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Blockade of receptor for advanced glycation end product attenuates
pulmonary reperfusion injury in mice

David I. Sternberg, MD,a Ram Gowda, BS,a Divya Mehra, BA,a Wu Qu, BA,a Alan Weinberg, MS,a William Twaddell, MD,c

Joydeep Sarkar, BS,a Allison Wallace, PhD,b Barry Hudson, PhD,a Frank D’Ovidio, MD, PhD,a Selim Arcasoy, MD,b

Ravichandran Ramasamy, PhD,a Jeanine D’Armiento, MD, PhD,b Ann Marie Schmidt, MD,a and Joshua R. Sonett, MDa

Objective: The receptor for advanced glycation end products (RAGE) is expressed at high levels in the lung,

particularly in type 1 alveolar cells, and has been shown to amplify injury triggered by acute stress. Previous stud-

ies suggest serum concentrations of soluble RAGE increase during pulmonary reperfusion injury after transplan-

tation. RAGE blockade has been shown to suppress hepatic and cardiac ischemia and reperfusion injury in mice.

Thus we tested the hypothesis that RAGE mediates tissue-injury mechanisms in ischemia and reperfusion injury

in the lung.

Methods: C57BL/6 mice were subjected to 30 minutes of pulmonary ischemia by clamping the left hilum, fol-

lowed by 60 minutes of reperfusion. Lung function was assessed by means of blood gas analysis, and capillary

leak was assessed by injecting fluorescein isothiocyanate–labeled albumin and comparing fluorescence in bron-

chial lavage fluid with that in serum. Histologic analysis of the lung was performed by a pathologist naive to the

experimental conditions.

Results: In animals subjected to RAGE blockade, significant increases in PO2 (108 vs 73 mm Hg, P¼ .0094) and

more than 3-fold decrease in capillary leak Relative Fluorescent Units (RFU, 6.12 vs 1.75; P ¼ .001) were ob-

served. Histologic examination revealed significant injury reduction in soluble RAGE-treated animals versus con-

trol animals. RAGE knockout mice exhibited a protected phenotype when exposed to pulmonary ischemia and

reperfusion. Additionally, interleukin 8 production and nuclear factor kB activation were increased in control

mice.

Conclusion: Abrogation of RAGE signaling attenuates pulmonary ischemia and reperfusion injury. This study

suggests that RAGE might play a central role in pulmonary reperfusion injury and in transplantation and that

blockade of RAGE might offer a potential target to abrogate pulmonary reperfusion injury in clinical transplan-

tation.
Primary graft dysfunction (PGD) represents a significant

source of postoperative morbidity after lung transplanta-

tion.1 It is the most common cause of early death after trans-

plantation and, when diagnosed in severe forms, strongly

correlates with increased duration of mechanical ventilation,

as well as both intensive care unit and hospital lengths of

stay.2-4 Patients who have severe PGD are more likely to

have diminished forced expiratory volume in 1 second

values and functional capacity and reduced overall rejec-

tion-free and total survival.5,6 Strong evidence suggests

a direct relationship between pulmonary ischemia and reper-

fusion injury (IR) and PGD.3,7-12 Therefore pathways that
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play key regulatory roles in the propagation of inflammatory

signals are putative targets of therapeutic interest.

The receptor for advanced glycation end products

(RAGE) is both a marker of type 1 alveolar epithelial cell in-

jury and a key early regulator of inflammation.13-15 RAGE is

a multiligand, immunoglobulin-type transmembrane recep-

tor. Under basal conditions, RAGE is expressed at low levels

on a range of cell types but at much higher levels on the ba-

solateral surface of type 1 alveolar epithelial cells.16-19

RAGE plays critical regulatory roles early in inflammatory

signaling cascades that lead to endothelial dysfunction, cap-

illary permeability, and vascular inflammation. Recent work

has elucidated a possible link between RAGE and pulmo-

nary IR. Human lungs with diminished airway fluid clear-

ance are reported to have increased perfusate levels of

soluble RAGE (sRAGE) on an ex vivo preservation cir-

cuit.20 Serum and lavage concentrations of sRAGE are in-

creased during acid and lipopolysaccharide-induced lung

injury in the rat.13 Additionally, lung transplant recipients

with higher serum concentrations of sRAGE are more likely

to have increased duration of mechanical ventilation and

length of stay in the intensive care unit.13,21

However, little is known about the status of the RAGE

signaling axis, its role, and its overall importance in
rgery c December 2008
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Abbreviations and Acronyms
AGE ¼ advanced glycation end product

