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Abstract

In this paper we completely characterize possible feedback invariants of a rectangular matrix under small
additive perturbations on one of its rows.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In [3], Beitia et al. have described the possible similarity invariants of a square matrix under
small additive perturbations on one of its rows. Their result combines the problems of describing
the possible Jordan canonical forms of matrices obtained by addition of a complex matrix E with
sufficiently small entries to a complex square matrix M , see [12,4], and on the other hand, the
problem of completion of a rectangular matrix to a square one, see [13].
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Also, Gracia et al. [8] have described the possible feedback invariants of matrices obtained by
addition of a complex matrix E with sufficiently small entries to an arbitrary rectangular complex
matrix M .

This paper is a natural prolongation of those results.
Let A ∈ Cn×n, C ∈ Cn×m, bT ∈ Cn×1, a ∈ C1×n, c ∈ C1×m and x ∈ C1×1. Observe the fol-

lowing rectangular matrix:

M =
[
A bT C

a x c

]
∈ C(n+1)×(n+1+m). (1)

Recently, in [9], is given a generalization of the result from [13]. This together with the result
from [8] allows us to study the feedback invariants of M under small perturbations on one of its
rows, i.e. on[

a x c
] ∈ C1×(n+1+m).

Throughout the paper F denotes an arbitrary field and K ∈ {R, C}. If f is a polynomial, d(f )

denotes its degree. If f (λ) = λk − ak−1λ
k−1 − · · · −a1λ − a0 ∈ F[λ], k > 0, then C(f ) denotes

the companion matrix

C(f ) =
[
e
(k)
2 · · · e(k)

k a
]t

,

where e
(k)
i is ith column of the identity matrix Ik and

a = [a0 · · · ak−1]t.

For the polynomials α1| · · · |αn by
∑

d(αi) we denote
∑n

i=1 d(αi) and by
∏

αi we denote∏n
i=1 αi .
In this paper we consider partitions as sequences of nonincreasing integers. If a and b are

partitions a ∪ b is defined as the partition whose components are those of a or b reordered in
nonincreasing order. For any partition a = (a1, . . . , am) we can define its length l(a) as the
number of nonnegative elements in a, and its weight |a| as their sum. Also by ā = (ā1, . . . , ām),
āi = �{j |aj � i}, we denote the conjugate (dual) partition of a.

Also, we will use majorization in Hardy–Littlewood–Polya sense, see [10]: for any two parti-
tions a = (a1, . . . , am) and b = (b1, . . . , bm),

a ≺ b

means
k∑

i=1

ai �
k∑

i=1

bi, k = 1, . . . , m − 1

and
m∑

i=1

ai =
m∑

i=1

bi.

If
k∑

i=1

ai �
k∑

i=1

bi, k = 1, . . . , m,

then we write

a ≺≺ b.
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2. Previous results

Let X + λY ∈ F[λ]q×p be an arbitrary singular pencil of rectangular matrices. Consider the
equation

(X + λY )x = 0,

where x is a polynomial column vector. Among all its solutions we choose a nonzero solution
x1(λ) of least degree ε1. Among all the solutions of the same equation that are linearly independent
of x1(λ) we take a solution x2(λ) of least degree ε2. Obviously ε1 � ε2. Continuing this finite
process, we obtain a fundamental series of solutions of our equation

x1(λ), x2(λ), . . . , xp−r (λ)

having the degrees

ε1 � ε2 � · · · � εp−r ,

where r = rank(X + λY ). In general a fundamental series of solutions is not uniquely determined
by the pencil X + λY . However, the set of degrees is. If denote by c1 � · · · � cp−r the numbers
ε1, . . . , εp−r in nonincreasing order, then we call c1 � · · · � cp−r the column minimal indices
of the pencil A + λB, for details see [7].

Furthermore, we shall deal with the pencils of the form[
λI − A −B

] ∈ F[λ]n×(n+m) with A ∈ F[λ]n×n. (2)

It is easy to see that the number of column minimal indices of (2) coincides with the number
of columns of the matrix B (denote them by c1 � · · · � cm), and the number of nonzero among
them is equal to the rank of the matrix B. Hence, in this case by abuse of notation, we shall also
call the numbers c1 � · · · � crankB the column minimal indices of (2).

Also, we can introduce Brunovsky indices as ri = �{j |cj � i}, i.e. partition r = (r1, . . . , rt )

is the conjugate (dual) partition of the partition of column minimal indices (c1, . . . , cm).

Definition 1. Let A, A′ ∈ Fn×n, B, B ′ ∈ Fn×l . Two rectangular matrices

S = [
A B

]
, S′ = [

A′ B ′] (3)

are feedback equivalent if there exists a nonsingular matrix

P =
[
N 0
V T

]
,

where N ∈ Fn×n, V ∈ Fl×n, T ∈ Fl×l , such that S′ = N−1SP .

Two matrices of the form (3) are feedback equivalent if and only if the matrix pencils

R = [
λI − A −B

]
and R′ = [

λI − A′ −B ′] (4)

are strictly equivalent. Therefore, the matrices (3) are feedback equivalent if and only if the pencils
(4) have the same invariant factors and the same column minimal indices (frequently we shall
call this set of invariants the feedback invariants of the pencil R). The feedback invariants of
the matrix S we define as the feedback invariants of the corresponding pencil R. The column
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minimal indices of the matrix S (and of the corresponding pencil R), coincide (unordered) with
the controllability indices of the pair (A, B) (see e.g. [7,13]), and the nonzero among them we
shall call the controllability indices of the matrix S.

Definition 2. Let A, A′ ∈ Fn×n, B, B ′ ∈ Fn×l , C, C′ ∈ Fn×m. Two matrices

L = [
A B C

]
and L′ = [

A′ B ′ C′]
are (n, l)-feedback equivalent if there exists a nonsingular matrix

P =
⎡⎣Q 0 0

T U 0
V G H

⎤⎦ ∈ F(n+l+m)×(n+l+m),

where Q ∈ Fn×n, U ∈ Fl×l , such that L′ = Q−1LP .

Using the previous notation and Lemma 4 from [6], it is easy to obtain the following result
(see also [9]):

Lemma 1. The matrix L = [
A B C

]
is (n, l)-feedback equivalent to a unique matrix L′ =[

A′ B ′ C′] , where

A′ = C(α1) ⊕ · · · ⊕ C(αn)C(λν1) ⊕ · · · ⊕ C(λνρ )

⊕ C(λμ1) ⊕ · · · ⊕ C(λμl ) ∈ Fn×n,

B ′ =
[
e
(n)
ν1+···+νρ+μ1+p · · · e(n)

ν1+···+νρ+μ1+···+μl+p0
]

∈ Fn×l ,

C′ =
[
e
(n)
ν1+p e

(n)
ν1+ν2+p · · · e(n)

ν1+···+νρ+p0
]

∈ Fn×m,

p = ∑
d(αi), for some numbers μ1 � · · · � μl � 0, ν1 � · · · � νρ > 0 and polynomials

α1(λ)| · · · |αn(λ), l, ρ, n � 0.

Definition 3. The matrix L′ is called the canonical form for (n, l)-feedback equivalence of the
matrix L.

Remark 1. Note that the union of the nonzero numbers among μi and νi coincide with the
nonzero column minimal indices (unordered) of[

λI − A −B −C
]
. (5)

We shall call μi (respectively, νi) the minimal indices of the first (respectively, second) kind of
the pencil (5) (and of the corresponding matrix L).

