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We describe an explicit chain map from the standard resolution to
the minimal resolution for the finite cyclic group Zk of order k.
We then demonstrate how such a chain map induces a “Zk-
combinatorial Stokes theorem,” which in turn implies “Dold’s
theorem” that there is no equivariant map from an n-connected to
an n-dimensional free Zk-complex. Thus we build a combinatorial
access road to problems in combinatorics and discrete geometry
that have previously been treated with methods from equivariant
topology. The special case k = 2 for this is classical; it involves
Tucker’s (1949) combinatorial lemma which implies the Borsuk–
Ulam theorem, its proof via chain complexes by Lefschetz (1949),
the combinatorial Stokes formula of Fan (1967), and Meunier’s
work (2006).
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1. Introduction

The Borsuk–Ulam theorem [2] about Z2-equivariant maps between spheres, and its extension
to Zk-actions formulated by Dold [5], have many interesting applications in combinatorics and
geometry—see Matoušek [11]. Since these are topological theorems with purely combinatorial con-
sequences, there is great interest in combinatorial approaches to the area.

1.1. The classical case, k = 2

For the case k = 2 such a path-way is well-established: In 1945, Tucker [20] presented a combina-
torial lemma that implies the Borsuk–Ulam theorem: A centrally symmetric triangulation of Sn that
refines the hyperoctahedral triangulation of the n-sphere cannot get an antipodal labeling from the
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set {±1, . . . ,±n} such that no edge gets vertex labels +i,−i. In 1952, Fan [6] extended this lemma: If
the labels are taken from the set {±1, . . . ,±m}, then the number of facets of the triangulation of Sn

that get an “alternating labeling” by + j0,− j1, . . . , (−1)n jn with 1 � j0 < j1 < · · · < jn � m is odd
and hence nonzero. In particular, m must be larger than n for such a labeling to exist.

In 1952, Fan [7] presented a rainbow coloring theorem for general pseudomanifolds (interpreted
as a “combinatorial Stokes theorem” by Meunier [14]), which says that for every orientable n-
dimensional pseudomanifold with boundary, equipped with a coloring by {±1, . . . ,±m} without
antipodal edges, the number of rainbow-colored n-simplices with positive smallest label equals the
number of rainbow-colored (n − 1)-simplices in the boundary (counted with appropriate signs, de-
pending on dimension and orientations). The resulting formula is easy to prove since by linearity it
can be reduced to the case of a pseudomanifold that consists of a single n-simplex. However, a treat-
ment in terms of chain complexes yields a simple, systematic proof that also motivates the formula in
question; this was first done in Lefschetz’ 1949 treatment [9, Section IV §7, pp. 134–140] of Tucker’s
lemma, and then for Fan’s lemma by Meunier [14]. This also leads to simple, transparent, combina-
torial proofs for the Kneser conjecture (see Matoušek [12], Ziegler [22]) and for its strengthening by
Schrijver [16] (see Meunier [14]).

As amply demonstrated in Matoušek [11], a variety of combinatorial hypergraph coloring problems
as well as various geometric multiple-incidence problems were first proved by a result known as
Dold’s theorem [5], which says that there is no equivariant map from an n-connected free Zk-complex
to an n-dimensional such complex. (For k = 2 this is equivalent to the Borsuk–Ulam theorem.) In
view of the purely combinatorial hypergraph coloring results proved with this tool (see Alon, Frankl
and Lovász [1], Matoušek [10], Ziegler [22], etc.), one is led to ask for an analogous combinatorial
treatment of Dold’s theorem, for a “Zk-Tucker lemma,” etc. Steps in this direction were taken by
Ziegler [22] and in particular by Meunier [13], who obtained a semi-explicit combinatorial Stokes
formula for the case when k is odd.

1.2. The Zk-combinatorial Stokes theorem

The main objective of this paper is not only to derive a “Zk-combinatorial Stokes formula,” The-
orem 4.2, that is valid for all k � 2, but also to explain where such a result comes from, and why it
has the form it has. This question arises even in the classical case of k = 2: Why should we look for,
and count, simplices with alternating labels, with signs that depend on parity of dimension and on
orientation?

A hint for this is given by Meunier’s treatment in [14] of Fan’s combinatorial Stokes theorem, via
chain complexes: The chain complex that plays a prominent role in his proof is the minimal free
resolution (in the group homology sense) of the group Z2, and Meunier’s proof in essence builds
on a Z2-equivariant chain map from the chain complex of the universal label space to the minimal
resolution.

Our combinatorial Stokes formula concerns simplical complexes X whose vertices get labels in the
set Zk × N, where we interpret the elements of N as “colors,” while the elements of Zk play the
role of “signs.” The main requirement is that adjacent vertices of X may not have the same color
and different signs. Such an admissible labeling � : V (X) → Zk × N amounts to a simplicial map from
X to a “universal label space” (Zk)

∗N and this establishes a chain map �# : C•(X) → C•((Zk)
∗N) of

simplicial chain complexes (with coefficients in some commutative ring R).
The label space is equipped with a canonical free simplicial Zk-action, corresponding to the natural

symmetry of admissible labelings given by cyclically permuting the signs in Zk . Thus there is a Zk-
equivariant chain map C•((Zk)

∗N) → M• to the minimal resolution of the ring R over the group ring
R[Zk] which commutes with the canonical augmentations on both complexes, unique up to R[Zk]-
linear chain homotopy. This statement relies on the fact that M• is a free resolution of R over R[Zk].
The chain complex M• consists of free modules of rank one over R[Zk] in every degree, hence only
label patterns of a very specific form survive to the minimal resolution.

The combinatorial Stokes formula results from an explicit description of the chain map to the
minimal resolution (and in particular of the surviving label patterns) combined with the simple fact
that this chain map commutes with boundary operators.
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The following diagram of chain complexes and chain maps illustrates the homological-algebraic
content of this mechanism.

x
∂i�−→ ∂x∈ ∈

→ Ci(X)
∂i−→ Ci−1(X) → simplicial chain complex

�# ↓ �# ↓ (labeling)

→ Ci((Zk)
∗N)

∂i−→ Ci−1((Zk)
∗N) → chain complex of label space

hi ↓ hi−1 ↓ (map to standard resolution)

→ Si
∂i−→ Si−1 → standard resolution

f i ↓ f i−1 ↓ (map to minimal resolution, Prop. 3.8)

→ Mi = R[Zk] ∂i−→ Mi−1 = R[Zk] → minimal resolution

u ↓ (evaluate at the neutral element)

R

The composite chain map h�• := h• ◦ �# (see Section 4) sends simplices to “patterns” of label se-
quences (counted with multiplicities and according to orientation). Thus, h�

i (x) is the formal sum of
the patterns that arises from an i-chain x ∈ Ci(X), while h�

i−1(∂i x) is the corresponding sum of pat-
terns on the (i − 1)-simplices in the boundary of x.

