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1. Introduction

We consider the following elliptic equation with Robin boundary condition:⎧⎨⎩
−�u + αu = f (u), in Ω,

∂u

∂ν
+ b(x)u = 0, on ∂Ω,

(1.1)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω , α > 0, b(x) ∈ L∞(∂Ω), b(x) � 0 and b(x) �≡ 0 on ∂Ω .
Denote by σ(−�) = {0 < λ1 < λ2 � · · · � λk � · · ·} the eigenvalues of the following problem:⎧⎨⎩

−�u = λu, in Ω,

∂u

∂ν
+ b(x)u = 0, on ∂Ω.

(1.2)

Assume that f satisfies the following assumptions:

(f1) f ∈ C1(R\{0},R), f (0) = 0 and there exist M1 > 0 and M2 > 0 such that f (M1) = f (−M2) = 0.
(f2) f ′−(0) �= f ′+(0) and min{ f ′+(0), f ′−(0)} > λ1 + α where α is the same as in (1.1).
(f3) There exists m > 0 such that f (t) + mt is increasing for all t ∈ R.
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It is well known that the Fučík spectrum of −� is defined as the set Σ of those points (a,b) ∈ R2 for which⎧⎨⎩−�u = bu+ − au−, in Ω,

∂u

∂ν
+ b(x)u = 0, on ∂Ω,

(1.3)

has nontrivial solutions, here u±(x) = max{±u(x),0}, see [17]. The usual spectrum of −� corresponds to the case that
a = b. It is known that Σ consists, at least locally, of curves emanating from the points (λl, λl), see for example [6].

It was shown in Garbuza [7] and Schechter [20] that Σ contains two continuous and strictly decreasing curves Cl1 , Cl2
passing through (λl, λl) such that in the square Q l = (λl−1, λl+1)

2 the points that are either below the lower curve Cl1 or
above the upper curve Cl2 are not in Σ , while the points on the curves are in Σ . We denote by IIl the regions between the
curves, then the points in IIl may or may not belong to Σ (when they do not coincide). Denote by Il1 the region below the
lower curve Cl1 and Il2 the region above the upper curve Cl2 . We set Il = Il1 ∪ I(l−1)2 .

We assume that f also satisfies:

(f4) Let (a,b) = ( f ′−(0) − α, f ′+(0) − α), then (a,b) ∈ Il , l � 3.

Obviously, (1.1) has the trivial solution u = 0. We are interested in the question whether (1.1) has nontrivial solutions.
For Dirichlet problems, the authors in [15,16,18,23] have obtained the nontrivial solutions. For more general results on (1.1)

for −� with Neumann boundary condition, the case that f ′(x) exists for some special points has been considered in [9,11].
But for general cases, the existence and multiplicity of solutions is not considered. In this paper, we consider the more
general problem with a jumping nonlinearity at some special points. Our result is motivated by earlier ones in [11,19,20].

We recall the Sobolev space W 1,2(Ω) with norm ‖u‖2 = ∫
Ω

|∇u|2 dx + ∫
Ω

u2 dx, inner product 〈u, v〉 = ∫
Ω

∇u∇v dx +∫
Ω

uv dx for u, v ∈ W 1,2(Ω). From the variational point of view, solutions of (1.1) are critical points of the following
functional defined on the space W 1,2(Ω)

J (u) = 1

2

∫
Ω

|∇u|2 dx + α

2

∫
Ω

u2 dx + 1

2

∫
∂Ω

b(x)u2 ds −
∫
Ω

F (u)dx,

where F (u) = ∫ u
0 f (s)ds and the Frechét derivative of J is defined as〈

J ′(u),ϕ
〉 = ∫

Ω

∇u∇ϕ dx + α

∫
Ω

uϕ dx +
∫

∂Ω

b(x)uϕ ds −
∫
Ω

f (x)ϕ dx, ∀ϕ ∈ W 1,2(Ω).

Then we have the main result of this paper:

Theorem 1.1. Suppose that f satisfies (f1)–(f4), then there exist at least four nontrivial solutions of problem (1.1).