Polynomials α1(λ)| · · · |αn(λ) are the invariant factors of the pencil (5).

Let X be an m × n complex matrix with m � n. By invariant polynomials of X we assume
the invariant factors of the polynomial matrix

[
λIm 0

] − X.

Definition 4. Let X = [
A B

] ∈ Kn×(n+m) with A ∈ Kn×n. λ0 is called an eigenvalue of X if
there exists a nonzero vector x ∈ KerBT such that

ATx = λ0x.



586 M. Dodig, M. Stošić / Linear Algebra and its Applications 422 (2007) 582–603

The eigenvalues of the pair (A, B) ∈ Kn×n × Kn×m we define as the eigenvalues of the cor-
responding matrix

[
A B

]
.

Let λ1, . . . , λr be distinct eigenvalues of (A, B). The set of eigenvalues (zeros of the Dn(λ) –
nth determinantal divisor) of (A, B) denote by σ(A, B); m(λi, (A, B)) is the algebraic multiplic-
ity of λi as an eigenvalue of (A, B); and s(λi, (A, B)), w(λi, (A, B)) are the partitions of λi in
the Segre, respectively, the Weyr characteristic of (A, B), see [8]. By abuse of notation, we shall
adopt all the previous notation for the corresponding matrix X = [

A B
]
.

Norm of the matrix X and of the polynomial vector space will be l1 norm, i.e.

‖X‖ =
∑
i,j

|xij | for X = [xij ],

‖b(λ)‖ =
n∑

i=0

|bi | for b(λ) = bnλ
n + · · · + b1λ + b0.

For polynomial matrices we define ‖M(λ)‖ = ∑
i,j ‖mij (λ)‖, where M(λ) = [mij (λ)].

Let η > 0 be a real number. By B(λi, η) denote the open ball with center at λi and radius η.
The η neighbourhood of the spectrum of X is the set Vη(X) = ⋃r

i=1 B(λi, η) whenever the balls
are pairwise disjoint.

Lemma 2 [3,2]. Let b(λ) ∈ C[λ] be a polynomial of degree n, b(λ) = bnλ
n + · · · + b1λ + b0 =

bn(λ − μ1) · · · (λ − μn).

1. Given ε > 0 there exists δ > 0 such that if b′(λ) is a polynomial of degree at most n satisfying
‖b(λ) − b′(λ)‖ < δ, then the roots of b′(λ) are in

⋃n
i=1 B(μi, ε).

2. Reciprocally, given ε > 0 there exists δ > 0 such that if μ′
i ∈ B(μi, δ), i = 1, . . . , n, and

b′(λ) = bn(λ − μ′
1) · · · (λ − μ′

n) then ‖b(λ) − b′(λ)‖ < ε.

Theorem 1 [9]. Let A ∈ Fn×n, B ∈ Fn×l and C ∈ Fn×m. Let μ1 � · · · � μl � 0 and ν1 � · · · �
νρ > 0 be the minimal indices of the first and of the second kind, respectively, and let α1| · · · |αn

be the invariant factors of[
λI − A −B −C

]
.

Let d1 � d2 � · · · � dρ̄ > 0 and γ1| · · · |γn+l be positive integers and monic polynomials, res-
pectively. There exist matrices D ∈ Fl×n, E ∈ Fl×l and F ∈ Fl×m such that the pencil

λ
[
In+l 0

] − G =
[
λI − A −B −C

−D λI − E −F

]
(6)

has γ1| · · · |γn+l as invariant factors and d1 � · · · � dρ̄ as nonzero column minimal indices if
and only if the following conditions are valid:

(i) di � si, i = 1, . . . , ρ̄,

(ii) ρ � ρ̄ � min(l + ρ, m),

(iii) γi |αi+ρ−ρ̄ |γi+l+ρ−ρ̄ , i = 1, . . . , n + ρ̄ − ρ,

(iv)
∑

fi + ∑
d(αi) = ∑

di + ∑
d(γi),
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(v)
∑hq

i=1 fi − ∑hq−q

i=1 di � d(πρ+l−ρ̄ ) − d(πρ+l−ρ̄−q),

hq = min{i|di−q+1 < fi}, q = 1, . . . , ρ + l − ρ̄,

πj = ∏n+j

i=1 lcm(αi−j , γi+ρ̄−ρ), j = 0, . . . , ρ + l − ρ̄,

where f1 � · · · � fρ+l is nonincreasing ordering of numbers μ1 + 1, . . . , μl + 1, ν1, . . . , νρ

and s1 � · · · � sρ̄ is nonincreasing ordering of numbers ν1, . . . , νρ, μl + 1, . . . , μl+ρ+1−ρ̄ + 1.

Theorem 2 [3,1,11]. Let γ ′
1| · · · |γ ′

n be monic polynomials. Let M ∈ Cn×n be a matrix with
γ1| · · · |γn as invariant polynomials. In every neighbourhood of M there exists a matrix M ′ such
that γ ′

1| · · · |γ ′
n are its invariant polynomials if and only if

γ ′
1 · · · γ ′

i |γ1 · · · γi, i = 1, . . . , n − 1,

and

γ ′
1 · · · γ ′

n = γ1 · · · γn.

Theorem 3 [8]. Let A ∈ Kn×n and B ∈ Kn×m. Let α1| · · · |αn be the invariant factors, and
let k1 � · · · � km be the column minimal indices of

[
λI − A −B

]
,
∑

d(αi) = p. Then there

exists a neighbourhood V of
[
A B

]
such that

[
A′ B ′] ∈ V implies

(k′
1, . . . , k

′
m, 0, . . .) ≺ (k1 + t, k2, . . . , km, 0, . . .),

(d(αn), . . . , d(α1), 0, . . .) ≺ (d(α′
n) + t, d(α′

n−1), . . . , d(α′
1), 0, . . .),

where α′
1| · · · |α′

n are the invariant factors and k′
1 � · · · � k′

m are the column minimal indices of[
λI − A′ −B ′] , and t = ∑n

i=1 d(αi) − ∑n
i=1 d(α′

i ) � 0.

Theorem 4 [8]. Let A ∈ Kn×n, B ∈ Kn×m, η > 0. Let r = (r1, r2, . . .) be the partition of the
Brunovsky indices of (A, B). Let ai be the partition corresponding to λi ∈ σ(A, B) in the Weyr
characteristic of (A, B), i = 1, . . . , p.

Then there exists a neighbourhood V of
[
A B

]
such that

[
A′ B ′] ∈ V implies

(i) σ(A′, B ′) ⊂ Vη(A, B),

(ii) if μi1, . . . , μiti are the eigenvalues of (A′, B ′) in B(λi, η) and bij is the partition corre-
sponding to μij in the Weyr characteristic of (A′, B ′), j = 1, . . . , p, then
ti⋃

j=1

bij ≺≺ ai, i = 1, . . . , p,

(iii) if r ′ = (r ′
1, r

′
2, . . .) is the partition of the Brunovsky indices of (A′, B ′) then r ≺≺ r ′ and

r ′
1 � m.

Note that the condition (iii) is equivalent to the condition

(k′
1, . . . , k

′
m, 0, . . .) ≺ (k1 + t, k2, . . . , km, 0, . . .),

where r and (k1, . . . , km), and also, r ′ and (k′
1, . . . , k

′
m), are conjugate partitions.