ELISA ¼ enzyme-linked immunosorbent assay

HMGB1 ¼ high-mobility group box-1

IR ¼ ischemia and reperfusion injury

MG ¼ methylglyoxal

NF ¼ nuclear factor

PCR ¼ polymerase chain reaction

PGD ¼ primary graft dysfunction

RAGE ¼ receptor for advanced glycation end

products

sRAGE ¼ soluble receptor for advanced glycation

end products

pulmonary IR. We therefore hypothesized that the RAGE

pathway could have functional importance in this system.

In this article we report our efforts to characterize the biol-

ogy of the RAGE axis in a murine model of pulmonary is-

chemia and reperfusion and to determine its importance by

antagonizing RAGE signaling and by analysis of RAGE-

deficient mice.

MATERIALS AND METHODS
Animal Model

Approximately 8- to 10-week-old C57BL6J male mice (Jackson Labs,

Bar Harbor, Me) were divided into 4 groups: group 1, sham-treated group

(negative control); group 2, vehicle saline–treated group (positive control);

group 3, soluble RAGE-treated group (experimental group); and group 4,

RAGE-null group. Group 1 sham animals underwent tracheostomy and bi-

lateral thoracotomy but no ischemia or reperfusion. After thoracotomy,

blood gas, lavage, serum, and tissue samples were obtained as the animal

was killed. Group 2 (vehicle saline-injected positive control), group 3

(sRAGE-treated experimental group), and group 4 (RAGE-null group) an-

imals underwent ischemia and reperfusion, as described below. Only group

3 animals received a preoperative injection of sRAGE. Group 2 (vehicle sa-

line) and group 4 (RAGE null) animals underwent preoperative injection of

vehicle saline.

sRAGE is a ligand decoy that traps putative molecules with a suitable

epitope, such as members of the advanced glycation end product (AGE)

family, and prevents interaction with the receptor, thus blocking RAGE sig-

naling. sRAGE was prepared in a baculovirus expression system with Sf9

cells (Clontech, Palo Alto, Calif). The final material was purified to homo-

geneity and devoid of lipopolysaccharide, as previously described.22

RAGE-null mice were used for functional studies, including blood gas

and capillary leak analysis. RAGE-null mice were backcrossed onto the

C57Bl/6 background and exhibit normal reproductive capacity, physical fit-

ness, and overall phenotype under nominal conditions but attenuated RAGE

signaling when vascular inflammation is induced.23

One hour before the operation, the indicated animals received an intra-

peritoneal injection of 100 mg of sRAGE in 0.1 mL of PBS or an equivalent

volume of vehicle saline. Approximately 15 minutes before incision, each

animal received 20 U of subcutaneous heparin in 1 mL of PBS. Induction

of anesthesia was achieved with buprenorphine (0.05 mg/kg) and 3% iso-

flurane delivered through a nose cone and maintained with 1% to 2.5% iso-

flurane and verified by means of tail pinch every 15 minutes. After shaving

and prepping each animal with ethyl alcohol, a tracheostomy was per-

formed, and each animal was placed on a Harvard Mouse Ventilator
The Journal of Thoracic and Ca
(Harvard Biosciences, Holliston, Mass) through a 20-gauge angiocatheter

(respiratory rate, 120 beats/min; fraction of inspired oxygen, 0.21; tidal vol-

ume, 0.5 mL). Bilateral anterolateral thoracotomies were performed through

the fourth intercostal space, and the chest wall was retracted with 4-0 silk

stay sutures. The left pulmonary hilum was then crossclamped, and the tidal

volume was reduced to 0.25 mL for a 30-minute period. After the period of

warm ischemia elapsed, the clamp was removed, ventilation with 0.5 mL/

breath resumed, and an additional 1 mL of warmed PBS was delivered

into the peritoneal cavity immediately and then every 60 minutes. After

a 60- or 120-minute period of reperfusion, terminal phlebotomy of arterial

blood from the left ventricle was performed for immediate analysis with

the iSTAT blood gas analyzer (Abbott, East Windsor, NJ). The periods of

ischemia and reperfusion were sometimes extended to suit experimental

conditions or to confirm experimental findings. For example, this was

done for histologic analyses in which more significant injury was needed.