A stronger result can be obtained if the following assumption is imposed:

(F1) Let ϕ1 and ϕ2 be the eigenfunctions of (1.2) corresponding to λ1 and λ2 respectively such that ‖ϕ1‖W 1,2(Ω) =
‖ϕ2‖W 1,2(Ω) = 1. For every ε0 > 0 and M large enough such that for u ∈ E2 = {u ∈ W 1,2(Ω): u = kϕ1 + tϕ2, k, t ∈ R},

we have F (u) > [(λ2 + α + ε0)/2 + C̃]u2, where C̃ > C2

2 ‖b(x)‖L∞(∂Ω) , and C is the imbedding constant, i.e., T : X →
L2(∂Ω) is the trace operator, then ‖T u‖L2(∂Ω) � C‖u‖X for all u ∈ X with the constant C depending on Ω by Sobolev
Trace Theorem (see [5]).

Theorem 1.2. Suppose f satisfies (f1)–(f4) and (F1), then there exist infinitely many sign-changing solutions of (1.1) which are moun-
tain pass type or not mountain pass type but with positive local degree.

Next we consider a related oscillating problem. Assume that:

(f5) There exist sequences {ai} and {bi}, where ai,bi ∈ R, i = 1,2, . . . , which satisfy ai > 0, bi < 0 and ai ↗ +∞, bi ↘ −∞
as i → ∞, and

f (ai) = αai, f (bi) = αbi .

Let a0 = b0 = 0, f (t) < αt if t ∈ (ai,ai+1), where i is an odd number, i � 1; f (t) > αt if t ∈ (ai,ai+1), where i is an
even number, i � 0; f (t) < αt if t ∈ (bi+1,bi), where i is an even number, i � 0; f (t) > αt if t ∈ (bi+1,bi), where i is
an odd number, i � 1.

(F2) For ε0 and M the same as (F1) such that for |t| � M and ‖ϕ1‖ = 1, we have
∫

F (tϕ1)dx � (
λ1+α+ε0 + C̃)t2

∫
ϕ2 dx.
Ω 2 Ω 1
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Then we have:

Theorem 1.3. Under the assumptions (f1)–(f5) and (F2), there exist infinitely many nontrivial solutions of problem (1.1), some of them
are local minimizers and others are mountain pass type solutions.

In this paper, our technique includes constructing sub-super-solutions, mountain pass theorem in an order interval and
Fučík spectrum theory. We will recall some basic notions and known results on critical points theory in Section 2, and we
prove Theorems 1.1, 1.2 and 1.3 in Section 3.

2. Preliminaries

Now let us recall the notion of critical groups of an isolated critical point u of a C1 functional J briefly. Assume that E
is a Hilbert space, J a = {u ∈ E | J (u) � a}, K = {u ∈ E | J ′(u) = 0}, Kc = {u ∈ K : J (u) = c}, c ∈ R. Let U be a neighborhood
of u such that there is no critical point of J in U \ {u}. The critical groups of u are defined as

Cq( J , u) = Hq
(

J c ∩ U ,
(

J c \ {u}) ∩ U ; G
)
, q = 0,1, . . . ,

where c = J (u), Hq(A, B; G) are the qth singular relative homology groups of the topological pair (A, B) with a coefficient
group G . For the details, we refer to [1,3]. They are independent of the choices of U , hence are well defined. If C1( J , u) �= 0,
then we call an isolated critical point u of J a mountain pass point.

Assume that J ∈ C2(E,R), for u, a critical point of J , J ′′(u) is a self-adjoint linear operator, the dimension of the largest
negative space of J ′′(u) is called the Morse index of J at u, denoted by ind( J , u); the dimension of the kernel of J ′′(u) is
called the nullity of J at u. u is called nondegenerate if and only if the nullity of J at u is zero.

We have the following basic facts on the critical groups for an isolated critical point of J (see [2]). They are fundamental
in the existence and multiplicity results by applying the Morse theory to (1.1).

(1) Let u be an isolated minimum point of J , then Cq( J , u) ∼= δq0G .
(2) Let u be a nondegenerate critical point of J with Morse index j, then Cq( J , u) ∼= δqj G .

Definition 2.1. Let c ∈ R be fixed. If any sequence {uk} which satisfies J (uk) → c and J ′(uk) → 0 (k → ∞) has a convergent
subsequence, then we say that J satisfies the (PS)c condition. If J satisfies (PS)c condition for all c ∈ R, then we say that J
satisfies the (PS) condition.