Theorem 5 [8]. Let A ∈ Cn×n, B ∈ Cn×m, η > 0. Let r = (r1, r2, . . .) be the partition of the
Brunovsky indices of (A, B). Let ai be the partition corresponding to λi ∈ σ(A, B) in the Weyr
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characteristic of (A, B), i = 1, . . . , p. Let bi1, . . . , biti , i = 1, . . . , p, and r ′ = (r ′
1, r

′
2, . . .) be

given partitions.
There exists in any neighbourhood of

[
A B

]
a matrix

[
A′ B ′] such that

(i) σ(A′, B ′) ⊂ Vη(A, B),

(ii) (A′, B ′) has ti eigenvalues μi1, . . . , μiti in B(λi, η), and bij is the partition corresponding
to μij in the Weyr characteristic of (A′, B ′), j = 1, . . . , ti , i = 1, . . . , p,

(iii) r ′ is the partition of the Brunovsky indices of (A′, B ′),

if and only if the following conditions are satisfied:
ti⋃

j=1

bij ≺≺ ai, i = 1, . . . , p,

r ≺≺ r ′ and r ′
1 � m.

3. Technical results

Lemma 3. Let P, Q and R be nonzero polynomials in F[λ], such that gcd(P, Q) = 1. Then there
exist solutions x, y ∈ F[λ] of the equation Px + Qy = R, such that

d(x) � max{d(R) − d(P ), d(Q)} and d(y) � max{d(R) − d(Q), d(P )}.

Proof. Suppose that d(P ) � d(Q). By applying the Euclide’s algorithm we obtain the sequence
of polynomials q1, . . . , qn+1 and r0 = Q, r1, . . . , rn, such that d(r0) > d(r1) > · · · > d(rn) = 0
and

P = Qq1 + r1, Q = r1q2 + r2, . . . , rn−2 = rn−1qn + rn, rn−1 = rnqn+1. (7)

Obviously, d(q1) = d(P ) − d(Q) and d(qk) = d(rk−2) − d(rk−1), k = 2, . . . , n + 1. Further,
for each k = 1, . . . , n there exist polynomials ak and bk such that rk = Pak + Qbk and

d(ak) =
k∑

i=2

d(qi) = d(Q) − d(rk−1), d(bk) =
k∑

i=1

d(qi) = d(P ) − d(rk−1). (8)

Indeed, from (7) we have that r1 = P − Qq1 and r2 = Q − r1q2 = −Pq2 + Q(1 + q1q2). Now,
by induction, we have that for each k � 3, rk = rk−2 − rk−1qk = P(ak−2 − ak−1qk) + Q(bk−2 −
bk−1qk), which gives (8).

Divide the polynomial R by r0 with the quotient l0 and the remainder R1: R = r0l0 + R1.
Obviously, d(l0) = d(R) − d(r0) = d(R) − d(Q), and d(R1) < d(r0). Now, divide R1 by r1:
R1 = r1l1 + R2, and continue the process: Rk = rklk + Rk+1, k = 0, . . . , n, R0 = R, Rn+1 = 0
(since rn = 1). We have that d(lk) = d(Rk) − d(rk) and d(Rk) < d(rk−1) for k = 1, . . . , n, and
hence d(lk) < d(rk−1) − d(rk). So,

R =
n∑

i=0

ri li = r0l0 +
n∑

i=1

ri li = Ql0 +
n∑

i=1

(Pai + Qbi)li = Px + Qy,

where x = ∑n
i=1 aili and y = l0 + ∑n

i=1 bili .
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Finally, we have thatd(x)�maxi=1,...,n{d(ai li)}=maxi=1,...,n{d(ai) + d(li)}�maxi=1,...,n ×
{d(Q) − d(ri−1) + d(ri−1) − d(ri)} = maxi=1,...,n{d(Q) − d(ri)} = d(Q), and also d(y) �
max{d(l0), maxi=1,...,n{d(bi) + d(li)}} � max{d(R) − d(Q), d(P )}.

Completely analogously, in the case d(P ) < d(Q), we obtain the existence of polynomials
x and y such that d(x) � max{d(R) − d(P ), d(Q)} and d(y) � d(P ), which concludes our
proof. �

Let P1, . . . , Pn be polynomials in F[λ]. Consider the polynomial equation

P1x1(λ) + · · · + Pnxn(λ) = 0. (9)

Then the set of all n-tuples
(
x1(λ) · · · xn(λ)

)T of the solutions of (9), with the natural addition
and multiplication by an arbitrary polynomial, forms a F[λ]-module (a submodule of F[λ]n). The
following, well-known, Quillen–Suslin theorem is valid over the rings of polynomials in arbitary
number of variables.

Theorem 6 [5, Chapter 5, Theorem 1.8]. Let Q1, . . . , Qn ∈ F[λ1, . . . , λk] such that 1 ∈
〈Q1, . . . , Qn〉. Then the module of the solutions of the equation

Q1y1 + · · · + Qnyn = 0

is free.

Corollary 7. Let P1, . . . , Pn ∈ F[λ] \ {0}. Then the module of the solutions of Eq. (9) is free.

Proof. Let P = gcd(P1, . . . , Pn) and P ′
i = Pi

P
, i = 1, . . . , n. Then after cancelling Eq. (9) by the

polynomial P , we obtain P ′
1x1 + · · · + P ′

nxn = 0. Finally, since gcd(P ′
1, . . . , P

′
n) = 1, we have

that 1 ∈ 〈P ′
1, . . . , P

′
n〉, which finishes our proof. �

Lemma 4. Let P1, . . . , Pn ∈ F[λ] \ {0}. Then there are at most n − 1 linearly independent solu-
tions of (9).

Proof. By Corollary 7, we have that the module of the solutions of (9), M , is free and its rank
is at most n. Suppose that there are n linearly independent solutions e1, . . . , en. Then for each
k = 1, . . . , n we have that there exist polynomials zk /= 0, α1

k , . . . , α
n
k , such that

α1
ke1 + · · · + αn

k en = (0, . . . , 0︸ ︷︷ ︸
k−1

, zk, 0, . . . , 0)T = fk.

However, this means that fk belongs to M for every k = 1, . . . , n, and hence that it is the
solutions of (9). Thus, Pkzk = 0 which implies Pk = 0, which is a contradiction. �

Lemma 5. Let n > 0. Let P ′|P1|P2| · · · |Pn be polynomials from F[λ]. Let mn−1 � · · · � m1 =
d(P ′) � 0 be integers, mi � d(Pi), i = 1, . . . , n − 1. There exist polynomials Xi, d(Xi) �
d(Pi), i = 2, . . . , n, with arbitrary small coefficients, such that

d(gcd(Pn−1 + Xn−1, Pn + Xn)) = mn−1

d(gcd(Pn−2 + Xn−2, Pn−1 + Xn−1, Pn + Xn)) = mn−2

· · ·



590 M. Dodig, M. Stošić / Linear Algebra and its Applications 422 (2007) 582–603

d(gcd(P2 + X2, . . . , Pn−2 + Xn−2, Pn−1 + Xn−1, Pn + Xn)) = m2

gcd(P1, P2 + X2, . . . , Pn−2 + Xn−2, Pn−1 + Xn−1, Pn + Xn) = P ′.

Proof. Write the polynomials Pi , i = 1, . . . , n as

Pi = P ′ P1

P ′
P2

P1

P3

P2

P4

P3
· · · Pi

Pi−1
.