The entire left lung was then either flash-frozen in liquid nitrogen for bio-

chemical analysis or insufflated with 20 cm of column pressure and fixed

with 10% formaldehyde for histologic analysis.

Capillary Leak
Pulmonary edema is assessed by measuring leak of fluorescein isothio-

cyanate–labeled albumin into the lungs normalized against fluorescent ac-

tivity in serum. Briefly, 0.15 mg of fluorescein isothiocyanate–labeled

albumin was injected into the tail vein 1 hour before the operation. After

blood gas analysis, 0.5 mL of blood was withdrawn from the left ventricle.

Both lungs were lavaged with 2 mL of PBS in 1-mL aliquots. Fluorescent

activity of lavage fluid is normalized against diluted serum from each animal

with a Bio-Rad Fluorimeter (Bio-Rad, Hercules Calif).

Real-time Polymerase Chain Reaction (RAGE and
Interleukin 8)

Total RNA from 30 mg of lung tissue was extracted with the Qiagen

RNeasy Mini Kit (Qiagen, Inc, Valencia, Calif), according to the manufac-

turer’s protocol. Reverse transcription was performed with the use of the

High-Capacity cDNA Archive Kit (Applied Biosystems, Foster City, Calif).

The reactions were carried out in a volume of 100 mL containing approxi-

mately 15 mg of RNA. The resulting cDNA was used as a template in the sub-

sequent polymerase chain reaction (PCR). Expression levels for RAGE and

interleukin 8 were quantified by means of real-time PCR, which was per-

formed with the ABI Prism 7900HT Sequence Detection System (Applied

Biosystems). The reactions were performed in a total volume of 20 mL con-

taining 1 mL of the prepared cDNA template, 10 mL of 23 Taqman Universal

Master Mix (Applied Biosystems), and 1 mL of 203 solution containing spe-

cific primers and probe. Each sample was run in triplicate. b-Actin was used

as the housekeeping gene. The data were quantified by using the compara-

tive Ct method that reported the expressions relative to 3 sham samples in-

cluded as housekeeping controls in each real-time PCR experiment.

Western Blotting (RAGE, S100, and High-mobility
Group Box-1)

Lung samples were homogenized in equal volumes of cell lysis buffer

(Cell Signaling, Danvers, Mass) on ice. After 3 cycles of sonication and cen-

trifugation, the cell lysate was separated on a 10% acrylamide gel at 100 V

and transferred to a nitrocellulose membrane in standard fashion. The

membranes was then washed, blocked (5% bovine serum albumin or

milk, Tris-buffered 0.1% triton containing saline solution) and then incu-

bated with either goat anti-mouse RAGE, rabbit anti-mouse S100 (Abcam,

Cambridge, Mass), or rabbit anti-mouse high-mobility group box-1

(HMGB1) IgGs (BD PharMingen, Franklin Lakes, NJ) per the manufac-

turer’s protocol. The membranes were washed again, labeled with horserad-

ish peroxidase–labeled secondary antibody in blocking solution, developed

in a chemiluminescent detection kit (Pierce, Rockford, Ill), and exposed on

Kodak film (Rochester, NY).
rdiovascular Surgery c Volume 136, Number 6 1577
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Histology
For histologic analysis, all animals underwent an extended 60-minute pe-

riod of warm ischemia, followed by an extended 120 minutes of reperfusion.

This was done to amplify the degree of injury to suit the experimental con-

ditions needed for histologic analyses. The animals were closely monitored,

volume resuscitated every 60 minutes with 1 mL of warmed intraperitoneal

saline, and censored from the study if premature cardiac arrest was encoun-

tered. After the 120-minute reperfusion period was complete, the lungs were

excised, insufflated with 20 cm of column pressure of 10% formaldehyde,

and fixed. After routine histologic processing in paraffin blocks, hematoxy-

lin and eosin–stained sections were prepared and then scored by a blinded

pathologist in 4 categories on a scale of 0 (no injury) to 4 (most severe in-

jury): capillary congestion, hemorrhage, edema, and inflammation. After

scoring was complete, the total numeric score was tabulated by summing

all categories for each specimen, and the scores were then tested for signif-

icance by means of analysis of variance.