Definition 2.2. Assume that J ∈ C1(E,R), c ∈ R, for every ∀ε∗ > 0 and any closed neighborhood N of Kc , there exist
ε ∈ (0, ε∗) and a continuous map η : [0,1] × E → E , such that

(i) η(0, ·) = id,
(ii) η(t, u) = u, ∀u ∈ E \ J−1[c − ε∗, c + ε∗], t ∈ [0,1],

(iii) J (η(·, u)) is nonincreasing, u ∈ E ,
(iv) η(1, J c+ε \ N) ⊂ J c−ε ,

then we say that J satisfies deformation property.

By using the famous deformation theorem (see [24]), we know that J satisfies deformation property if J satisfies the
(PS) condition.

Let P E ⊂ E be a closed convex cone, and let X be densely imbedded in E . Assume that P = X ∩ P E and P has nonempty
interior Ṗ . Let [u1, u2] = {u ∈ X | u1 � u � u2, x ∈ Ω} be the order interval in X . We assume that any order interval is
bounded in any finite-dimensional subspace of X .

In the following we recall some notations and definitions introduced in [14]. Let σ(t, u) ∈ R × E , we denote the negative
gradient flow for J given by⎧⎨⎩

dσ(t, u)

dt
= − ∇ J (σ (t, u))

1 + ‖∇ J (σ (t, u))‖ ,

σ (0, u) = u.

Definition 2.3. With the flow σ , we call a subset A ⊂ E an invariant set if σ(t, A) ⊂ A, for t � 0.

Definition 2.4. Let W ⊂ X be an invariant set under σ . We say W is an admissible invariant set for J if

(a) W is the closure of an open set in X , i.e., W = Ẇ ∪ ∂W ;
(b) If un = σ(tn, v) for some v /∈ W satisfying as tn → +∞, un → u(n → +∞) in E for some u ∈ K , it holds un → u in X ;
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(c) If un ∈ K ∩ W such that un → u in E , it holds un → u in X ;
(d) For any u ∈ ∂W \K , σ(t, u) ∈ Ẇ for t � 0.

The functional J : E → R satisfies the following conditions:

(J1) J ∈ C2(E,R) and it satisfies the (PS) condition in E and the deformation property in X . J only has finitely many
isolated critical points.

(J2) ∇ J = id − K E , where K E : E → E is compact. K E (X) ⊂ X and the restriction K = K E |X : X → X is of class C1 and
strongly preserving, i.e., u � v ⇔ u − v ∈ Ṗ .

(J3) J is bounded from below on any order interval in X .

Lemma 2.1. (See [13].) Suppose J satisfies (J1)–(J3) and {u1, u2} is a pair of sub-super-solutions of ∇ J = 0 in X, then [u1, u2] is
positively invariant under the negative gradient flow of J and −∇ J points inward in [u1, u2]. Moreover, if {u1, u2} is a pair of strict
sub-super-solutions of ∇ J = 0 in X, then deg(id − K , [u1, u2],0) = 1.

We recall the following well-known mountain pass theorem in order intervals [13] and mountain pass theorem in half-
order intervals, sup-solutions case [10].

Lemma 2.2. (See [13].) Suppose J satisfies (J1)–(J3) and {v1, v2}, {ω1,ω2} are two pairs of strict sub-super-solutions of ∇ J = 0 in X
with v1 < ω2 , [v1, v2] ∩ [ω1,ω2] = ∅. Then J has a mountain pass point u0 , u0 ∈ [v1,ω2] \ ([v1, v2] ∪ [ω1,ω2]). More precisely,
let v0 be the maximal minimizer of J in [v1, v2] and ω0 be the minimal minimizer of J in [ω1,ω2]. Then v0 � u0 � ω0 . Moreover,
C1( J , u0), the critical group of J at u0 , is nontrivial.

Remark 2.1. Lemma 2.2 still holds if J ∈ C1(E,R) and K is of class C0 or J has infinitely many isolated critical points.

Lemma 2.3. (See [10].) Suppose J satisfies (J1)–(J3), v1 < v2 is a pair of strict super-solutions of ∇ J = 0 and v0 (< v1) is a sub-
solution of ∇ J = 0. Suppose that [v0, v1] and [v0, v2] are admissible invariant sets for J . If J has a local strict minimizer w in
[v0, v2]\[v0, v1]. Then J has a mountain pass points u0 in [v0, v2]\[v0, v1].