Let ai
1, . . . , a

i
(d(Pi)−d(Pi−1))

be the zeros of the polynomial Pi

Pi−1
, i = 1, . . . , n, P0 = P ′. Then

S =
{
a1

1, . . . , a1
d(P1)−d(P ′), a

2
1, . . . , a2

d(P2)−d(P1)
, . . . , an

1 , . . . , an
d(Pn)−d(Pn−1)

}
is the set of all zeros of the polynomial Pn

P ′ .
Denote the elements of S in this order by bi , i = 1, . . . , d(Pn) − d(P ′). Let ni = mi − d(P ′),

i = 2, . . . , n − 1. Let εi , i = 1, . . . , d(Pn) − d(P ′), be arbitrary small positive numbers. Then
from Lemma 2 we conclude that there exist polynomials Xi with arbitrary small coefficients, such
that d(Xi) � d(Pi) and

Pi + Xi = P ′(λ − b1 − ε1) · · · (λ − bni
− εni

)(λ − bni+1) · · · (λ − bd(Pi)−d(P ′))

for i = 2, . . . , n − 1, and

Pn + Xn = P ′(λ − b1 − ε1) · · · (λ − bd(Pn)−d(P ′) − εd(Pn)−d(P ′)).

Obviously, they satisfy

d(gcd(Pi + Xi, . . . , Pn−1 + Xn−1, Pn + Xn)) = mi

for i = 2, . . . , n − 1, and

gcd(P1, P2 + X2, . . . , Pn−2 + Xn−2, Pn−1 + Xn−1, Pn + Xn) = P ′,

as wanted. �

Lemma 6. Let A ∈ Fn×n, F ∈ Fl×l and

M =
[
A B C

E F G

]
∈ F(n+l)×(n+l+m).

Let P ∈ Fn×n, L ∈ Fl×l and N ∈ Fm×m be invertible matrices, and Q ∈ Fl×n, R ∈ Fm×n and
K ∈ Fm×l be such that

M =
[

P −1 0
−L−1QP −1 L−1

] [
Ac Bc Cc

E F G

]⎡⎣P 0 0
Q L 0
R K N

⎤⎦ = P1

[
Ac Bc Cc

E F G

]
P2,

where
[
Ac Bc Cc

]
is the (n, l)-feedback canonical form of the matrix

[
A B C

]
. Let

M =
[
Ac Bc Cc

E F G

]
.

Then in every neighbourhood of M there exists a matrix

M ′ =
[

A B C

E′ F ′ G′
]
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such that γ ′
1| · · · |γ ′

n and d ′
1 � · · · � d ′

m are its feedback invariants if and only if in every neigh-
bourhood of M there exist a matrix

M
′ =

[
Ac Bc Cc

E
′

F
′

G
′
]

such that γ ′
1| · · · |γ ′

n and d ′
1 � · · · � d ′

m are its feedback invariants.

Proof. Let ε > 0 and define ε′ > 0 as a positive real number satisfying

ε′ <
ε

‖P1‖‖P2‖ .

If X ∈ Fl×n, Y ∈ Fl×l and Z ∈ Fl×m verify[
Ac Bc Cc

E + X F + Y G + Z

]
= M

′

with ‖X + Y + Z‖ < ε′, and M
′

has prescribed feedback invariants, then

M ′ = P1M
′
P2

will have the same feedback invariants as M
′

and we have that

‖M − M ′‖ � ‖P1‖‖M − M
′‖‖P2‖ � ‖P1‖‖ε′‖‖P2‖ � ε,

as wanted. The converse is proved analogously. �

The following result is not hard to prove:

Lemma 7. Let A ∈ Fn×n, B ∈ Fm×m, C ∈ Fm×s , X ∈ Fm×n be such that the pencil[
λI − B −C

] ∈ F[λ]m×(m+s) has all invariant factors equal to 1. Then the following two
matrices are feedback equivalent:[

A 0 0
X B C

]
∈ F(n+m)×(n+m+s)

and [
A 0 0
0 B C

]
∈ F(n+m)×(n+m+s).

4. Main result

Theorem 8. Let A ∈ Cn×n, C ∈ Cn×m, bT ∈ Cn×1, a, a′ ∈ C1×n, c, c′ ∈ C1×m and x, x′ ∈
C1×1. Let μ1 be the minimal index of the first kind and ν1 � · · · � νρ > 0 be the minimal indices
of the second kind, and let α1| · · · |αn be the invariant factors of[

λI − A −bT −C
]
.

Let ai be the partition corresponding to λi ∈ σ(M), i = 1, . . . , p, in the Weyr characteristic of
M, where

M =
[
A bT C

a x c

] (
respectively, M ′ =

[
A bT C

a′ x′ c′
])

.
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Let γ1| · · · |γn+1 and d1 � d2 � · · · � dρ̄ > 0 (respectively, γ ′
1| · · · |γ ′

n+1 and d ′
1 � d ′

2 � · · · �
d ′
ρ̄′ > 0) be the feedback invariants of the matrix M (respectively, M ′).

Then for arbitrary small η > 0, there exists ε > 0 such that if

‖M − M ′‖ =
∥∥∥∥[A bT C

a x c

]
−
[
A bT C

a′ x′ c′
]∥∥∥∥ < ε,

then

(i) d ′
i � si , i = 1, . . . , ρ̄′,

(ii) ρ � ρ̄′ � min(1 + ρ, m),

(iii) γ ′
i |αi−ρ̄′+ρ |γ ′

i+1+ρ−ρ̄′ , i = 1, . . . , n,

(iv)
∑

fi + ∑
d(αi) = ∑

d ′
i + ∑

d(γ ′
i ),

(v)
∑h′

q

i=1 fj − ∑h′
q−q

i=1 d ′
j � d(π ′

ρ+1−ρ̄′) − d(π ′
ρ+1−ρ̄′−q

),

h′
q = min{i|di−q+1 < fi}, q = 1, . . . , ρ + 1 − ρ̄′,

π ′
j = ∏n+j

i=1 lcm(αi−j , γ
′
i+ρ̄′−ρ

), j = 0, . . . , ρ + 1 − ρ̄′,
(vi) σ(M ′) ⊂ Vη(M),

(vii) if μi1, . . . , μiti are the eigenvalues of M ′ in B(λi, η) and bij is the partition corresponding
to μij in the Weyr characteristic of M ′, j = 1, . . . , p, then

ti⋃
j=1

bij ≺≺ ai, i = 1, . . . , p,

(viii) if r ′ = (r ′
1, r

′
2, . . .) is the partition of the Brunovsky indices of M ′, then r ≺≺ r ′ and r ′

1 � m

where f1 � · · · � fρ+1 is nonincreasing ordering of numbers μ1 + 1, ν1, . . . , νρ and si = νi ,
i = 1, . . . , ρ̄′ if ρ̄′ = ρ, or si = fi , i = 1, . . . , ρ̄′ if ρ̄′ = ρ + 1 and r is the dual partition of the
partition (d1, . . . , dρ̄).

Proof. This theorem is a direct consequence of the previous ones (see Theorems 1 and 4). �

Lemma 8. Under the same notation as in the previous theorem we can obtain the necessity of
the following conditions as well:

(d ′
1, . . . , d

′
ρ̄′ , 0, . . .) ≺ (d1 + t, d2, . . . , dρ̄ , 0, . . .)