Methylglyoxal
Methylglyoxal (MG) was measured in the neutralized perchloric acid ex-

tracts of hearts by means of high-performance liquid chromatographic

methods, according to previously published procedures.24,25

Nuclear Factor kB and KC Enzyme-linked
Immunosorbent Assay

Nuclear protein was extracted from 40 mg of lung tissue by using the

Pierce NE-PER Nuclear and Cytoplasmic Extraction Reagents (Pierce Bio-

technology). Nuclear factor (NF) kB activity was then determined in the nu-

clear protein by using the TransAM NF-kB enzyme-linked immunosorbent

assay (ELISA) kit (Active Motif, Carlsbad, Calif), according to the manu-

facturer’s protocol, with approximately 12 mg of nuclear extract per well.

The concentration of mouse KC was determined in the protein samples

by using the Quantikine Mouse KC kit (R&D Systems, Minneapolis, Minn),

according to the manufacturer’s protocol. Approximately 40 mg of total pro-

tein, prepared as directed by manufacturer protocol, was used per well. Both

the NF-kB and KC ELISA kits were then scored on a Tecan Sunrise Plate

Spectrophotometer (Tecan Co, Durham, NC).

Statistical Methods
In all cases the mean � standard error of the mean is shown. A 1-way

analysis of variance was performed to analyze the results of all the experi-

ments. If the F test resulted in a P value of less than .05, multiple compar-

isons were made by means of Tukey’s pairwise testing, which conserves the

overall type I error of .05. All data were analyzed with SAS system software

(SAS Institute, Inc, Cary, NC).

Ethical Guidelines
All animals were housed, cared for, and treated in compliance with

guidelines stipulated in the ‘‘Guide for the care and use of laboratory ani-

mals’’ and by the Institutional Animal Care and Use Committee, which ap-

proved and supervised this project. Funding agencies did not participate in

data analysis or manuscript preparation.

RESULTS
RAGE and Its Ligands in Pulmonary IR

Expression of RAGE mRNA transcripts in lung tissue

was assessed through real-time PCR after 30 minutes of is-

chemia and 60 minutes of reperfusion (Figure 1, A). Com-

pared with sham-treated animals, an approximately 45%
reduction in RAGE transcripts was observed in animals

undergoing IR in the presence of vehicle (P ¼ .03), and an
1578 The Journal of Thoracic and Cardiovascular S
approximately 64% reduction in sRAGE-treated animals

was seen compared with that seen in sham-treated animals

(P ¼ .001). In parallel with these changes in RAGE tran-

scripts, expression of RAGE protein, as determined after

30 minutes of ischemia and 60 minutes of reperfusion

through Western blot analysis, revealed an approximately

27% reduction of RAGE protein in vehicle-treated animals

(P ¼ .02) and an approximately 52% reduction in levels in

sRAGE-treated animals after reperfusion compared with

that seen in the sham-treated group (P ¼ .0001; Figure 1,

B and C). Trends observed between the sRAGE- and vehi-

cle-treated groups that underwent surgical intervention did

not reach statistical significance at the transcript (P ¼ .19)

or protein (P ¼ .31) level.

To further assess the status of the RAGE axis, we tested

the levels of the RAGE ligands. We first analyzed the

AGE axis and focused on measurement of MG, a key pre-

AGE and a highly cytotoxic a-oxoaldehyde, the production

of which is enhanced by hyperglycemia, inflammatory in-

jury, and severe oxidative stress (Figure 1, D).26 MG is

highly reactive with proteins and leads to the formation of

multiple AGEs, which stimulate and upregulate the RAGE

pathway.27,28 We measured MG levels in the lung tissue

both after 30 minutes of ischemia and again after 60 minutes

of reperfusion. MG levels were significantly increased in

lung homogenates of control vehicle–treated animals under-

going IR compared with those seen in sRAGE–treated ani-

mals or sham-treated animals after ischemia (11.6 vs 3.6

mg/mL, P ¼ .04). However, no differences in MG levels

were seen after reperfusion (data not shown).