Here we revise the known results on Fučík spectrum and the computation of the critical groups. Consider the problem⎧⎨⎩−�u = bu+ − au−, in Ω,

∂u

∂ν
+ b(x)u = 0, on ∂Ω.

(2.1)

The corresponding functional is

I(u) = I(u,a,b) = 1

2

∫
Ω

[|∇u|2 − a
(
u−)2 − b

(
u+)2]

dx + 1

2

∫
∂Ω

b(x)u2 ds.

If (a,b) does not belong to Σ , 0 is the trivial solution of (2.1), i.e., 0 is an isolated critical point of I , then Cq(I,0) is
well defined for q = 0,1,2, . . . . Denote Q l = (λl−1, λl+1)

2 for l � 2. The main results in [4,17] are as follows (see Theorem 1
in [4]):

Lemma 2.4. (See [4].) Let (a,b) ∈ Q l \ Σ and let dl denote the dimension of the subspace Nl spanned by the eigenfunctions corre-
sponding to λ1, . . . , λl .

(i) If (a,b) ∈ Il , then Cq(I,0) =
{

Z, q = dl−1,

0, q �= dl−1.

(ii) If (a,b) ∈ IIl , then Cq(I,0) = 0 for q � dl−1 or for q � dl .

In particular, Cq(I,0) = 0 for all q when λl is a simple eigenvalue.

Moreover, set Al = I − λl(−�)−1, let Nl−1, E(λl), Ml denote the negative, zero and positive subspaces of Al , respectively,
and for p, let I p = I(·, p),

I p(v + ω0) = inf
ω∈Ml

I p(v + ω), v ∈ Nl, (2.2)

I p(v0 + ω) = sup
v∈N

I p(v + ω), ω ∈ Ml−1. (2.3)

l−1
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It was shown in Schechter [21] that there are continuous and positive homogeneous functions

τl : Nl → Ml, γl−1 : Ml−1 → Nl−1

such that ω0 = τl(v), v0 = γl−1(ω) are the unique solutions of (2.2), (2.3), respectively.
Let

Tl = {
v + τl(v): v ∈ Nl

}
, Rl−1 = {

γl−1(ω) + ω: ω ∈ Ml−1
}
,

Sl = Tl ∩ Rl−1, Ŝl = {
u ∈ Sl: ‖u‖ = 1

}
.

Lemma 2.5. (See [4].)

Cq(I,0) ∼=
{

Hdl−q−1(̂S+
l ), q �= dl−1,

H0(̂S+
l )/Z, q = dl−1,

where Ŝ+
l = {u ∈ Ŝl: I(u) > 0}, for (a,b) ∈ IIl \ Σ .

3. The proof of the main theorems

3.1. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. From the variational point of view, solutions of (1.1) are the critical points of the functional

J (u) = 1

2

∫
Ω

|∇u|2 dx + α

2

∫
Ω

u2 dx + 1

2

∫
∂Ω

b(x)u2 ds −
∫
Ω

F (u)dx,

defined on X := W 1,2(Ω), where F (u) = ∫ u
0 f (s)ds.

(1) We shall apply Lemma 2.2 to functional J . It is easy to show that J belongs to C1(X,R). In fact, define a functional

I(u) = 1

2

∫
∂Ω

b(x)u2 ds,

and we only need to prove I ∈ C1(X,R). Let u, v ∈ X , 0 < |t| < 1, then[
I(u + tv) − I(u)

]
/t =

∫
∂Ω

b(x)uv ds + t

2

∫
∂Ω

b(x)v2 ds →
∫

∂Ω

b(x)uv ds (t → 0).

So I has a Gateaux derivative and 〈I ′(u), v〉 = ∫
∂Ω

b(x)uv ds.
Let un → u in X ,∣∣〈I ′(un) − I ′(u), v

〉∣∣ =
∣∣∣∣ ∫
∂Ω

b(x)(un − u)v ds

∣∣∣∣
� ‖b‖L∞(∂Ω)

∥∥T (un − u)
∥∥

L2(∂Ω)
‖T v‖L2(∂Ω)

� C‖b‖L∞(∂Ω)‖un − u‖X‖v‖X

where T : X → L2(∂Ω) is the trace operator and ‖T u‖L2(∂Ω) � C‖u‖X for all u ∈ X with the constant C depending on Ω by
Sobolev Trace Theorem (see [5]). Then we obtain∥∥I ′(un) − I ′(u)

∥∥ � C‖b‖L∞(∂Ω)‖un − u‖X → 0 (n → ∞).