Given a pattern for i-simplices, the map f i to Mi followed by the boundary map of the minimal
resolution and then by the evaluation map u (which maps an element of the group ring to the
coefficient of the neutral element) tells us how to count i-patterns. Similarly, we count (i −1)-patterns
according to u ◦ f i−1.

In this notation, the combinatorial Stokes formula simply reads

u
((

∂ ◦ f ◦ h�
)
(x)

) = u
((

f ◦ h�
)
(∂x)

) ∈ R

for x ∈ Ci(x). Our Theorem 4.2 combines this fact with the explicit description of the chain map f•
presented in Section 3.

The formula obtained in this way depends on some choices. Indeed, the map �# is determined
by the given labeling on X and there is a canonical choice for h• . Furthermore, replacing u by the
evaluation at another group element in Zk induces a Stokes formula which is given by shifting the
signs involved in the old one cyclically by the inverse of this element. However, the map f• is deter-
mined only up to chain homotopy and different choices lead to different Stokes formulas, in general.
It is easy to see (cf. Lemma 3.4) that the chain map from the standard to the minimal resolution is
uniquely determined upon choosing R-linear complements of the kernels of the boundary operator in
each degree of the minimal resolution. We will propose a particular choice, uniform for all k (see the
remarks following Lemma 3.4), and analyze the corresponding label patterns surviving to the minimal
resolution in terms of strongly alternating labelings (see Definition 3.5). This notion and the resulting
Stokes formula restrict to the notion of alternating labelings and to the classical Fan formula if k = 2.

The boundary operator ∂i in the minimal resolution depends on the parity of i. Consequently, as
in the classical case k = 2, we actually get two combinatorial Stokes formulas depending on whether
the dimension of the given simplicial chain on X is even or odd.

1.3. Plan

In Section 2 we review the combinatorial Stokes formula and the Tucker lemma in the classical
case when k = 2. In this case X is required to be a d-pseudomanifold, and x = od ∈ Cd(X) is an
orientation chain for it. However, a key example for our discussions for arbitrary k is the universal
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label space (Zk)
∗m , and this is a pseudomanifold for k = 2 (at least for finite m), but not for k > 2.

Thus we admit for greater generality below.
Section 3 is the technical heart of our paper: We explicitly construct the chain maps that lead

to the combinatorial Stokes formula in Section 4 and we give a combinatorial interpretation of the
relevant label patterns in terms of strongly alternating elements. We remark that this construction is
much more difficult for k > 2 than in the classical case k = 2.

From this, in Section 5, we derive “Zk-Tucker lemmas.” What should such a result achieve, if we
follow the model for k = 2? It should refer to a labeled simplicial complex X with a free Zk action,
and predict the existence of simplices with a specified type of label pattern. Topologically, it should
imply that for some d-connected free Zk-space with arbitrarily fine triangulation (for k = 2: antipodal
triangulations of the d + 1-sphere) there is no equivariant map to a specific d-dimensional free Zk-
space which serves as a “label space.” The Tucker lemmas should be derived from the combinatorial
Stokes theorem by induction on the dimension, once we can identify suitable chains (generalized
spheres, cf. Definition 5.1) in the complex X . In Section 5, we derive a generalized Zk-Tucker lemma,
Theorem 5.4, which in the case k = 2 specializes to Fan’s and Tucker’s lemma, and which also yields
the “Zk-Tucker–Fan lemma” of Meunier [13, Theorem 2] as an example, without Meunier’s restriction
to the case of odd k. We also derive a (homological) version of Dold’s theorem from this set-up.

Finally, in Section 6 we determine the homotopy type of the target space (Zk)
∗N

alt�d that appears
implicitly in Meunier’s and explicitly in our version of the Zk-Tucker lemma. In the special case k = 2
this yields the natural target space for rainbow colorings—which appears in Fan’s classical work [8]
and its current extensions by Tardos and Simonyi [17,18].

2. Fan and Tucker revisited

A d-dimensional simplicial complex is pure if each of its simplices is contained in a d-dimensional
simplex. A d-pseudomanifold is a finite, pure d-dimensional, simplicial complex X such that every
(d − 1)-simplex (ridge) is contained in at most two d-simplices (facets) of the complex. The ridges
that lie in exactly one facet generate the boundary ∂ X , which is thus a pure (d − 1)-dimensional
simplicial complex (or empty). The vertex set of a complex X will be denoted by V (X), the edge
set by E(X). A d-pseudomanifold is orientable if the facets can be oriented consistently so that they
induce opposite orientations on the interior ridges, that is, if there is a chain o in the chain group
Cd(X;Z) in which every d-simplex has coefficient ±1 and whose boundary ∂o is supported on the
boundary complex ∂ X . Such a chain o is called an orientation d-chain.

We refer to Munkres [15] for basics about chain complexes, chain maps, and orientability.

Definition 2.1. An admissible vertex labeling of a pure d-dimensional simplicial complex X is a map

� : V (X) → Z \ {0}
such that no two adjacent vertices obtain opposite labels, that is, such that �(v) �= −�(w) for
{v, w} ∈ E(X).

Under such a labeling, a +alternating facet is one that obtains labels + j0,− j1,+ j2, . . . , (−1)d jd
with 0 < j0 < j1 < · · · < jd (that is, all labels have different absolute values, and if we order them by
absolute value, then the signs alternate, starting with a positive sign). Similarly, a −alternating facet
obtains labels − j0,+ j1,− j2, . . . , (−1)d+1 jd with 0 < j0 < j1 < · · · < jd .

The main result of Fan’s 1967 paper [7] was that for every admissible vertex labeling on an
oriented d-pseudomanifold, (−1)d times the number of +alternating facets (counted according to
orientation and with an additional minus sign if d is odd) plus the number of −alternating facets
(counted according to orientation) yields the number of +alternating facets in the boundary complex.
Here “counted according to orientation” means that a facet is counted as −1 if the ordering of the
vertices according to the label ordering j0, j1, j2, . . . , jd yields a negative orientation of the facet (and
similarly for −alternating facets). If the d-pseudomanifold is not orientable, then all of this is still true
modulo 2.
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With or without explicit notation (Fan writes “α(+ j0,− j1,+ j2, . . . , (−1)d jd)” for the number of
d-simplices with the given set of labels, counted according to orientation), the precise count is a bit
tricky to digest. However, it clearly relates a sum over a pseudomanifold to a sum over the boundary.
This explains why Meunier [14] calls this a discrete “Stokes theorem.”

