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Abstract

We derive a QCD sum rule for the flavour-singlet axial coupling constantg
(0)
A from a two-point correlation function of flavou

singlet axial vector currents in a one-nucleon state. In evaluating the correlation function by an operator product expa
take into account the terms up to dimension 6. This correlation function receives an additional two-loop diagram which come

from an (anti-)instanton. If we do not include it,g
(0)
A is estimated to be 0.8. However, the additional diagram due to insta

contributes negatively and reducesg
(0)
A towards the experimental value.

 2004 Elsevier B.V.

PACS:14.20.Dh; 13.40.-f; 12.38.Lg
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Axial coupling constants are defined by nucleon matrix elements of axial currents at zero momentum
Since an axial current,̄q(x)γµγ5q(x), is a spin operator, the flavour-singlet axial coupling constantg

(0)
A represents

the fraction of the nucleon spin carried by quarks. In the naive parton model,g
(0)
A is expected to be close to

However, an unexpected small value ofg
(0)
A was found from the EMC experiment, which implies the qua

contribute only a small fraction to the proton’s spin. This has led to the so-called “spin crisis” and raised a
of questions of understanding the dynamics of the proton spin[1]. A number of subsequent experiments have b
performed. The results are in the rangeg

(0)
A = (0.28–0.41), see[2] for a recent review.

The investigations ofg(0)
A by QCD sum rules have been done so far by the authors in Refs.[3,4]. Ioffe and

Oganesian[3] derived a QCD sum rule forg(0)
A by considering a two-point correlation function of nucleon int
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polating fields in an external flavour-singlet axial-vector field. In their sum rule,g
(0)
A is expressed by expectatio

values of QCD composite operators induced by the external field. An important contribution comes from dim
3 term in the operator product expansion, which is related to the derivative of QCD topological susc
ity χ ′(0). They found the lower limit ofg(0)

A andχ ′(0) from the self consistency of the sum rule:g
(0)
A � 0.05,

χ ′(0) � 1.6× 10−3 GeV2.
The authors in Ref.[4] considered a three-point function of nucleon interpolating fields and the divergen

a flavour-singlet axial-vector current. They took into account chiral anomaly by using the anomaly relatio
the very beginning. The form factor,g

(0)
A (q2), is related to the vacuum condensates of the quark–gluon comp

operators through a double dispersion relation. To knowg
(0)
A (q2) at q2 = 0 one must evaluate the correlati

function at zero momentum. Although the method to evaluate it is known[5], it involves large uncertainty.
Recently, we have proposed a new method to construct QCD sum rules for axial coupling constants from tw

point correlation functions of axial-vector currents in a one-nucleon state[6]. With the method, the axial couplin
constants are expressed in terms of theπ–N andK–N sigma-terms and the moments of parton distributions.
have seen good agreement with experiment for the non-singlet constants,g

(3)
A andg

(8)
A .

In this Letter, we extend the previous work to the case forg
(0)
A . For the calculation ofg(0)

A we need to fully take
into account the chiral anomaly. Since the origin of the chiral anomaly is considered to be instantons, on
suspect the anomalous suppression ofg

(0)
A is somehow related to instantons. We therefore evaluate their e

ong
(0)
A .

Following Ref.[6], we consider a correlation function of flavour-singlet axial-vector currents in a one-nu
state:

(1)Π(0)
µν (q;P) = i

∫
d4x eiqx

〈
T

[
j

(0)
µ5 (x), j

(0)
ν5 (0)

]〉
N

,

whereqµ ≡ (ω,q) and the nucleon matrix element is defined by〈· · ·〉N ≡ (1/2)
∑

S[〈N(PS)| · · · |N(PS)〉 −
〈· · ·〉0〈N(PS)|N(PS)〉], wherePµ ≡ (E,P) is the nucleon momentum (P 2 = M2, M is the mass),S the nucleon
spin,〈· · ·〉0 ≡ 〈0| · · · |0〉, and the one-nucleon state is normalized as〈N(PS)|N(P ′S′)〉 = (2π)3δ3(P−P′)δSS ′ . The
flavour-singlet axial-vector current is defined as

(2)j
(0)
µ5 (x) = ū(x)γµγ5u(x) + d̄(x)γµγ5d(x) + s̄(x)γµγ5s(x),

whereu, d ands are the up, down and strange quark fields, respectively.
We write a Lehmann representation of Eq.(1):

(3)Π(0)
µν (ω,q;P) =

∞∫
−∞

dω′ ρ
(0)
µν (ω′,q;P)

ω − ω′ ,

whereρµν is the spectral function. We derive a Borel sum rule from Eq.(3) for the even function part of Eq.(1) in

ω, Π
(0)
µν (ω2,q;P)even, as[6]

(4)B̂
[
Π(0)

µν

(
ω2,q;P

)
even

] = −
∞∫

−∞
dω′ ω′ exp

(−ω′2/s
)
ρ(0)

µν (ω′,q;P),

wheres denotes the square of the Borel mass andB̂ the Borel transformation with respect toω2. In Eq. (4) the
left-hand side is evaluated theoretically, which give rise to a Borel transformed QCD sum rule.