So I ′(u) is continuous and I ∈ C1(X,R).
By using a truncation trick, we consider the functions

f̃ (t) =
{0, t � −M2,

f (t), −M2 � t � M1,

0, t � M1

and the corresponding functional

J̃ (u) = 1

2

∫
Ω

|∇u|2 dx + α

2

∫
Ω

u2 dx + 1

2

∫
∂Ω

b(x)u2 ds −
∫
Ω

F̃ (u)dx,

where F̃ (u) = ∫ u f̃ (s)ds.
0
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It follows from [9] that J̃ (u) satisfies coercive condition on X so J̃ satisfies (PS) condition and J̃ ∈ C1(X,R). Then from
the deformation theorem, we know that J̃ satisfies deformation property.

(2) We construct sub-super-solutions of (1.1). It is easy to see that M1 is a constant super-solution of (1.1) and −M2 is
a constant sub-solution. Moreover, we consider εϕ1 for all ε > 0 small enough. From [22] we know that ϕ1(x) > 0, x ∈ Ω .
In fact, with u := εϕ1, by (f2) we have

−�u + αu − f (u) = εϕ1(x)
[
(λ1 + α) − f ′+(0) + o

(‖εϕ1‖
)]

� 0, for small ε.

Furthermore, ∂u
∂ν + b(x)u = 0. From the above discussion, we have a pair of strict sub-super-solutions {εϕ1, M1} of (1.1). By

a similar argument we can find that {−M2,−εϕ1} is a pair of strict sub-super-solutions.
Now we study the order interval [−M2, M1] in X which includes two intervals [−M2,−εϕ1] and [εϕ1, M1]. Then there

exist weak solutions of (1.1) (relative minimum points) u2, u3 in [−M2,−εϕ1] and [εϕ1, M1] respectively. We can infer that
J̃ (u) is bounded from below on [−M2, M1], so we get a mountain pass point u1 ∈ [−M2, M1] \ ([−M2,−εϕ1] ∪ [εϕ1, M1])
according to Lemma 2.2 and C1( J̃ , u1) is nontrivial.

(3) We claim that u1 is nontrivial. In fact, from assumption (f2), we know that the left and the right derivatives of f̃
at 0 are different, we consider the problem⎧⎨⎩−�u = f̃ (u) − αu, in Ω,

∂u

∂ν
+ b(x)u = 0, on ∂Ω,

where f̃ ∈ C( �Ω) and as u → 0 we have

f̃ (u) − αu = (
f̃ ′+(0) − α

)
u+ − (

f̃ ′−(0) − α
)
u− + o(u).

We take a = f̃ ′−(0) − α, b = f̃ ′+(0) − α, from (f4), we know that (a,b) /∈ Σ .
It follows from Lemma 2.4, if (a,b) ∈ Il , l � 3, dl−1 > 1, then

Cq( J̃ ,0) =
{

Z, q = dl−1,

0, q �= dl−1,

then we obtain Cq( J̃ ,0) � Cq( J̃ , u1), so u1 �= 0.
If (a,b) ∈ IIl\Σ , l � 1, then from Lemma 2.5, we have

Cq( J̃ ,0) ∼=
{

Hdl−q−1(̂S+
l ), q �= dl−1,

H0(̂S+
l )/Z, q = dl−1.

If l = 2, then dl−1 = d1 = 1, so for q = 1, we have C1( J̃ ,0) ∼= H0 (̂S+
2 )/Z. Furthermore, for a point p, Hq(p; G) ∼= δq0G . Then

we have C1( J̃ ,0) ∼= 0 � C1( J̃ , u1), so u1 �= 0. If l > 2, then dl−1 > 1, from Lemma 2.4, C1( J̃ ,0) ∼= 0. So we get Cq( J̃ ,0) �

Cq( J̃ , u1), u1 �= 0.
(4) We claim the existence of the fourth solution. Now, we further discuss the solutions in [−M2, M1]. Since u1 is a

mountain pass point, for the Leray–Schauder degree of id − K , we have calculation formula

deg
(
id − K , B(u1, r),0

) = −1,

where r > 0 is small enough, K = K E |X = (−� + (m + α)id)−1 f ∗|X : X → X is of class C0 and strongly order preserving,
f ∗(u) = f (u) + mu (see Hofer [8]). Then according to Poincaré–Hopf formula for C1 case (see [12]) and the computation of
Cq( J ,0), we have

index( J ,0) = (−1)dl−1 .