Members of the S100/calgranulin proteins are intracellu-

lar calcium-binding proteins that are released by cells,

such as stimulated macrophages, leukocytes, and lympho-

cytes, where they can bind RAGE, inducing RAGE signal-

ing in an autocrine or paracrine manner.29 Increased levels

of neutrophil-derived S100 have also been detected in pul-

monary lavage fluid and lung parenchyma during acute

lung injury.30 Amphoterin/HMGB1 is an intracellular

DNA binding protein that is secreted by stimulated cells,

such as macrophages, and also binds and upregulates the

RAGE axis.31 We therefore measured both S100 (Figure 1,

E and F) and HMGB1 (Figure 1, G and H) protein levels by

means of Western blotting after 30 minutes of ischemia and

60 minutes of reperfusion injury. Compared with sham ani-

mals, there were no significant differences in levels of S100

or HMGB1 in vehicle- or sRAGE-treated mice (P> .5).

Functional Studies
To test the potential effect of RAGE blockade on the func-

tional capacity of the lungs, we used multiple methodolo-

gies. First, blood oxygen concentration was determined by

means of routine arterial blood gas analysis performed on

left ventricular blood immediately after reperfusion. Ani-

mals undergoing sham operations displayed a mean PO2 of
urgery c December 2008
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approximately 137 � 5 mm Hg. After 30 minutes of ische-

mia and 60 minutes of reperfusion, the PO2 in vehicle-treated

animals (73 � 8 mm Hg) was significantly lower than that

seen in sRAGE-treated animals (108 � 9 mm Hg, P ¼
.0094) or RAGE-null mice (109� 7 mm Hg, P¼ .003; Fig-

ure 2, A). Oxygenation was also evaluated after 30 minutes

of ischemia, with reperfusion extended to 120 minutes. The

PO2 in vehicle-treated animals after 120 minutes (66� 9 mm

Hg) was significantly lower than that seen in sRAGE-treated

mice (94 � 8 mm Hg, P ¼ .003; Figure 2, B). Furthermore,

we extended ischemia to 60 minutes and reperfusion to 120

minutes and remeasured oxygenation. Vehicle-treated ani-

mals exhibited a lower mean PO2 (56� 6 mm Hg) compared

with sRAGE-treated animals (102 � 8 mm Hg, P ¼ .0001).

The blood gases for each experimental group are shown in

Table 1. Significant differences were only observed for

PO2 and oxygen saturation but not for pH, PCO2, or HCO3

levels.

Pathologic analyses have established vascular permeabil-

ity as a central characteristic finding of acute lung injury. We

evaluated the protein permeability of the respiratory mem-

brane by injecting fluorescein-labeled albumin into the tail

vein before surgical intervention and then measuring the

fluorescent intensity of alveolar lavage fluid normalized to

serum (Figure 2, C). After 30 minutes of ischemia and 60

minutes of reperfusion, alveolar lavage fluorescent intensity

was approximately 6.1-fold higher in vehicle-treated ani-

mals but only approximately 1.7-fold higher in sRAGE-

treated animals compared with that seen in mice subjected

to sham operations (P<.001). Measurement of lavage fluo-

rescent intensity after 30 minutes of ischemia and 120 min-

utes of reperfusion demonstrated significantly higher levels

in vehicle-treated animals (approximately 4.9-fold) than

seen in sRAGE-treated animals (approximately 1.9-fold,

P ¼ .03) or RAGE-null mice (approximately 1.5-fold, P ¼
.02; Figure 2, D).

Histology
Hematoxylin and eosin–prepared specimens were pre-

pared from murine lungs after 60 minutes of ischemia and

120 minutes of reperfusion (Figure 3, A). Each specimen

was scored from 0 (no injury) to 4 (most severe injury) on

each of 4 axes, as described above. Vehicle-treated animals

demonstrated significantly greater histologic injury (mean

score, 6.3) versus that seen in sRAGE-treated animals

(mean score, 4.8; P¼ .01), RAGE-null animals (mean score,

5.2; P¼ .03), or sham-treated animals (mean score, 4.5; P¼
.007). Figure 3, B and C, shows representative sections from
1580 The Journal of Thoracic and Cardiovascular Su
sRAGE- and vehicle saline–treated mice after 60 minutes of

ischemia and 120 minutes of reperfusion.