From Fan’s lemma, it is easy to derive the Tucker lemma, by induction on the dimension, using
the decomposition of Σd into upper and lower hemisphere.

Proposition 2.2. (See Tucker lemma [20], Lefschetz [9, Section IV§7], and Fan [6].) Let Σd be a centrally
symmetric triangulation of the d-sphere Sd that refines the hyperoctahedral triangulation. Then there is no
admissible vertex labeling � : V (Σd) → {±1, . . . ,±d} that is antipodal, i.e. �(−v) = −�(v) for all vertices v.

Indeed, for any antipodal vertex labeling � : V (Σd) → {±1, . . . ,±m}, the number of +alternating facets
(with labels + j0,− j1,+ j2, . . . , (−1)d jd, where 0 < j0 < · · · < jd) is odd and hence nonzero.

To match this with the following, and to pave the way for the transition to a more algebraic
treatment, we first re-interpret the set of labels as

Z \ {0} = Z2 × N,

where N are the (nonzero) natural numbers, and Z2 ≡ {1,−1} (which will later be identified with the
multiplicative group of order 2).

Thus every admissible labeling induces a simplicial map

� : X → (Z2)
∗N.

Here Z2 = {1,−1} is seen as a discrete two elements set, the join of m copies of it, (Z2)
∗m , is a

simplicial sphere of dimension m − 1 (which may be identified with the boundary complex of the
m-dimensional cross polytope), and thus the target space

(Z2)
∗N =

⋃
m�1

(Z2)
∗m

is the infinite-dimensional sphere. The simplicial map � induces a map of simplicial chain complexes

�# : C•(X) → C•
(
(Z2)

∗N
)

with coefficients in some chosen ring R (when talking about orientation classes, this is usually speci-
fied to be Z if the pseudomanifold is orientable, and Z/2 otherwise).

Here the natural symmetry of admissible label patterns, given by reversing the signs, comes into
play. This amounts to the usual free simplicial Z2-action on (Z2)

∗N and the induced action on its
simplicial chain complex. We now re-interpret this: Taking into account that (Z2)

∗N is a contractible
space, the chain complex C•((Z2)

∗N) is a free resolution of R over the group ring R[Z2] (see Sec-
tion 3). It is, however, a huge free resolution, of infinite rank, in each dimension: The standard basis
for Ci((Z2)

∗N) consists of all infinite sequences of type (∗,+,−,∗,−,∗, . . .) with exactly i + 1 non-∗
elements. By [4, Lemma 7.4], there is up to homotopy a unique chain map to the minimal resolution
which induces the identity of zero dimensional homology groups (which can be canonically identified
with R). For R = Z the minimal resolution is given by

· · ·
(+1 +1
+1 +1

)
−−−−−−→ Z

2

(−1 +1
+1 −1

)
−−−−−−→ Z

2

(+1 +1
+1 +1

)
−−−−−−→ Z

2

(−1 +1
+1 −1

)
−−−−−−→ Z

2 → 0

with the rightmost Z
2 sitting in degree 0. The identification of its zeroth dimensional homology with

Z is induced by the map (augmentation) Z
2 → Z represented by the matrix ( +1 +1).

Each such chain map to the minimal resolution can be factored (up to homotopy) through the
canonical map from C•((Z2)

∗N) to the so-called standard resolution [4, Section I.5], by simply deleting
the ∗s, and further through the canonical map from the standard resolution to the so-called normal-
ized standard resolution, by throwing away those label patterns that contain two +signs or two −signs
at consecutive places.
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For k = 2 (but not for larger k), the normalized standard resolution is isomorphic to the min-
imal resolution. One possible chain isomorphism is given by mapping the alternating sequences
(+1,−1,+1, . . .) ∈ (Z2)

m and (−1,+1,−1, . . .) ∈ (Z2)
m into the first and second copy of Z in Z

2,
respectively.

In view of the later generalization to Zk , we write Z2 = {e, g} with generator g , take R := Z,
identify Mi = Z

2 with the group ring Z[Z2] = Z · e ⊕ Z · g for i � 0 and identify the boundary maps
∂i : Mi → Mi−1 in the minimal resolution with the multiplication with τ := g − e for odd i, and
with the multiplication with σ := e + g for even i > 0. The augmentation map M0 → Z is defined as
αe + βg �→ α + β . We finally define the evaluation at e ∈ Z2 by

u : Z[Z2] → Z, αe + βg �→ α.

In summary we get the Z2-Stokes formula by interpreting the labeling as a simplicial map, then
constructing the chain map from the chain complex of the color sphere to the minimal resolution,
and then evaluating by u.

It easily checked that this Stokes formula is identical to the Fan theorem described after Defini-
tion 2.1.

Replacing u by the evaluation at g yields a second Stokes formula obtained from the previous one
by reversing all signs.

However, there are many other isomorphisms from the normalized standard resolution to the
minimal resolution. These are in one-to-one correspondence with Z-linear complements (viewed
as graded modules) of the boundary operator in the minimal resolution. Consequently, there is no
“canonical” discrete Stokes formula, even not in the classical case k = 2.

3. Resolutions and a chain map

Let k � 2. We denote the cyclic group with k elements by Zk and write it multiplicatively as
Zk = {e, g, . . . , gk−1}, where g is a generator of Zk . We work over a commutative ring R with 1. We
set Λ = R[Zk], the group ring of Zk over R .

As usual we consider R as a Λ-module with g acting trivially. Questions about Zk-equivariant
maps can often be related to the homology of the group Zk , which is by definition the homology of a
chain complex obtained from a free resolution of R . A free resolution of R is an acyclic chain complex
of free Λ-modules that is augmented with the (non-free) Λ-module R in dimension −1:

· · · → F3
∂3−−→ F2

∂2−−→ F1
∂1−−→ F0

∂0−−→ R → 0,

or, equivalently, a free chain complex

F•: · · · → F3
∂3−−→ F2

∂2−−→ F1
∂1−−→ F0 → 0

such that Hi(F ) = 0 for i > 0 together with a Λ-linear isomorphism (augmentation) H0(F )
∼=−→ R . In

the following we use the latter convention.
For our approach, it is important to describe such resolutions explicitly.