Furthermore, for minimum points u2 and u3,

Cq( J , u2) ∼= δq0G, Cq( J , u3) ∼= δq0G.

From the additivity of Leray–Schauder degree and Theorem 1.1 in [13], we can get

1 = deg
(
id − K , [−M2, M1],0

)
= deg

(
id − K , [−M2,−εϕ1],0

) + deg
(
id − K , [εϕ1, M1],0

) + deg
(
id − K , B(0, r),0

) + deg
(
id − K , B(u1, r),0

)
= 1 + 1 + (−1)dl−1 + (−1),

which is impossible. From the above discussion, we conclude that there must exist another critical point u∗
1 ∈ [−M2, M1],

which satisfies u∗
1 �= u1 and is nontrivial.

This completes the proof of Theorem 1.1. �
The proof of Theorem 1.2 is the same as that of Theorem 3.5 of [11], which we omit here.
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Remark 3.1. In Theorem 1.1, we can deal with the case in which (a,b) ∈ Il , l > 2, and (a,b) ∈ IIl , l � 1, but, when (a,b) ∈ I2,
then

Cq( J ,0) =
{

Z, q = 1
0, q �= 1

= Cq( J , u1),

we cannot distinguish u1 from 0.

3.2. Proof of Theorem 1.3

Proof of Theorem 1.3. By the truncation trick, we consider the function

f i(t) =
{0, t < 0,

f (t), 0 � t � ai,

f (ai), t > ai .

The corresponding functional is

J i(u) = 1

2

∫
Ω

|∇u|2 dx + α

2

∫
Ω

u2 dx + 1

2

∫
∂Ω

b(x)u2 ds −
∫
Ω

Fi(u)dx,

where Fi(u) = ∫ u
0 f i(s)ds, i = 1,2, . . . .

When 0 � u(x) � ai , the solution of (1.1) is also a solution of the following equation:⎧⎨⎩
−�u + αu = f i(u), in Ω,

∂u

∂ν
+ b(x)u = 0, on ∂Ω.

Applying Lemma 2.1 to J i(u), by the standard argument we know that J i satisfies (J1)–(J3) and the order interval consisted
of sub-super-solutions is admissible invariant set of J i . Taking v0 = εϕ1, v1 = a1 > 0, then J i(u) has a minimizer u1 ∈
[v0, v1]. By assumption (F2) there exists a t1 > 0 such that

J (t1ϕ1) = t2
1

2

∫
Ω

|∇ϕ1|2 dx + α

2
t2

1

∫
Ω

ϕ1
2 dx + t2

1

2

∫
∂Ω

b(x)ϕ1
2 ds −

∫
Ω

F (t1ϕ1)dx

�
(λ1 + α)t2

1

2

∫
Ω

ϕ1
2 dx − (λ1 + α + ε0)t2

1

2

∫
Ω

ϕ1
2 dx < J (u1).

If we take v2 = an1 > t1ϕ1, where n1 < i, then

J i(t1ϕ1) = J (t1ϕ1) < J i(u1),

which implies that J i(u) has a minimizer u2 ∈ [v0, v2]\[v0, v1] such that J i(u2) < J i(u1). By Lemma 2.3 we get a mountain
pass point u3. Moreover, v0 < ui < v2 and ui are positive, i = 1,2,3.

Next, we take v1 = an1 , v0 = εϕ1. Then J i(u) has a minimizer u2 ∈ [v0, v1]. By assumption (F2) there is a t2 > 0 such
that

J (t2ϕ1) < J (u2).

If we take v2 = an2 > t2ϕ1, where n2 < i, then

J i(t2ϕ1) = J (t2ϕ1) < J i(u2),

which implies that J i(u) has a minimizer u4 ∈ [v0, v2]\[v0, v1] such that J i(u4) < J i(u2). By Lemma 2.3 we get a mountain
pass point u5. Moreover, v0 < ui < v2, and ui are all positive, i = 1,2,3,4,5. Continue making the procedure we obtain the
result. The proof is complete. �
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