(d(γn), . . . , d(γ1), 0, . . .) ≺ (d(γ ′
n) + t, d(γ ′

n−1), . . . , d(γ ′
1), 0, . . .),

where t = ∑
d(γi) − ∑

d(γ ′
i ) � 0.

Proof. Trivially follows from Theorem 3. �

Let ρ, ν1 � · · · � νρ � μ1 + 1 and d1 � · · · � dρ be positive integers and let α1| · · · |αn and
γ1| · · · |γn+1 be monic polynomials such that they satisfy the following conditions:

(i) di � νi , i = 1, . . . , ρ,
(ii) γi |αi |γi+1, i = 1, . . . , n,

(iii)
∑

fi + ∑
d(αi) = ∑

di + ∑
d(γi).
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Let P =
∏

γi∏
αi

and let

k1 =
∑

νi + μ1 + 1 −
∑

di(= d(P )), (10)

ki =
i−1∑
j=1

(dj − νj ) + k1, i = 2, . . . , ρ. (11)

Then (like in [9]) the following matrix

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C(λν1) e1

C(λν2) e2
. . .

. . .
C(λνρ ) eρ

C(λμ1) e0

t1 t2 · · · tρ tρ+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(12)

has P as the only nontrivial invariant factor and d1, . . . , dρ as controllability indices. Here (and

further on) ei = e
(νi )
νi

, i = 1, . . . , ρ, e0 = e
(μ1)
μ1 ,

ti =
[

0 (−1)ρ−i+1x1 · · · (−1)ρ−i+1xk1︸ ︷︷ ︸
ki

(−1)ρ−i 0︸ ︷︷ ︸
νi−ki

]
∈ F1×νi ,

i = 1, . . . , ρ, and

tρ+1 = [
0 x1 · · · xk1

] ∈ F1×(μ1+1),

where x1, . . . , xk1 are such that

P = λk1 − xk1λ
k1−1 + · · · − x2λ − x1.

By using the result from Lemma 6, we can consider the matrix (1) in the following feedback
equivalent form:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N

C(λν1) e1
C(λν2 ) e2

. . .
. . .

C(λνρ ) eρ

C(λμ1) e0
w0 w1 w2 · · · wρ wρ+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(13)

Here N = diag(C(α1), . . . , C(αn)) and wi =
[
w1

i · · · w
ji

i

]
, for some scalars w1

i , . . . , w
ji

i ,

i = 0, . . . , ρ + 1, j0 = p, jk = νk , k = 1, . . . , ρ, jρ+1 = μ1 + 1.
Let S be the submatrix of M formed by its last n + ρ + 1 − p columns and its last n + 1 − p

rows, p = ∑
d(αi). Using the previous notation, it is not hard to conclude that the matrices L

and S have the same controllability indices (d1 � · · · � dρ) and the same polynomialP
(
=

∏
γi∏
αi

)
as the only nontrivial invariant polynomial. Thus, they are feedback equivalent, i.e. they are both
feedback equivalent to the following matrix:



594 M. Dodig, M. Stošić / Linear Algebra and its Applications 422 (2007) 582–603⎡⎢⎢⎢⎢⎣
C(P )

C(λd1) e
(d1)
d1

. . .
. . .

C(λdρ ) e
(dρ)

dρ

⎤⎥⎥⎥⎥⎦ ,

and there exist invertible matrices T ∈ F(n+1−p)×(n+1−p) and Q ∈ Fρ×ρ and a matrix R3 ∈
Fρ×(n+1−p) such that

T S

[
T −1 0
R3 Q

]
= L.

Furthermore, from the form of the matrices M and S, by applying Lemma 7, we have that there
exist matrices R1 ∈ F(n+1−p)×p and R2 ∈ Fρ×p such that[

I 0
−T R1 T

]
M

⎡⎣ I 0 0
R1 T −1 0
R2 R3 Q

⎤⎦ =
[
N 0
X L

]
. (14)

Here the matrix X ∈ F(n+1−p)×p is of the form

[
0
t0

]
, where t0 = [

y1 · · · yp

]
, for some

scalars y1, . . . , yp.
Define the matrix M ′ as

M ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

N

C(λν1) e1
C(λν2) e2

. . .
. . .

C(λνρ ) eρ

C(λμ1) e0
t0 t1 t2 · · · tρ tρ+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(15)

i.e., as the right-hand side of Eq. (14).
Now, using the previous notation, we can give the following lemma:

Lemma 9. Let γ1| · · · |γn+1 and γ ′
1| · · · |γ ′

n+1 be monic polynomials. Let d1 � · · · � dρ and d ′
1 �

· · · � d ′
ρ be positive integers. Let

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N

C(λν1) e1

C(λν2) e2
. . .

. . .
C(λνρ ) eρ

C(λμ1) e0

w0 w1 w2 · · · wρ wρ+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and
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M ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N

C(λν1) e1

C(λν2) e2
. . .

. . .
C(λνρ ) eρ

C(λμ1) e0

t0 t1 t2 · · · tρ tρ+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
be the matrices (13) and (15), respectively, both with γ1| · · · |γn+1 and d1 � · · · � dρ as feedback
invariants. Then in every neighbourhood of M there exists a matrix

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N

C(λν1) e1

C(λν2) e2
. . .

. . .
C(λνρ ) eρ

C(λμ1) e0

w0 + η0 w1 + η1 w2 + η2 · · · wρ + ηρ wρ+1 + ηρ+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
such that γ ′

1| · · · |γ ′
n+1 and d ′

1 � · · · � d ′
ρ are its feedback invariants if and only if in every neigh-

bourhood of M ′ there exists a matrix

M
′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N

C(λν1) e1

C(λν2) e2
. . .

. . .
C(λνρ ) eρ

C(λμ1) e0

t0 + ε0 t1 + ε1 t2 + ε2 · · · tρ + ερ tρ+1 + ερ+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
such that γ ′

1| · · · |γ ′
n+1 and d ′

1 � · · · � d ′
ρ are its feedback invariants.

Proof. Suppose that there exist arbitrary small scalars ηi , i = 0, . . . , ρ + 1, such that the matrix
M has γ ′

1| · · · |γ ′
n+1 and d ′

1 � · · · � d ′
ρ as feedback invariants. Using the previous notation, define

the matrix Y by

Y =
[

I 0
−T R1 T

]
M

⎡⎣ I 0 0
R1 T −1 0
R2 R3 Q

⎤⎦ .

The matrix Y has γ ′
1| · · · |γ ′

n+1 and d ′
1 � · · · � d ′

ρ as feedback invariants, and it is in the small
neighbourhood ofM ′. However, the matrixY is obtained from the matrixM ′ by small perturbations
of the last n + 1 − p rows. By applying Lemma 7, we can transform the matrix Y in the form
M

′
, i.e. there exist invertible matrices P̃ ∈ F(n+1)×(n+1) and Q̃ ∈ F(n+1+ρ)×(n+1+ρ), such that

M
′ = P̃ Y Q̃, and since Y is obtained by small perturbations of M ′, we have that P̃ = I + P̃ε ,

Q̃ = I + Q̃ε , where ‖P̃ε‖ and ‖Q̃ε‖ are small. Hence, the matrix M
′

is feedback equivalent to
Y and hence to the matrix M , and it is in the small neighbourhood of the matrix M ′, as wanted.

The converse is proved analogously. �
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Our aim is to make small perturbations on the last row of M ′, in order to obtain γ ′
1| · · · |γ ′

n+1
and d ′

1 � · · · � d ′
ρ as its feedback invariants.