Definition 3.1 (Standard resolution). The standard resolution of R is given by

S•: · · · → S3
∂3−−→ S2

∂2−−→ S1
∂1−−→ S0 → 0

with modules

Sr := Λ ⊗R · · · ⊗R Λ︸ ︷︷ ︸
r+1

and boundary maps

∂r(h0 ⊗ · · · ⊗ hr) :=
r∑

(−1)ih0 ⊗ · · · ⊗ ĥi ⊗ · · · ⊗ hr .
i=0
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with the (usual) convention that ĥi denotes omission from the tensor product. The boundary maps
are defined on the basis elements h0 ⊗· · ·⊗hr with h1,h2, . . . ,hr ∈ Zk and extended to R-linear maps.

The diagonal action g · (h0 ⊗ h1 ⊗ · · · ⊗ hr) := gh0 ⊗ gh2 ⊗ · · · ⊗ ghr turns the modules Sr into
Λ-modules. It is easily seen that the boundary maps ∂r are Λ-linear.

Definition 3.2 (Bar resolution). A choice of a special basis of the Sr as Λ-modules gives rise to the so
called bar resolution. This particular basis is given by

[h1|h2| · · · |hr] := e ⊗ h1 ⊗ h1h2 ⊗ · · · ⊗ h1h2 · · ·hr

with h1,h2, . . . ,hr ∈ Zk . We allow for r = 0, i.e. [ ] = e ∈ S0.

This is clearly a basis of Sr as a Λ-module and, for example, the elements of the standard R-basis
are rewritten as

h0 ⊗ · · · ⊗ hr = h0
[
h−1

0 h1|h−1
1 h2| . . . |h−1

r−1hr
]
.

In this basis, the boundary is given by

∂r[h1|h2| · · · |hr] = h1[h2| · · · |hr]

+
r−1∑
i=1

(−1)i[h1| · · · |hi−1|hihi+1|hi+2| · · · |hr]

+ (−1)r[h1|h2| · · · |hr−1].

Definition 3.3 (Minimal resolution). The minimal resolution is given by

M•: · · · → M3
∂3=mτ−−−−→ M2

∂2=mσ−−−−−→ M1
∂1=mτ−−−−→ M0 → 0

with Mi := Λ for all i � 0. The boundary maps are defined by

∂r :=
{

mσ , if r is even,

mτ , if r is odd,

where mx denotes multiplication by x ∈ Λ and

τ = g − e, σ = e + g + · · · + gk−1.

More generally, we define elements

τr := gr − e, σr := e + g + · · · + gr−1

for 0 � r � k. In particular, σ0 = 0, σk = σ , τ1 = τ , and τ0 = τk = 0. The sets

Σ := {σ1, σ2, . . . , σk}, T := {e, τ1, τ2, . . . , τk−1}
are both bases of Λ as an R-module and we have the identities

τσi = τi, σ τi = 0

for 1 � i � k. It will therefore be useful to represent Mi in the basis T for even i and in the basis Σ

for odd i. This choice is justified by the identities

kermσ = Rτ1 ⊕ Rτ2 ⊕ · · · ⊕ Rτk−1 = immτ ,

immσ = Rσk = ker mτ

which prove that M• is exact in positive dimensions and, indeed, a free resolution of R with an
augmentation M0 → R defined by

k−1∑
αi gi �→

k−1∑
αi .
i=0 i=0
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Because S• and M• are free resolutions, there is a Λ-linear chain map S• → M• which is augmenta-
tion preserving (and indeed identifies S0 and M0 canonically). This chain map is unique up to chain
homotopy, see [4, Lemma 7.4]. The following lemma, which is proved by an easy inductive argument,
shows how we can achieve uniqueness in this situation.

Lemma 3.4. Let Kr ⊂ Mr , r � 0, be a collection of R-submodules so that the module Kr is an R-complement of
ker ∂r for all r � 0 (here, ∂0 : M0 → R is the augmentation). Then there is a unique augmentation preserving
Λ-linear chain map

S• → M•

which sends the basis elements [h1|h2| · · · |hr] from the bar resolution into Kr .

The R-bases T and Σ of Λ introduced above motivate a feasible choice for such a complementary
graded submodule K• ⊂ M•: For s � 0 we set

K2s := Re,

K2s+1 := Rσ1 ⊕ · · · ⊕ Rσk−1.

Note that for k = 2, this specializes to Ki := Re for all i � 0.
Our aim is to give an explicit description of the resulting chain map S• → M• . It relies on the

following notion.

Definition 3.5 (Strongly alternating elements). Let h0,h1, . . . ,h2s ∈ Zk . We call the element h0 ⊗· · ·⊗h2s

of S2s strongly alternating if its bar representative

h0 ⊗ · · · ⊗ h2s = ga0
[

ga1 | · · · |ga2s
]
,

with 0 � ai < k for all i = 0, . . . ,2s, satisfies

a2i+1 + a2i+2 � k for all 0 � i � s − 1.

(In other words: passing from h2i to h2i+1 and from h2i+1 to h2i+2 amounts to multiplications with
elements gα and gβ , 0 < α,β < k, so that α + β � k.) Let h0,h1, . . . ,h2s+1 ∈ Zk . We call the element
h0 ⊗ · · · ⊗ h2s+1 of S2s+1 strongly alternating if there is an a ∈ Zk such that a ⊗ h0 ⊗ · · · ⊗ h2s+1 is
strongly alternating, i.e. if h1 ⊗ · · · ⊗ h2s+1 is strongly alternating and h0 �= h1.

Definition 3.6 (Alternating elements). The element h0 ⊗ · · · ⊗ hr of Sr is alternating if hi+1 �= hi for all
0 � i < r.

Remark 3.7. In general, strongly alternating elements are alternating. The two notions coincide if and
only if k = 2. In this case we get back the alternating label patterns introduced in Definition 2.1.

The strongly alternating elements are Zk-invariant in the sense that an element x = h0 ⊗h1 ⊗· · ·⊗
h2s is strongly alternating if and only if gx is.

After these preparations, we can write down the chain map f•: S• → M• corresponding to the
above choice of K• ⊂ M• .

The Λ-linear maps fr : Sr → Λ are given by

f2s
([h1| · · · |h2s]

) :=
{

e, if [h1| · · · |h2s] is strongly alternating, and

0, otherwise,

f2s+1
([h1| · · · |h2s+1]

) := σi f2s
([h2| · · · |h2s+1]

)
for h1 = gi , 0 � i < k.
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Proposition 3.8. The collection of the maps fr is a chain map from the standard resolution to the minimal
resolution, that is for all s � 0 the diagrams

S2s+1

f2s+1

∂ S2s

f2s

M2s+1
∂ M2s

and

S2s+2

f2s+2

∂ S2s+1

f2s+1

M2s+2
∂ M2s+1

commute:

f2s(∂c) = τ f2s+1(c) for c ∈ S2s+1 and

f2s+1(∂c) = σ f2s+2(c) for c ∈ S2s+2.

