parameter importance degree rej . This step includes two sub steps:
(1) Compute αk,ej . Every object hi will be accessed once, so the number of element access is n.
(2) Compute rej . Every αk,ej will be accessed once. The maximum value of k is n. So the approximate number of element

access is n.

From the above Steps 3 and 4, we obtain the total number of element access for computing one parameter importance
degree, n · m + 2n. Hence form parameters, the number of element access ism(n · m + 2n) = m2n + 2mn. Including Steps
1 and 2, the number of element access ism2n + 2mn + mn + n = m2n + 3mn + n. Taking big O notation, the complexity of
computing the whole parameter importance degree is O(m2n). Supposem = n, the complexity will be O(n3).

The proposed algorithm.
For computing the oriented-parameter sum in our algorithm, we only need to access every entry once, so the number

of element access is m · n. Compared with m2n + 3mn + n in computing the parameter importance degree, the amount of
computation is greatly decreased. Taking big O notation, the complexity of computing oriented-parameter sum is O(mn).
Supposem = n, the complexity will be O(n2).
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Fig. 1. The algorithm of normal parameter reduction in [42].

5.1.2. Looking for feasible parameter reduction set vs. candidate parameter reduction set
For ease of description, we call the combination that consists of k′ parameter columns combination-k′. Generally, we

will test all of the combinations from combination-1 to combination-m. In fact, it is not necessary to test all of them. When
we check the combination-k′, at the same time, we can check the combination-(m − k′). So, we only need to test from
combination-2 to combination-(⌊m/2⌋).
The algorithm of [42].

In the algorithm of [42], for subset A =

e′

1, e
′

2, . . . , e
′
p


⊂ E, it is necessary to check whether the sum of re′i , for

1 ≤ i ≤ p is a nonnegative integer. At the same time, if its complement A is checked, the importance degree of all of
the parameters in A should be accessed and then summed up. Consequently, the number of parameter importance degree
access is


C1
m + C2

m + · · · + C⌊m/2⌋
m


· m.

The proposed algorithm.
However in our algorithm, according to Theorem 4.2, due to SA + SA = SE we only need to have a basic operation of

subtraction to determine if SA = pn rather than access every oriented-parameter sum in A. So the number of oriented-
parameter sum access is C2

m · 3 + C3
m · 4 + · · · + C⌊m/2⌋

m · (⌊m/2⌋ + 1). It is evident that our algorithm reduces computation.

5.1.3. Card (feasible parameter reduction set) vs. card (candidate parameter reduction set)
Suppose that the number of e1j and e0j is k. If card (candidate parameter reduction set) = x, it can be concluded that

card(feasible parameter reduction set) = x · 2k
+ k, and then the difference between card (candidate parameter reduction

set) and card (feasible parameter reduction set) is equal to x · (2k
− 1) + k. It is very obvious that the larger k is, the larger

the difference between them is.
As a result, it is found that our algorithm outperforms the former algorithm.

5.2. A comparison on capturing the normal parameter reduction in a Boolean data set

Example 5.1. Let (F , E) be a soft set with the tabular representation displayed in Table 3. Suppose that

U = {h1, h2, h3, h4, h5, h6, h7, h8} ,

and

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16} .

5.2.1. The results from the algorithm in [42]
Step 1: Figuring out the oriented-object sum and then getting a decision partition.

CE = {{h8}10 , {h5}9 , {h3, h7}8 , {h4}7 , {h1}6 , {h2, h6}5} .

Step 2: Figuring out the oriented-object sum deleted ei and the decision partition deleted ei, see Fig. 3.
Step 3: Getting the importance degree of ei.

re1 =
5
8
, re2 =

4
8
, re3 =

3
8
, re4 =

4
8
, re5 =

4
8
, re6 =

5
8

re7 =
4
8
, re8 =

2
8
, re9 =

6
8
, re10 =

4
8
, re11 =

2
8
, re12 =

4
8

re13 =
0
8
, re14 =

1
8
, re15 =

8
8
, and re16 =

2
8
.
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Fig. 2. The proposed algorithm.

Fig. 3. The decision partitions after deleting ei .