Let

L
′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C(λν1) e1

C(λν2) e2
. . .

. . .
C(λνρ ) eρ

C(λμ1) e0

t1 + ε1 t2 + ε2 · · · tρ + ερ tρ+1 + ερ+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

and

M
′ =

[
N 0
Y L

]
,

where Y is of the form

[
0

t0 + ε0

]
, where ε0 = [

ε1
0 · · · ε

p

0

]
and εi =[

ε1
i · · · ε

ki

i ε
ki+1
i 0 · · · 0

]
, i = 1, . . . , ρ + 1, kρ+1 = μ1 (for definition of

k1, . . . , kρ see (10) and (11)). Here ε
j
i , i = 1, . . . , ρ + 1, j = 1, . . . , ki + 1 and ε

j

0 , j = 1, . . . , p

are some small numbers. Now, by using the definition of column minimal indices, we have that
they are equal to the minimal degrees of linearly independent solutions of the following system:

(
λ
[
In+1 0

] − M
′)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
...

ap

x̄1
...

x̄n+ρ−p

x̄n+ρ−p+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (16)

Because of the form of the matrix M
′
, we have that Eq. (16) is equivalent to

ai = 0, i = 1, . . . , p

and

(
λ
[
In+1−p 0

] − L
′)
⎡⎢⎢⎢⎣

x̄1
...

x̄n+ρ−p

x̄n+ρ−p+1

⎤⎥⎥⎥⎦ = 0. (17)

Finally, if Xi = (−1)(ρ−i)(ε
ki+1
i λki + ε

ki

i λki−1 + · · · + ε2
i λ + ε1

i ), i = 1, . . . , ρ + 1, kρ+1 =
μ1, then Eq. (17) becomes

P ′
1z1 + P ′

2z2 + · · · + P ′
ρzρ + P ′

ρ+1zρ+1 = 0. (18)

Here zi = (−1)ρ+1−i x̄∑i−1
j=1 νj +1, i = 1, . . . , ρ + 1, and P ′

i = Pλki−k1 + Xi , i = 1, . . . , ρ and

P ′
ρ+1 = Pλμ1+1−k1 + Xρ+1. The corresponding degree of the solution of (17) is equal to the

max{d(z1) + ν1, d(z2) + ν2, . . . , d(zρ) + νρ, d(zρ+1) + μ1 + 1}. (19)
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In fact, each zi , i = 1, . . . , ρ, has “weight” νi , and zρ+1 has “weight” μ1 + 1, and we will call
(19) the weighted degree of the solution of Eq. (18). Thus the weighted degree of the solution of
Eq. (18) is equal to the degree of the corresponding solution of Eq. (17).

Now we can pass to the main results.

Theorem 9. Let γ ′
1| · · · |γ ′

n+1 be monic polynomials and let d ′
1 � · · · � d ′

ρ̄′ be positive integers.
Let M be the matrix (1) and let it has γ1| · · · |γn+1 and d1 � · · · � dρ̄ as feedback invariants.
Let α1| · · · |αn, μ1, and ν1 � · · · � νρ be the invariant polynomials, the minimal index of the first
kind and the minimal indices of the second kind, respectively, of the matrix

[
A bT C

]
. Then

in every neighbourhood of M there exists a matrix

M ′ =
[
A bT C

a′ x′ c′
]

with γ ′
1| · · · |γ ′

n+1 and d ′
1 � · · · � d ′

ρ̄′ as its feedback invariants, if and only if one of the following
groups (I)–(III) of conditions holds:
(I)

(o) ρ̄ = ρ̄′ = ρ,

(i) γ ′
i |αi |γ ′

i+1, i = 1, . . . , n,

(ii) γ ′
1 · · · γ ′

i |γ1 · · · γi, i = 1, . . . , n + 1,

(iii) (d ′
1, . . . , d

′
ρ) ≺ (d1 + t, . . . , dρ), t = ∑

d ′
i − ∑

di � 0,

(iv) d ′
i � νi, i = 1, . . . , ρ,

(v) fi+1 = d ′
i , h1 � i � ρ,

h1 = min{i|d ′
i < fi},

(vi)
∑ρ

i=1 d ′
i + ∑n+1

i=1 d(γ ′
i ) = n + 1.

(II)
(o) ρ̄ = ρ̄′ = ρ + 1,

(i) γi = γ ′
i = αi−1, i = 1, . . . , n + 1, α0 = 1,

(ii) d ′
i = di = fi, i = 1, . . . , ρ + 1.

(III)
(o) ρ̄′ = ρ + 1 > ρ̄ = ρ,

(i) γ ′
i = αi−1, i = 1, . . . , n + 1, α0 = 1,

(ii) d ′
i = fi , i = 1, . . . , ρ + 1,

(iii) m � ρ + 1,

where f1 � · · · � fρ+1 are the same as in Theorem 1.

Proof. Necessity: From Theorem 1 it is easy to conclude that in general we have the following
three cases:

1. ρ̄ = ρ̄′ = ρ,

2. ρ̄ = ρ̄′ = ρ + 1,

3. ρ̄′ = ρ + 1 > ρ̄ = ρ.

The case 2 is possible only if our two matrices are feedback equivalent, thus

(i) γi = γ ′
i = αi−1, i = 1, . . . , n + 1, α0 = 1,

(ii) d ′
i = di = fi , i = 1, . . . , ρ + 1,

which are exactly the conditions (II).
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The case 3 implies

(i) γ ′
i = αi−1, i = 1, . . . , n + 1, α0 = 1,

(ii) d ′
i = fi , i = 1, . . . , ρ + 1.

As we can easily conclude that m � ρ + 1, we obtain the condition (III).
So suppose that we have the case 1. Then, the necessity of the conditions (I) follows directly

by unifying the results from Theorems 1 and 4. The only condition that we are left to prove is the
condition (ii) from (I), i.e.

γ ′
1 · · · γ ′

i |γ1 · · · γi, i = 1, . . . , n + 1. (20)

From Theorem 4, we have that

σ(M ′) ⊂ Vη(M)

for all η neighbourhoods of σ(M). Thus we can conclude that σ(M ′) ⊂ σ(M). So, from the
condition (vii) in Theorem 8, we easily obtain the wanted result. �

Remark 2. If a and b are partitions, then

(i) a ∪ b = ā + b̄,

(ii) a ≺ b ⇔ b̄ ≺ ā.

Sufficiency: By Lemma 6 we can assume that
[
A bT C

]
is in its (n, 1)-feedback canonical

form, i.e. we can assume that the matrix M is in the form (13).
The case (II) is trivial. In the case (III), let ε > 0 be arbitrary small. Then adding ε to the zero

at the position (n, n + ρ + 1) of the matrix (13), we obtain the wanted result.
In the case (I), first suppose that νρ � μ1 + 1. By applying Lemmas 6 and 9 we can replace

the matrix M by the matrix M ′ in the form (15). We will prove that we can make small changes
in the last row of M ′ in order to obtain the matrix whose feedback invariants are γ ′

1| · · · |γ ′
n+1 and

d ′
1 � · · · � d ′

ρ .
From the definition of ki , i = 1, . . . , ρ, we have

d1 = ν1 − k1 + k2

d2 = ν2 − k2 + k3

· · ·
dρ = νρ − kρ + μ1 + 1,

k1 = d
(∏

γi∏
αi

)
, with

∏
γi∏
αi

= P , and μ1 + 1 � kρ � · · · � k1 (since di � νi , i = 1, . . . , ρ).