Proof. We proceed by induction on s. Let c = [gr |h2| · · · |h2s+1], 0 � r < k. If s = 0 then

f0(∂c) = f0
(
∂
[

gr]) = f0
(

gr[ ] − [ ]) = gr − e = τr = τσr = τ f1
([

gr]) = τ f1(c).

If s > 0 then by induction σ f2s(∂c) = f2s−1(∂∂c) = 0, so f2s(∂c) ∈ kermσ = im mτ , and to prove
f2s(∂c) = τ f2s+1(c) it suffices to show that for 1 � i � k − 1 the coefficient of τi in f2s(∂c) with
respect to the basis T equals the coefficient of σi in f2s+1(c) with respect to the basis Σ . Now
f2s(∂[gr |h2| · · · |h2s+1]) equals gr f2s([h2| · · · |h2s+1]) plus a multiple of e, so the coefficient of gi is 1 if
[h2| · · · |h2s+1] is strongly alternating and i = r, and it is 0 otherwise. Comparison with the definition
of f2s+1 proves the first equation.

Let c = [gt |gr |h3| · · · |h2s+2], 0 � t, r < k. From the first equation we know that τ f2s+1(∂c) =
f2s(∂∂c) = 0, so f2s+1(∂c) ∈ ker mτ = immσ , and to prove f2s+1(∂c) = σ f2s+2(c) it suffices to show
that the coefficient of σk in f2s+1(∂c) with respect to the basis Σ equals the coefficient of e in
f2s+2(c) with respect to the basis T . Now f2s+1(∂c) equals gt f2s+1([gr |h3| · · · |h2s+2]) plus a linear
combination of the σi with 1 � i < k, so the coefficient of σk , which equals the coefficient of gk−1

with respect to the basis {e, g, . . . , gk−1}, equals 1 if t + r � k and [h3| · · · |h2s+2] is strongly alternat-
ing and 0 otherwise. So it equals 1 if [gt |gr |h3| · · · |h2s+2] is strongly alternating and 0 otherwise. This
proves the second equation. �
Remark 3.9. The maps fr are zero on all non-alternating, or degenerate, basis elements. These generate
a subcomplex of the standard resolution and f• factors through the quotient by this subcomplex. This
quotient is the so called normalized standard resolution. The induced map from the normalized standard
resolution to the minimal resolution is an isomorphism if and only if k = 2. In this case we recover
exactly the chain map described in Section 2.

4. Labelings and the combinatorial ZZZk-Stokes theorem

Fix an integer k � 2 and consider a simplicial complex X with vertices labeled with elements of
Zk × N. This labeling is a map

� : V → Zk × N

defined on the vertex set V = V (X). For a vertex v ∈ V and its image �(v) = (s, c) ∈ Zk × N we will
call c the color and s the sign of v . A labeling is called admissible if the two vertices of an edge always
carry different colors or the same sign (compare Definition 2.1).

Let X be a simplicial complex with an admissible Zk × N-labeling � and let C•(X) = C•(X; R) de-
note its simplicial chain complex with coefficients in R . We assume the use of the ordered simplicial
chain complex with respect to some order on V , but see Remark 4.1. We define maps

h�
r : Cr(X) → Sr
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by

〈v0, . . . , vr〉 �→
⎧⎨
⎩

signπ · sπ(0) ⊗ · · · ⊗ sπ(r),

for π ∈ Sym(k) with cπ(0) < · · · < cπ(r),

0, if |{ci: 0 � i � r}| < r + 1,

where �(vi) = (si, ci) for all i = 0, . . . , r.
We call sπ(0) ⊗ · · · ⊗ sπ(r) the pattern assigned to 〈v0, . . . , vr〉 by �. The coefficient signπ amounts

to counting patterns “according to orientation.”
The family of maps (h�

r ) can alternatively be described as the composition of the chain map

�# : C•(X) → C•
(
(Zk)

∗N
)

induced by the map X → (Zk)
∗N determined by the labeling � and the map of chain complexes

h• : C•
(
(Zk)

∗N
) → S•

which is given on the ordered simplices by〈
(s0, c0), (s1, c1), . . . , (sr, cr)

〉 �→ s0 ⊗ s1 ⊗ · · · ⊗ sr,

with c0 < c1 < · · · < cr . Hence, the map h�• is itself a map of chain complexes.

Remark 4.1. Since we are using ordered simplicial chains, the signs occuring in the definition of h�

match signs in the definition of �#. If we would have C• denote the unordered simplicial chain com-
plex, then we would have to include the appropriate signs in the definition of h• . For our purposes
there seems to be no clear advantage of one variant over the other.

Now recall the chain map

f• : S• → M•
from Section 3. The combinatorial Stokes theorem is now a consequence of the fact that the chain
map

f• ◦ h�• : C•(X) → M•
commutes with differentials: For x ∈ Cr(X), r � 1, we have

fr−1
(
h�

r−1(∂x)
) = σ fr

(
h�

r (x)
)

for r even,

fr−1
(
h�

r−1(∂x)
) = τ fr

(
h�

r (x)
)

for r odd.

In order to obtain a counting formula, we compose the maps occuring in these equations with the
evaluation at e ∈ Zk ,

u : Λ → R,

k−1∑
i=0

αi · gi �→ α0,

and—together with the explicit description of f•—obtain

Theorem 4.2 (Combinatorial Stokes formula). Let X be a simplicial complex with an admissible Zk × N-
labeling � and let x ∈ Cr(X) be an r-chain. Then depending on the parity of r, we have the following identities:

• (r = 2s). The number of label patterns h0 ⊗ · · · ⊗ h2s−1 in ∂x so that g ⊗ h0 ⊗ · · · ⊗ h2s−1 is strongly
alternating equals the sum of all strongly alternating label patterns occuring in x.

• (r = 2s + 1). The number of label patterns h0 ⊗ · · · ⊗ h2s occuring in ∂x that are strongly alternating and
satisfy h0 = e is equal to the number of label patterns h0 ⊗ · · · ⊗ h2s+1 occuring in x so that e ⊗ h0 ⊗
· · · ⊗ h2s+1 is strongly alternating minus the number of label patterns h0 ⊗ · · · ⊗ h2s+1 occuring in x so
that g ⊗ h0 ⊗ · · · ⊗ h2s+1 is strongly alternating.
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Here all label patterns are counted with multiplicities and according to orientation.