Interleukin 8 and KC protein
Interleukin 8, a proinflammatory cytokine with a profound

chemotactic effect on neutrophils, is a marker of pulmonary

reperfusion injury.32 Increased posttransplantation levels of

interleukin 8 correlate well with poor oxygenation, increased

airway pressures, decreased APACHE scores, and decreased

patient survival.32 We therefore measured interleukin 8,

transcripts as well the murine protein homolog of interleukin

8, KC protein, in our model of reperfusion injury with and

without sRAGE antagonism (Figure 4).33,34 After 30 min-

utes of ischemia and 60 minutes of reperfusion, vehicle-

treated animals displayed approximately 31.5 times higher

interleukin 8 transcripts than sham-treated animals. In con-

trast, sRAGE-treated animals exhibited only a 13.8-fold in-

crease (P ¼ .02). Analysis of KC protein content by means

of ELISA in lung homogenates demonstrated a statistically

significant increase in vehicle-treated animals (444.5 pg/

mL) compared with that seen in sRAGE-treated mice

(171.5 pg/mL, P ¼ .02) or sham-treated animals (43.7 pg/

mL, P ¼ .008).

NF-kB
NF-kB is a ubiquitous transcription factor that is activated

by a large variety of stimuli, including hypoxia and ische-

mia. When activated, subunits of NF-kB relocate into the

nucleus and upregulate a variety of genes that together coor-

dinate the inflammatory response.35 Previous studies

revealed that inhibition of NF-kB activation and nuclear

localization have been shown to attenuate the severity of

pulmonary reperfusion injury in a porcine model.36 Thus

to discern the potential effect of RAGE on NF-kB activation

in this murine model, we measured activated NF-kB in nu-

clear preparations of lung homogenates after 30 minutes of

ischemia and 60 minutes of reperfusion. An increase in acti-

vated NF-kB levels was observed in vehicle-treated animals

compared with that seen in the sRAGE-treated (P¼ .004) or

sham-treated (P ¼ .01) groups (Figure 5).

DISCUSSION
In human subjects PGD is characterized by endothelial

dysfunction, loss of the alveolar boundary, and leukocytic

infiltration.20,37,38 Strong evidence suggests the inciting

event for this process occurs during pulmonary reperfu-

sion.3,7-12 An activated and dysfunctional pulmonary endo-

thelial surface promotes platelet margination, sequestration,
FIGURE 1. Left lung tissue was retrieved at the indicated time points and prepared for analyses. A, Real-time polymerase chain reaction analysis of receptor

for advanced glycation end products (RAGE) transcript after reperfusion injury (n ¼ 8). B and C, Western blot analysis of RAGE protein after ischemia and

reperfusion (n ¼ 9). D, Methylglyoxal concentration after 30 minutes of ischemia (n ¼ 5). E and F, Western blot analysis of S100 (n ¼ 6, P>.5). G and H,

Western blot analysis of high-mobility group box-1 (HMG1; n¼ 6, P>.5). sRAGE, Soluble receptor for advanced glycation end products; I/R, ischemia and

reperfusion injury.
rgery c December 2008
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FIGURE 2. Analyses of pulmonary function. A and B, Oxygenation is measured after reperfusion by means of blood gas analysis at 2 time points:

60 minutes (n ¼ 13) and 120 minutes (n ¼ 17). C and D, Capillary leak data were measured after 60 minutes (n ¼ 7) and 120 minutes of reperfusion

(n ¼ 7). RAGE, Receptor for advanced glycation end products; sRAGE, soluble receptor for advanced glycation end products; I/R, ischemia and re-

perfusion injury.
T
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and stimulation of complement activation, thus exacerbating

local tissue injury caused by hypoxia, cold storage, and later

reactive oxygen metabolites.39-44 Recruited neutrophils re-

lease TNF-a, as well as other chemokines, and contribute

to a more sustained injury that is thought to peak several

hours after reperfusion commences.45,46 A local proinflam-

matory state, similar to that of acute respiratory distress syn-

TABLE 1. Arterial Blood Gas Analysis

pH PCO2 PO2 HCO3�
Oxygen

saturation

Sham 7.35 � 0.03 28.3 � 3.1 137 � 5 14.5 � 0.8 99 � 0.1

Vehicle

saline

7.32 � 0.03 31.4 � 4.0 73 � 8 15.4 � 1.0 90 � 3

sRAGE

treated

7.30 � 0.02 30.7 � 2.3 108 � 9 15 � 0.6 96 � 1.5

RAGE null 7.34 � 0.03 25.2 � 3.4 109 � 7 14.5 � 1.1 96 � 1.1

P value .65 .53 <.001 .86 .03

sRAGE, Soluble receptor for advanced glycation end products; RAGE, receptor for ad-