Let P ′ =
∏

γ ′
i∏

αi
. Let k′

1 = d(P ′). From the condition (ii) we have P ′|P , i.e. k1 � k′
1. Further,

define k′
2, . . . , k

′
ρ as follows:

k′
i =

i−1∑
j=1

(d ′
j − νj ) + k′

1, i = 2, . . . , ρ.
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Thus, d ′
1, . . . , d

′
ρ satisfy

d ′
1 = ν1 − k′

1 + k′
2

d ′
2 = ν2 − k′

2 + k′
3

· · ·
d ′
ρ = νρ − k′

ρ + μ1 + 1.

From the conditions (iv) and (iii) of (I), we obtain

μ1 + 1 � k′
ρ � · · · � k′

1,

and

ki � k′
i , i = 1, . . . , ρ.

Let P1 = P , Pi = Pλki−k1 , i = 2, . . . , ρ, and Pρ+1 = Pλμ1+1−k1 . By applying Lemma 5,
we obtain the existence of polynomials Xi , d(Xi) � d(Pi), i = 2, . . . , n, with arbitrary small
coefficients, such that the following equations are valid:

d(gcd(Pρ + Xρ, Pρ+1 + Xρ+1)) = k′
ρ

d(gcd(Pρ−1 + Xρ−1, Pρ + Xρ, Pρ+1 + Xρ+1)) = k′
ρ−1

· · ·
gcd(P1, P2 + X2, . . . , Pρ−1 + Xρ−1, Pρ + Xρ, Pρ+1 + Xρ+1) = P ′.

Write Xi = (−1)(ρ−i)(ε
ki+1
i λki + ε

ki

i λki−1 + · · · + ε2
i λ + ε1

i ), i = 2, . . . , ρ + 1, where ε
j
i ,

i = 2, . . . , ρ + 1, j = 1, . . . , ki + 1, kρ+1 = μ1, are some small numbers. Let εi =[
ε1
i · · · ε

ki

i ε
ki+1
i 0 · · · 0

]
, i = 2, . . . , ρ + 1.

By applying Lemma 7 we have that the controllability indices of the matrix

M
′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N

C(λν1) e1
C(λν2 ) e2

. . .
. . .

C(λνρ ) eρ

C(λμ1) e0
t0 t1 t2 + ε2 · · · tρ + ερ tρ+1 + ερ+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
are the same as the controllability indices of its submatrix L

′
formed by the last n + ρ + 1 − p

columns and the last n + 1 − p rows.
Now, we shall prove that the matrix L

′
, and hence the matrix M

′
, has d ′

1 � · · · � d ′
ρ as the

nonzero column minimal indices.
It is enough to observe Eq. (18), i.e.

P ′
1z1 + P ′

2z2 + · · · + P ′
ρzρ + P ′

ρ+1zρ+1 = 0.

Let i ∈ {1, . . . , ρ}. Observe the set of solutions of the equation

P ′
i zi + P ′

i+1zi+1 + · · · + P ′
ρzρ + P ′

ρ+1zρ+1 = 0 (21)

such that zi /= 0. LetDj = gcd(P ′
j , . . . , P

′
ρ+1),ρ + 1 � j � i. LetP j = P ′

j /Dj ,Qj = Dj+1/Dj ,

ρ � j � i. Obviously, the polynomials P j and Qj are mutually prime for every ρ � j � i.
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Eq. (21) is equivalent to the following one:

P izi = −Qi(P i+1zi+1 + Qi+1(P i+2zi+2 + Qi+2(· · · + Qρ−1(P ρzρ + Qρzρ+1) · · ·))).
(22)

From the definition of P ′
j , ρ + 1 � j � i, we have that d(Dj ) = k′

j and hence d(P j ) =
kj − k′

j , and d(Qj ) = k′
j+1 − k′

j .

Since, gcd(P i, Qi) = 1 and zi /= 0, we have Qi |zi , and hence d(zi) � d(Qi) = k′
i+1 − k′

i .
From (19) we obtain that all the solutions of (21) have the weighted degree greater or equal than
νi + k′

i+1 − k′
i = d ′

i . We are left to prove that there exists a solution of (21) whose weighted
degree is d ′

i . Indeed, let zi = −Qi , and denote yj = P j+1zj+1 + Qj+1(· · · + Qρ−1(P ρzρ +
Qρzρ+1) · · ·)), ρ > j > i, yρ = zρ+1. Then Eq. (21) becomes the following system of equations

P i+1zi+1 + Qi+1yi+1 = P i (23)

and

P j+1zj+1 + Qj+1yj+1 = yj , ρ > j > i. (24)

By Lemma 3 there exists a solution of Eq. (23) such that d(zi+1) � max{d(Qi+1), d(Pi) −
d(P i+1)} and d(yi+1) � max{d(P i+1), d(Pi) − d(Qi+1)}.

The weighted degree corresponding to zi+1 is less or equal than νi+1 + max{d(Qi+1), d(Pi) −
d(P i+1)} = max{νi+1 + k′

i+2 − k′
i+1, νi+1 + ki − k′

i − ki+1 + k′
i+1} � max{d ′

i+1, νi − k′
i +

k′
i+1} = max{d ′

i+1, d
′
i} = d ′

i . The last inequality follows from νi+1 � νi and ki+1 � ki .
Analogously, by Lemma 3, there exist solutions of Eq. (24) such that d(zj+1) � max{d(Qj+1),

d(yj ) − d(P j+1)} andd(yj+1) � max{d(P j+1, d(yj ) − d(Qj+1)}, i < j < ρ. Hence, by induc-
tion we have

d(zj+1)�max

{
d(Qj+1), d(Pj ) − d(P j+1), d(P j−1)

− d(Qj ) − d(P j+1), . . . , d(P i) −
j∑

l=i+1

d(Ql) − d(P j+1)

}
.

Further, for every i � p � j we have that d(P p) − ∑j

l=p+1 d(Ql) − d(P j+1) = kp − k′
p −

(k′
j+1 − k′

p+1) − kj+1 + k′
j+1 � k′

p+1 − k′
p = d(Qp). Hence, the weighted degree correspond-

ing to zj+1 is νj+1 + d(zj+1) � νj+1 + max{d(Qj+1), d(Qj ), . . . , d(Qi)} � max{νj+1 +
k′
j+2 − k′

j+1, νj + k′
j+1 − k′

j , . . . , νi + k′
i+1 − k′

i} = d ′
i .

We are left with proving that d(zρ+1) = d(yρ) � d ′
i . Indeed, from (24) for j = ρ − 1, we

have that d(yρ) � max{d(P ρ), d(yρ−1) − d(Qρ)}. Further, by induction, we obtain d(yρ) �
maxp=i,...,ρ{d(P p) − ∑ρ

l=p+1 d(Ql)} = maxp=i,...,ρ{kp − k′
p − k′

ρ+1 + k′
p+1}, where k′

ρ+1 =
μ1 + 1. Finally, since kp � νp, we have that the weighted degree corresponding to zρ+1 is

μ1 + 1 + d(zρ+1) � maxp=i,...,ρ{νp − k′
p + k′

p+1} = maxp=i,...,ρ{d ′
p} = d ′

i .