Step 4: Finding the maximum subset A =

e′

1, e
′

2, . . . , e
′
p


⊂ E in which that sum of re′i , for 1 ≤ i ≤ p is a nonnegative

integer. As a result, we get 8190 subsets which are put into a feasible parameter reduction set, such as

{e15} , {e11, e12, e16} , {e7, e8, e9, e10, e11, e12, e13, e15, e16} and so on.

Step 5: Filtering in the feasible parameter reduction set. We get

{e13} , {e15} , {e7, e8, e9, e10} , {e7, e8, e9, e10, e15} , {e7, e8, e9, e10, e13} , {e13, e15}

and

{e7, e8, e9, e10, e13, e15}

satisfying fA (h1) = fA (h2) = · · · = fA (hn) and then the remainders are deleted.
Step 6: Getting the maximum cardinality of A in feasible parameter reduction sets {e7, e8, e9, e10, e13, e15}. So, the set

{e1, e2, e3, e4, e5, e6, e11, e12, e14, e16} is the optimal normal parameter reduction.

5.2.2. The results from the proposed algorithm
Step 1: Because there exists e115 and e013, they are put into the reduced parameter set denoted by C and a new soft set

F , E ′

is established without e1j and e0j , where

U = {h1, h2, h3, h4, h5, h6, h7, h8} , E ′
= {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e14, e16} .
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Table 4
The comparison result.

Comparison The algorithm [42] The proposed algorithm Improvement%

Optimal normal parameter reduction {e1, e2, e3, e4, e5, e6, e11, e12, e14, e16} {e1, e2, e3, e4, e5, e6, e11, e12, e14, e16} The same
The number of entry access 2440 128 94.75%
The number of parameter importance
degree access and oriented-parameter
access

The number of parameter importance
degree access 627232

The number of oriented-parameter sum
access 301314

51.96%

The number of candidate parameter
reduction set

8190 2047 75%

The involved operation Addition, set operation, classification for
parameter importance degree

Only addition for oriented-parameter
sum

Step 2: Calculating the oriented-parameter sum S

e′

j


of e′

j shown in Table 3.
Step 3: Finding the subset A ⊂ E ′ in which SA is a multiple of |U| = 8. As a result we put 2047 subsets such as

{e8, e9, e10, e12} , {e7, e8, e9, e10} , {e1, e2, e3, e4, e10, e12} , {e1, e2, e3, e4, e7, e8, e10, e11, e12} ,

and so on into a candidate parameter reduction set.
Step 4: Filtering in the candidate parameter reduction set. We get {e7, e8, e9, e10} satisfying fA (h1) = fA (h2) = · · · =

fA (hn) and the remainders are deleted.
Step 5: Finding the maximum cardinality of A in the candidate parameter reduction set. Finally E − A − C =

{e1, e2, e3, e4, e5, e6, e11, e12, e14, e16} is considered as the optimal normal parameter reduction.
We can draw conclusions from the above example:

(1) In order to obtain all the decision partitions, the data in Table 3 are accessed 17 times by means of the algorithm
in [42]. However, the data in Table 3 are accessed only once for the oriented-parameter sums in the proposed algorithm.
Consequently our algorithm involves much less relative computation compared with the former algorithm.

(2) Due to considering e1j and e0j , the number of subsets in the candidate parameter reduction set of the proposed algorithm
is much less than that of subsets in the feasible parameter reduction set of the algorithm in [42]. Hence computation is
reduced.

(3) It is necessary to calculate the oriented-object sums, classify objects according to the oriented-object sums and then
compute the importance degree in [42], whereas our algorithm only needs to calculate the oriented-parameter sums.
As a result our algorithm is easier to implement and understand compared with the former algorithm.

Some details on the comparison result for this example are clearly depicted in Table 4. These data in Table 4 can be
obtained by computational complexity analysis and the programming experiment.

6. Conclusion

Several algorithms exist to address the issues concerning reduction of soft sets. The most recent concept of normal
parameter reduction is introduced in [42], which overcomes the problem of suboptimal choice and added parameter set
of soft sets. However, the algorithm is hard to understand and involves a great amount of computation. In this paper, some
new theorems are presented and proved. Based on the theorems, we propose a new efficient normal parameter reduction
algorithm of soft sets, which can be carried out without parameter important degree and decision partition. As a result, it
can involve less relative computation and is easier to understand and implement, compared with the algorithm of normal
parameter reduction [42]. The example illustrates our contribution and shows that the proposed algorithm efficiently
captures the reductions.
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