vanced glycation end products.
The Journal of Thoracic and Ca
drome, is achieved that causes type 1 alveolar epithelial cell

dysfunction and results in diminished alveolar space fluid

clearance.20

RAGE is both a marker of type I alveolar epithelial cell

injury and a key early regulator of inflammation.13-15

RAGE is a multiligand, immunoglobulin-type transmem-

brane receptor that is widely expressed on endothelial and

inflammatory cell surfaces and at particularly high concen-

trations on the basolateral surface of type 1 alveolar

cells.16-19 RAGE plays a critical role in inflammatory cas-

cades that lead to endothelial dysfunction and capillary per-

meability. The first RAGE ligand families include AGEs, the

products of nonenzymatic glycation and oxidation of pro-

teins that accumulate during diabetes, aging, renal failure,

oxidative stress, and neurodegeneration. RAGE was also

found to be a signal transduction receptor for S100/calgranu-

lins and HMGB1 ligands, which are proinflammatory

cytokines secreted by activated macrophages.29,31,47,48

RAGE–ligand interaction can stimulate diverse signaling
rdiovascular Surgery c Volume 136, Number 6 1581
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FIGURE 3. Severity of histologic injury is scored by a pathologist naive to the experimental conditions on a scale from 0 (no injury) to 4 (most severe injury)

along 4 categories (capillary congestion, hemorrhage, edema, and inflammation) after 60 minutes of ischemia and 120 minutes of reperfusion. Scores were

then summed for each animal (n¼ 8). B and C, Representative hematoxylin and eosin (H & E; original magnification 203) stain of vehicle saline–treated (B)

and soluble receptor for advanced glycation end products (sRAGE)–treated (C) lung demonstrating increased edema and inflammatory response after 60 min-

utes of ischemia and 120 minutes of reperfusion. I/R, Ischemia and reperfusion injury.
pathways, such as Janus kinase/signal transducer and activa-

tor of transcription, p44/p42, p38, SAP/c-Jun N-terminal ki-

nase, and mitogen-activated protein kinases, and yield

nuclear localization of NF-kB and thereby proinflammatory

phenotypes.49-52

In this article we have shown that pharmacologic antago-

nism or genetic deletion of RAGE attenuates pulmonary re-

perfusion injury in a murine model. We have shown that

oxygenation, capillary leakage, and histologic injury all im-

proved in animals pretreated with the RAGE ligand decoy

sRAGE. RAGE was a critical target of ligand-mediated in-

jury because RAGE-null mice also did not have pulmonary

reperfusion injury. Previous reports have suggested RAGE

involvement in IR because lavage and serum levels of

sRAGE were increased in this setting and because concen-

tration correlated with clinical outcome. However, to our

knowledge, this is the first report that functional blockade

of the RAGE axis attenuates or prevents reperfusion injury,

thus establishing the RAGE pathway as important in the de-

velopment of reperfusion injury.

We also studied the biology of the RAGE axis in a murine

model of reperfusion injury. We were surprised to discover
1582 The Journal of Thoracic and Cardiovascular Su
decreased quantities of RAGE transcript and protein because

RAGE is typically upregulated at sites of chronic inflamma-

tory injury.53 However, these findings might highlight spe-

cific and unique aspects of the biology of RAGE in the

lung. For example, RAGE is normally expressed at low

levels in most organs and upregulated during inflammatory

injury. In the lung, in contrast, baseline RAGE expression

increases with age from birth to high levels in adulthood

and might be downregulated in response to certain specific

stimuli.17,54,55 For example, exposure to hyperoxic atmo-

spheres causes downregulation of pulmonary RAGE in the

rat.55 Additionally downregulation of RAGE protein sup-

ports the growth and metastasis of pulmonary carcinoma.56

Other reports, however, suggest upregulation of RAGE

might occur in response to inflammatory stimuli in the

lung, such as exposure to cigarette smoke or chronic pneu-

monia.57 One possibility is that these diverse injuries cause

severe damage and/or loss of the RAGE-expressing type 1

alveolar epithelial cells. Alternatively, these injuries might

stimulate diverse changes in gene expression in these cells,

including downregulation of RAGE. Because the reports

all use different models of lung injury (eg, cigarette smoke,
rgery c December 2008
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endotoxin, acid, and hypoxia), generalization of the RAGE