It is remarkable, and not clear a priori, that our approach via chain complexes and chain maps
leads to a counting formula of the stated form, where—apart from possible multiplicities imposed by
the chain x itself—all relevant label patterns are counted with multiplicities ±1.

For k = 2, we recover the classical Fan theorem mentioned in the introduction after Definition 2.1.
If we replace the evaluation map u by evaluation at another group element, we obtain the above
identities with all labels shifted cyclically.

5. Equivariant labelings and ZZZk-Tucker lemmas

Even though the group Zk has played an important role in the definition of the objects of Section 3,
group actions did not occur in the results of Section 4. We will now consider a simplicial complex
X with Zk acting on it as a group of simplicial homeomorphisms (called a Zk-complex for short).
This induces an action of Zk on C•(X) as a group of chain maps, which makes C•(X) into a Λ-chain
complex.

As before, we consider the action of Zk on the set of labels Zk × N by cyclically shifting the signs,
i.e. g(s, c) := (gs, c). With this action we say that a labeling � on a Zk-complex X is equivariant if
�(gv) = g�(v) for all g ∈ Zk and all vertices v of X .

An equivariant labeling on X can only exist if X is a free Zk-space.
If X a Zk-complex with an admissible equivariant labeling �, then the chain map h�• considered in

the last section is obviously Λ-linear.

Definition 5.1. Let X be a free Zk-complex and let r � 0. A generalized r-sphere in C•(X) is a sequence
(xi)0�i�r of chains xi ∈ Ci(X) satisfying

∂xi =
{

σ xi−1, if i is even,

τ xi−1, if i is odd

for all 0 < i � r.

The terminology is motivated by the following example.

Example 5.2. Let k > 2 and X be the triangulation of S2m+1 = S1 ∗ · · · ∗ S1 obtained by triangulating
each of the m + 1 copies of S1 as a k-gon. We number the copies starting with 0 and for each i,
0 � i � m, choose a vertex ui in the (m − i)th copy. Let Zk act on X in such a way that each of the
1-spheres is invariant under the action and gui is a neighbor of ui . We denote the oriented edge from
ui to gui by wi . We define several chains in C•(X), starting with

oi
0 := τui, oi

1 := σ wi .

So oi
0 = ∂ wi is an orientation chain of a 0-sphere in the (m − i)th copy of S1, and oi

1 an orientation
chain of this 1-sphere. Setting

x2s := us ∗ os−1
1 ∗ os−2

1 ∗ · · · ∗ o0
1,

x2s+1 := ws ∗ os−1
1 ∗ os−2

1 ∗ · · · ∗ o0
1,

each x j is the orientation chain of a j-disk, and

τ x2s = os
0 ∗ os−1

1 ∗ os−2
1 ∗ · · · ∗ o0

1,

σ x2s+1 = os
1 ∗ os−1

1 ∗ · · · ∗ o0
1

are orientation chains of spheres. We obtain

∂x2s+1 = τ x2s, ∂x2s+2 = σ x2s+1.
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Example 5.3. Let k � 2, d � 0. The construction of the preceding example translates to (Zk)
∗(d+1) ,

since Zk ∗ Zk contains the barycentric subdivision of a k-gon with the natural Zk-action. We set

ui := 〈
(e,d − 2i)

〉
,

wi := 〈
(e,d − 2i − 1), (g,d − 2i)

〉 − 〈
(e,d − 2i − 1), (e,d − 2i)

〉
and continue as in 5.2 to obtain chains xi ∈ Ci((Zk)

∗(d+1)) for 0 � i � d satisfying the conditions of
Definition 5.1. Again, each xi is the orientation chain of an i-disk, while σ xi is the orientation chain
of an i-sphere for odd i and τ xi is the orientation chain of an i-sphere for even i.

Now the generalized Tucker lemma has the following form. As before, the map u : Λ → R is the
evaluation at e ∈ Zk .

Theorem 5.4 (Generalized Zk-Tucker lemma). Let X be a Zk-complex which is equipped with an equivariant
admissible Zk × N-labeling �. Let (xi)0�i�r be a generalized r-sphere in C•(X) for some r � 0. We set

αi := u
(
σ · ( f• ◦ h�•

)
(xi)

)
.

(For even i, this just counts the number of strongly alternating label patterns in xi .) Then

• the number α0 equals the sum of the coefficients of the 0-simplices in x0 (and hence does not depend
on �);

• we have αi ≡ α0 (mod k) for all 0 � i � r.

Remark 5.5. For k = 2 it is convenient to work over R = Z/2. In this case σ = τ and αi is the parity
of the number of alternating in xi , which equals the parity of the number of +alternating simplices
in σ xi .

If X is a centrally symmetric triangulation of the r-sphere Sr that refines the hyperoctahedral
triangulation, we obtain the Tucker lemma (Proposition 2.2) by choosing xi to be the orientation chain
of an i-dimensional hemisphere. Then x0 is a chain consisting of a single point, hence αi = 1 ∈ Z/2
for all i, and we obtain that the number of +alternating simplices in X is odd.

Proof of Theorem 5.4. The first assertion on the value of α0 is immediate. We now show that αi+1 ≡
αi (mod k) for all 0 � i < r. For 0 � 2s + 1 < r this assertion follows by composing the equation

σ
(

f h�(x2s+2)
) = f h�(∂x2s+2) = f h�(σ x2s+1) = σ

(
f h�(x2s+1)

)
with the map u. The first of these equations uses the fact that f• and h�• are chain maps, the second
one the definition of a generalized sphere and the last one the equivariance of f• and h�• .

Now let 0 � 2s < r. In order to show α2s+1 ≡ α2s (mod k), it suffices to establish

σ
(

f2s+1
(
h�(x2s+1)

) − f2s
(
h�(x2s)

)) ∈ kΛ

and because σ 2 = kσ , this will be a consequence of

f2s+1
(
h�(x2s+1)

) − f2s
(
h�(x2s)

) ∈ im mσ = kermτ .