The module of all the solutions of Eq. (21), without the constraint zi /= 0, is free, by Corollary
7, and has at most ρ + 1 − i linearly independent solutions, by Lemma 4. Since d ′

1 � · · · � d ′
ρ

Eq. (18) has as the weighted degrees of its linearly independent ρ solutions, d ′
ρ � · · · � d ′

1, and

hence they are the nonzero column minimal indices of the matrix L
′

(and of M
′
).
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Observe now the matrix (15), i.e.[
N 0
X L

]
.

We have that the above matrix is feedback equivalent to the following one:⎡⎢⎢⎢⎢⎢⎢⎣

N

Z

C(P )

C(λd1) e
d1
d1

. . .
. . .

C(λdρ ) e
dρ

dρ

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Z ∈ F(n+1−p)×p, which is further, by applying Lemma 7, feedback equivalent to a matrix of the
form ⎡⎢⎢⎢⎢⎢⎢⎣

N

Ỹ C(P )

C(λd1) e
d1
d1

. . .
. . .

C(λdρ ) e
dρ

dρ

⎤⎥⎥⎥⎥⎥⎥⎦ . (25)

Note that we can do feedback equivalent transformations in order that Ỹ becomes of the form[
0
s

]
, where s = [

s1 · · · sp
]
, for some scalars s1, . . . , sp. By using the result from Theorem

2, i.e. making perturbations on the part s, in the same way as in [3], we finish our proof, since∏
γ ′
i = P

∏
α′

i and the matrix[
N 0
Ỹ C(P )

]
has the same invariant polynomials as the whole matrix (25).

If μ1 + 1 is not the smallest among f1, . . . , fρ+1 then we will repeat the same procedure as
in the proof of Theorem 1 in [9], and reduce to the case when μ1 + 1 is the smallest among
f1, . . . , fρ+1.

Theorem 10. Let η > 0 be arbitrary small. Let ti � 1, i = 1, . . . , v be integers and m′
ij , i =

1, . . . , v, j = 1, . . . , ti be partitions. Let d ′
1 � · · · � d ′

ρ̄′ be positive integers. Let M be the matrix
(1) and let it has γ1| · · · |γn+1 and d1 � · · · � dρ̄ as feedback invariants. Let α1| · · · |αn, μ1, and
ν1 � · · · � νρ be invariant polynomials, minimal index of the first kind and minimal indices of
the second kind, respectively, of the matrix

[
A bT C

]
. Then in every neighbourhood of M

there exists a matrix

M ′ =
[
A bT C

a′ x′ c′
]

such that

(a) σ (M ′) ⊂ Vη(M),

(b) M ′ has ti − 1 eigenvalues μi2, . . . , μiti different from λi in B(λi, η),

m′
i1 = ω(λi, M

′), and m′
ij = ω(μij , M

′), i = 1, . . . , v, j = 2, . . . , ti ,

(c) d ′
1, . . . , d

′
ρ̄′ are the controllability indices of M ′,
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if and only if:

(i) 0 � m′
1k − ω(λi, [A, bT, C]) � 1, i = 1, . . . , v, k = 1, . . . , l(m′

i1),

(ii) 0 � m′
ijk � 1, i = 1, . . . , v, j = 2, . . . , ti , k = 1, . . . , l(m′

ij ),

(iii)
⋃ti

j=1 m′
ij ≺≺ ω(λi, M), i = 1, . . . , v,

(iv) (d ′
1, . . . , d

′
ρ̄′) ≺ (d1 + t, . . . , dρ̄),

(v)
∑ρ̄′

i=1 d ′
i + ∑

i,j m′
ij = n + 1,

(vi) one of the following conditions is satisfied:
(a) ρ̄ = ρ̄′ = ρ,

d ′
i � νi, i ∈ {1, . . . , ρ},

fi+1 = d ′
i , h1 � i � ρ,

h1 = min{i|d ′
i < fi},

(b) ρ̄ = ρ̄′ = ρ + 1,

d ′
i = di = fi, i = 1, . . . , ρ + 1,

(c) ρ̄′ = ρ + 1 > ρ̄ = ρ,

d ′
i = fi, i = 1, . . . , ρ + 1,

m � ρ + 1,

where f1, . . . , fρ+l are the same as in Theorem 1.

Proof. The necessity is trivial to prove, calling the previous results.
For the sufficiency observe that if one of conditions (vi) (b) or (c) is satisfied then like in

Theorem 9, we can trivially finish the proof.
If we have (vi) (a), then the proof goes similarly as the proof in [3]. Indeed, let m̃i =⋃ti

j=1 m′
ij , and ñi = m̃i , i = 1, . . . , v. Define polynomials γ̃1 = ∏v

i=1 (λ − λi)
ñi,n+1 , . . . , γ̃n+1 =∏v

i=1 (λ − λi)
ñi,1 .

It is not hard to verify that γ̃1| · · · |γ̃n+1 and d ′
1 � · · · � d ′

ρ satisfy the conditions from
Theorem 9. Thus, for given ε > 0, there exists M̃ ∈ B(M, ε

2 ) such that γ̃1| · · · |γ̃n and d ′
1 � · · · d ′

ρ

are its feedback invariants.
Like in [3], the matrix λ

[
I 0

] − M̃ is equivalent to the matrix[
diag(I, M̃(λ)) 0

]
,

where

M̃(λ) =

⎡⎢⎢⎢⎣
α1

. . .
αn

y1 · · · yn a1 · · · aρ+1

⎤⎥⎥⎥⎦ .

Denote by P̃ ′ the greatest common divisor of the polynomials a1, . . . , aρ+1. Obviously P̃ ′ =
∏

γ̃i∏
αi

.

So, (as in [3]) P̃ ′ = (λ − λ1)
c1 · · · (λ − λv)

cv where ci = m(λi, M) − m(λi, [A b C]) � 0.

If ci /= 0 and ti � 2, for some i ∈ {1, . . . , v} we will change each of nij factors (λ − λi), of
the polynomial P̃ ′, to (λ − λi − εij ), j = 2, . . . , ti , where εij are arbitrary small. Denote by P ′
the obtained polynomial. Obviously, it is close to P̃ ′.
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In fact, we have

a1 = P + X1 = P̃ ′A1

a2 = λk2−k1P + X2 = P̃ ′A2

· · ·
aρ = λkρ−k1P + Xρ = P̃ ′Aρ

aρ+1 = λμ1+1−k1P + Xρ+1 = P̃ ′Aρ+1,

where gcd(A1, . . . , Aρ+1) = 1 and P =
∏

γi∏
αi

. Since P ′ is close to P̃ ′, there exist polynomials

X′
i , i = 1, . . . , ρ + 1 with small coefficients, such that

P + X′
1 = a′

1 = P ′A1

λk2−k1P + X′
2 = a′

2 = P ′A2

· · ·
λkρ−k1P + X′

ρ = a′
ρ = P ′Aρ

λμ1+1−k1P + X′
ρ+1 = a′

ρ+1 = P ′Aρ+1.

In this way we have obtained a matrix M ′ ∈ B(M, ε) by putting the appropriate coefficients of Xi

as ε
j
i in M ′ (M ′ ∈ B(M̃, ε

2 )). Like in [3] we can conclude that the matrix M ′ has m′
ij , i = 1, . . . , v,

j = 1, . . . , ti as Weyr characteristics. Finally, since our Eq. (18) is left unchanged, M ′ has d ′
i ,

i = 1, . . . , ρ, as controllability indices, as wanted. �
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