protein regulation during pulmonary injury might not be

possible at this time. Scrutiny of the concentration of

sRAGE in various disease states has also not been consistent

to date.58 A variety of reports document increases in sRAGE

concentrations in diabetic vasculopathy, chronic kidney dis-

ease, and acid-injured lungs.13,59,60 Other reports, however,

suggest a decreased concentration of sRAGE in hyperten-

sion, Alzheimer’s disease, and coronary artery disease.61-63

Because the disease states and respective mechanisms vary

significantly, it is perhaps too early to draw clear conclusions.

Clearly, the biology of the RAGE axis in the lung is complex

and warrants further investigation.

MG is a highly reactive metabolite that is formed by con-

ditions created by high oxidative stress and catalyzes the for-

mation of AGEs.64 Although the tissue MG level is normally

tightly regulated, MG concentrations increased during ische-

mia but rapidly normalized during reperfusion. This is con-

FIGURE 4. Left lung tissue was retrieved at the indicated time points and

prepared for analyses. A, Real-time polymerase chain reaction analysis of

interleukin 8 transcript after 30 minutes of ischemia and 60 minutes of re-

perfusion (n ¼ 9). B, Enzyme-linked immunosorbent assay detection of

KC protein (interleukin 8 murine homologue) after 30 minutes of ischemia

and 60 minutes of reperfusion (n ¼ 10). sRAGE, Soluble receptor for ad-

vanced glycation end products; I/R, ischemia and reperfusion injury.
The Journal of Thoracic and C
sistent with the highly active pulmonary glyoxalase system,

which rapidly and efficiently disposes of MG, preventing fa-

tal accumulation of this toxic compound. We also investi-

gated 2 distinct proinflammatory RAGE ligands, HMGB1

and S100. Unlike AGEs, in this specific model we were un-

able to detect changes in protein levels of these RAGE li-

gands. However, there are a number of putative AGE

ligands that might be operative during pulmonary reperfu-

sion injury, and further work is needed to identify the spe-

cific molecule or molecules interacting with RAGE during

pulmonary IR.

Interleukin 8 and NF-kB were also studied to determine

the interaction of the RAGE axis with other key modulators

and markers of pulmonary IR. Increased posttransplantation

levels of interleukin 8 correlate well with poor oxygenation,

increased airway pressures, decreased APACHE score, and

decreased patient survival.32 In our model interruption of

RAGE signaling resulted in reduced interleukin 8 transcripts

and its murine protein homolog, KC, when compared with

levels seen in vehicle-treated animals. Concentrations of ac-

tivated NF-kB in nuclear preparations of lung homogenate

were also reduced in sRAGE-treated animals. Increases in

interleukin 8 and nuclear NF-kB levels and histologic injury

suggest that RAGE signaling precedes recruitment of the in-

flammatory infiltrate. This is consistent with the established

role of RAGE in the early amplification of inflammatory

signals.

In summary, we report that RAGE signaling blockade

prevents the development of pulmonary reperfusion injury

in a murine model. The high incidence and often great sever-

ity of pulmonary IR increases morbidity, limits patient sur-

vival, and limits optimal patient outcomes, severely

hampering the wider application of lung transplantation in

patients with end-stage respiratory failure. The absence of

FIGURE 5. Left lung tissue was retrieved at the indicated time points and

prepared for analysis of activated nuclear factor kB. Activated nuclear factor

kB measured by means of enzyme-linked immunosorbent assay in nuclear

preparations after 30 minutes of ischemia and 60 of minutes reperfusion

(n ¼ 11). sRAGE, Soluble receptor for advanced glycation end products;

I/R, ischemia and reperfusion injury.
ardiovascular Surgery c Volume 136, Number 6 1583
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alternative, clinically viable therapeutic solutions for pa-

tients with end-stage lung disease mandates further work

to elucidate the importance of RAGE signaling in human

pulmonary IR.
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