But indeed,

τ f2s+1
(
h�(x2s+1)

) = f2s
(
h�(∂x2s+1)

) = f2s
(
h�(τ x2s)

) = τ f2s
(
h�(x2s)

)
finishing the proof of Theorem 5.4. �
Remark 5.6. In order to put Definition 5.1 and Theorem 5.4 into a more general perspective, we ob-
serve that the chains xi of a generalized r-sphere define a Λ-chain map x : M�r• → C•(X), where
M�r• denotes the truncation of the minimal resolution in degree r. Theorem 5.4 follows from the
fact that the chain map f ◦ h� ◦ x : M�r• → M• is determined up to homotopy by the induced map
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R ∼= H0(M�r) → H0(M) ∼= R , which is multiplication by α0. In essence, the inductive and more ex-
plicit procedure presented above is based on a systematic study of the connecting homomorphisms
in cohomology resulting from the exact short exact sequences

0 → σ C•(X)
incl∗−−−→ C•(X)

mτ−−→ τC•(X) → 0

and

0 → τC•(X)
incl∗−−−→ C•(X)

mσ−−→ σ C•(X) → 0.

From Theorem 5.4 we can derive the following invariance property of αi under a change of label-
ings.

Corollary 5.7. Let X be a free Zk-complex, let r � 0 and x ∈ Cr(X). If r is even, assume that ∂(τ x) = 0, if r is
odd, assume that ∂(σ x) = 0. For an arbitrary admissible Zk × N-labeling �, set

α := u
(
σ · ( f• ◦ h�•

)
(x)

)
.

Then the congruence class of α modulo k does not depend on the choice of the labeling �.

Proof. We will see that there exists a generalized sphere (xi)0�i�r with xr = x. Consequently α =
αr ≡ α0 (mod k), and α0 does not depend on �.

The chains xi can be constructed recursively starting with xr = x. To see this, assume that for a
chain y the condition ∂(σ y) = 0 holds. Then σ∂ y = 0, and since C•(X) is a free Λ-complex, this
implies the existence of ȳ with ∂ y = τ ȳ. It further follows that ∂(τ ȳ) = ∂(∂ y) = 0. Analogously the
condition ∂(τ y) = 0 implies the existence of ȳ with ∂ y = σ ȳ and ∂(σ ȳ) = 0. �
Corollary 5.8. Let X be any Zk-equivariant subdivision of the simplicial complex (Zk)

∗(d+2) . There is a
subcomplex Y of X , homeomorphic to a (d + 1)-sphere, such that for every admissible equivariant Zk × N-
labeling � of X , the number of (d + 1)-simplices of Y to which � assigns strongly alternating patterns, counted
as in the definition of αd+1 in Theorem 5.4, is congruent to 1 modulo k.

Proof. Let sd : C•((Zk)
∗(d+1)) → C•(X) be the equivariant subdivision chain map and

xi ∈ Ci((Zk)
∗(d+2)) the chains constructed in Example 5.3. The chains sd(xi) satisfy the conditions

of Theorem 5.4 with α0 = 1. �
We formulate a consequence of this as a non-existence result for certain equivariant maps.

Definition 5.9. For d � 0 and m � d + 1, we denote by (Zk)
∗m
alt�d the subcomplex of the join (Zk)

∗m

whose facets consist of all simplices 〈i1, . . . , im〉 (i j ∈ Zk) with at most d jumps, that is, such that
#{ j ∈ [m − 1]: i j �= i j+1} � d.

The following is also implied by the Tucker–Fan lemma that Meunier [13, Theorem 4] obtained for
odd k.

Corollary 5.10. Let k � 2, and let X be any Zk-equivariant subdivision of the simplicial complex (Zk)
∗(d+2) ,

then there is no equivariant simplicial Zk-map

� : X → (Zk)
∗m
alt�d.

Proof. Since all strongly alternating patterns are alternating, an equivariant map �: X → (Zk)
∗m
alt�d

would establish an admissible Zk × N-labeling of X in which no (d + 1)-simplex gets a strongly
alternating pattern, contradicting Corollary 5.8. �
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Remark 5.11. The spaces (Zk)
∗m
alt�d will be reconsidered in Section 6. In Corollary 6.3 we prove the

existence of a Zk-equivariant map from (Zk)
∗m
alt�d to the d-dimensional space (Zk)

∗(d+1) . Thus Corol-
lary 5.10 also follows directly from Dold’s Theorem 5.14 below.

Instead of constructing the chains in Theorem 5.4 explicitly as in Example 5.3, we can also give
a homological condition that ensures their existence. We illustrate this by giving a proof of Dold’s
theorem.

Proposition 5.12. Let X be a simplicial complex with a free Zk-action, and R be a commutative ring with 1
such that kR �= R. Let r � 0. If H̃ i(X; R) ∼= 0 for all i � r then for every equivariant admissible Zk ×N-labeling
there is an (r + 1)-simplex of X which is labeled with r + 2 distinct colors and a strongly alternating pattern.

Proof. It will suffice to construct a generalized (r + 1)-sphere (xi)0�i�r+1 with α0 = 1, because the
conclusion αr+1 �= 0 of Theorem 5.4 shows the existence of the desired (r + 1)-simplex.

Since H̃−1(X) ∼= 0, X is nonempty and we can set x0 = 〈v〉 for a simplex v , so α0 = 1. Then τ x0 is
a reduced 0-cycle. Further, because H̃0(X) ∼= 0, we can choose x1 with ∂x1 = τ x0.

Now assume that for some i with 1 � i � r, the x j for j � i are already chosen. In case of odd i,
we have ∂(σ xi) = σ∂xi = στ xi−1 = 0, and since Hi(X) ∼= 0, there is an xi+1 such that ∂xi+1 = σ xi . In
case of even i, we get ∂(τ xi) = τ∂xi = τσ xi−1 = 0, and since Hi(X) ∼= 0, there is an xi+1 such that
∂xi+1 = τ xi . In both cases xi+1 with the desired property can be found. �
Remark 5.13. Examining the proof, one sees that instead of H̃i(X; R) = 0 it would have sufficed to
assume that

im
(

Hi
(
σ C̃•(X; R)

) incl∗−−−→ H̃i(X; R)
) = 0

for odd i and

im
(

Hi
(
τ C̃•(X; R)

) incl∗−−−→ H̃i(X; R)
) = 0

for even i; compare Remark 5.6.

Theorem 5.14. (Dold [5].) Let X and Y be simplicial complexes with free Zk-actions. Let r � 0 and R be a
commutative ring with 1 such that kR �= R. If H̃i(X; R) ∼= 0 for all i � r and dim Y � r then there is no
equivariant simplicial map from X to Y .

Proof. The complex Y admits an equivariant admissible Zk × N-labeling. No simplex of Y is labeled
with more than r + 1 colors, since no simplex has more than r + 1 vertices. An equivariant map from
X to Y would induce a labeling with these same properties on X , contradicting Proposition 5.12. �
Remark 5.15. A direct argument based on a calculation as in the proof of Proposition 5.12 is given
in [21] for the case k = 2, Y = Sr , R = Z2 of Theorem 5.14 (with the refinement of Remark 5.13).

Remark 5.16. The “Zp-Tucker lemma” from Ziegler [22, Lemma 5.3] corresponds to a different type of
labeling. Namely, call a Zk × N-labeling for the vertices of a simplicial complex X a weakly admissible
labeling if there are no k vertices of a (k − 1)-simplex σ k−1 that under the labeling get all the same
color (second component), but all different signs (first component).

Such a labeling corresponds to a simplicial map to a label space (∂σ k−1)∗N , an infinite join of
boundaries of (k − 1)-simplices. The action of Zk by cyclically permuting the vertices of σ k is free on
the boundary ∂σ k−1 only if k = p is a prime.

F. Meunier (personal communication, October 2007) has shown how to construct a chain map from
the chain complex of the corresponding simplicial complex to the minimal resolution for Zp , and to
derive a combinatorial/algebraic proof for [22, Lemma 5.3] from this.
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6. The ZZZk-target space for rainbow colorings

It was Fan’s basic insight from his 1952 paper [6] that one gets meaningful Tucker lemmas also
for labelings of the vertices of antipodal d-spheres with labels from {±1,±2, . . . ,±m} for m > d + 1.
With subsequent generalizations from Z2 to Zk , and from d-spheres to arbitrary pseudomanifolds
(Fan [7]), it now appears that the space (Zk)

∗N

alt�d introduced in Definition 5.9 is a natural target space
for Zk-Fan theorems. Here we determine its homotopy type.

Theorem 6.1. All the inclusions of Zk-spaces

(Zk)
∗(d+1) = (Zk)

∗(d+1)

alt�d ⊂ (Zk)
∗(d+2)

alt�d ⊂ · · · ⊂ (Zk)
∗m
alt�d ⊂ · · · ⊂ (Zk)

∗N

alt�d =
⋃

m�d+1

(Zk)
∗m
alt�d.

are strong deformation retracts.

The proof of Theorem 6.1 is based on the following elementary homotopy theory lemma.

Lemma 6.2. Let X be a topological space and let A ⊂ X be a subspace which is contractible (as a topological
space). Then X is a strong deformation retract of the space X ∪A C A, the union along A of X and the cone
over A.

Proof. Because A is contractible, we have a homotopy equivalence

X ∪A C A � X ∪{a} C A

where a ∈ A is some point and C A is glued to X along a constant map A → {a}. Furthermore, a pair
of homotopy inverse maps can be chosen in such a way that their restrictions to X are identity
maps and that the homotopies of their compositions to the respective identity maps are constant
on X . Because the south tip of the unreduced suspension Σ A = C A/A is a strong deformation retract
of Σ A (A being contractible), the result follows. �
Proof of Theorem 6.1. We fix k � 2 and start with some general observations. For simplicity, we write
Zk as {0,1, . . . ,k − 1} instead of {e, g, . . . , gk−1} in this section.

Let d � 0 and m � d + 1. We define Cd,m+1,i ⊂ (Zk)
∗(m+1)

alt�d as the (closed) star of the vertex i ∈ Zk ,

where we identify Zk with its (m + 1)st copy in (Zk)
∗(m+1)

alt�d . By the definition of joins, we can
think of Cd,m+1,i as the cone over Cd,m+1,i ∩ (Zk)

∗m
alt�d and furthermore know that the intersections

Cd,m+1,i ∩ Cd,m+1, j are contained in (Zk)
∗m
alt�d for i �= j.

By induction on d > 0, we will now prove that each of the intersections Cd,m+1,i ∩ (Zk)
∗m
alt�d is a

contractible space (for all m � d + 1). Together with Lemma 6.2 this implies in particular that the
inclusion

(Zk)
∗m
alt�d ↪→ (Zk)

∗(m+1)

alt�d

is a strong deformation retract, thus proving the theorem.
For d = 0 and m � 1, each intersection Cd,m+1,i ∩ (Zk)

∗m is a full (m − 1)-dimensional simplex
〈i, i, i, . . . , i〉 and hence contractible.

Now let d > 0 and m � d + 1. For symmetry reasons it is enough to show that the intersection

P := Cd,m+1,0 ∩ (Zk)
∗m
alt�d

is contractible. We can write the polyhedron P as the union of two subpolyhedra P0 and P>0 defined
as follows: The facets of P0 are all the facets of (Zk)

∗m
alt�d whose mth vertex (with respect to the

join construction) is equal to 0. It can be identified with the closed star in (Zk)
∗m
alt�d over this vertex
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and is therefore contractible. The facets of P>0 are all the facets of (Zk)
∗m
alt�(d−1)

whose mth vertex is
contained in the set {1,2, . . . ,k − 1} ⊂ Zk . We will show that

P0 ↪→ P

is a strong deformation retract. Because P0 is contractible, this finally implies contractibility of P .
We can write

P>0 = (Zk)
∗(m−1)

alt�(d−1)
∪ (Cd−1,m,1 ∪ Cd−1,m,2 ∪ · · · ∪ Cd−1,m,k−1)

By our induction hypothesis, for each 1 � i � k − 1 the intersection

Cd−1,m,i ∩ (Zk)
∗(m−1)

alt�(d−1)

is contractible. Hence, using Lemma 6.2 again, the inclusion

(Zk)
∗(m−1)

alt�(d−1)
↪→ P>0

is a strong deformation retract. Because on the other hand

(Zk)
∗(m−1)

alt�(d−1)
⊂ P0,

this shows that P0 ↪→ P0 ∪ P>0 = P is a strong deformation retract. �
Corollary 6.3. For m � d + 1 the spaces (Zk)

∗(d+1) , (Zk)
∗m
alt�d and (Zk)

∗N

alt�d are all Zk-homotopy equivalent,

in particular there exists a Zk-map (Zk)
∗N

alt�d → (Zk)
∗(d+1) .

Proof. The inclusion map from (Zk)
∗(d+1) into any of the other spaces is Zk-equivariant and a ho-

motopy equivalence by Theorem 6.1. Since all of the spaces are free Zk-spaces, a theorem of Bredon
[3, Chapter II] [19, Section II.2] implies that these maps are Zk-homotopy equivalences (that is they
have equivariant homotopy inverses, and the homotopies can also be chosen as equivariant maps). �
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