Let us now consider the physical content of the spectral function with the insertion of intermediate
between the currents. Here the lowest one is a one-nucleon state. The continuum state consists ofη′-nucleon
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states, excited nucleon states and so on. There is an energy gap between the nucleon pole and th
uum threshold. The contribution of the one-nucleon state to the spectral function is expressed in term
ial coupling constants, because the nucleon matrix element ofj (0)

µ5 is written as〈N(PS)|j (0)
µ5 (0)|N(P ′S′)〉 =

ū(PS)[g(0)
A (q2)γµγ5 + h

(0)
A (q2)qµγ5]u(P ′S′), whereu(PS) is a Dirac spinor andq = P ′ − P [6]. The contri-

bution of the continuum state becomes small in the Borel sum rule, since it is exponentially suppressed c
to that of the one-nucleon state because of the energy gap. Therefore, it is allowed to use a rough model of the c
tinuum: the form of the continuum is approximated by the step function with the coefficient being the ima
part of the asymptotic form of the correlation function in the OPE[8]. In the present case, however, the continu
contribution to the spectral function is absent within the approximation, because the perturbative part is subtracte
from the definition of Eq.(1). This means that the continuum contribution may be very small at least in the
energy region. We therefore neglect the continuum contribution in this work.

Hereafter we consider the correlation function in the rest frame of the initial and final nucleon states a
tract the Lorentz indices of the currents. Expanding the right-hand side of Eq.(4) in powers of|q|2, we find the
coefficient of|q|2 is proportional to|g(0)

A (0)|2 [6]. h
(0)
A (0) contributes to higher order terms sinceh

(0)
A (q2) has no

singularity atq2 = 0. From the first derivative of Eq.(4) with respect to|q|2 we obtain the desired QCD sum ru
at |q|2 = 0:

(5)
∂B̂[Π(0)(ω2,q)even]

∂|q|2
∣∣∣∣|q|2=0

= − 3

M

∣∣g(0)
A

∣∣2,
whereΠ(ω,q) = Πµ

µ(ω,q;M,0).
Let us now turn to the evaluation ofΠ(0)(q). Π(0)(q) consists of the following two terms:

(6)Π(0)(q) =
∑

q=u,d,s

C(q)q +
∑

q,q ′=u,d,s

D(q)qq ′,

whereC(q)q is a connected or “one-loop” term which is given by

(7)C(q)q = −i

∫
d4(x − y)eiq(x−y)

〈
Tr

{
T

[
q(y)q̄(x)

]
γµγ5T

[
q(x)q̄(y)

]
γ µγ5

}〉
N

andD(q)qq ′ a disconnected or “two-loop” term:

(8)D(q)qq ′ = i

∫
d4(x − y)eiq(x−y)

〈
Tr

{
γµγ5T

[
q(x)q̄(x)

]}
Tr

{
γ µγ5T

[
q ′(y)q̄ ′(y)

]}〉
N

.

Note here thatonly the correlator of flavoursinglet currents receives the contributions of the“ two-loop” terms.
Indeed, for the correlation function of iso-vector currents,j

(3)
µ5 = (1/2)(ūγµγ5u − d̄γµγ5d), “two-loop” terms

cancel with each other if we neglect the differences of quark masses:

Π(3)(q) ≡ i

∫
d4x eiqx

〈
T

[
j

(3)
µ5 (x), j

(3)
ν5 (0)

]〉
N

= (1/2)2[Cu(q) + Cd(q) + D(q)uu − 2D(q)ud + D(q)dd

]
(9)= (1/2)2[Cu(q) + Cd(q)

]
.

Similarly, for the 8th component of flavour-octet currents,j
(8)
µ5 = (1/2

√
3)(ūγµγ5u + d̄γµγ5d − 2s̄γµγ5s),

Π(8)(q) ≡ i

∫
d4x eiqx

〈
T

[
j

(8)
µ5 (x), j

(8)
ν5 (0)

]〉
N

= (1/2
√

3)2[Cu(q) + Cd(q) + 4Cs(q)
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+ D(q)uu + D(q)dd + 4D(q)ss + 2D(q)ud − 4D(q)us − 4D(q)ds

]
(10)= (1/2

√
3)2[Cu(q) + Cd(q) + 4Cs(q)

]
.

We evaluate Eqs.(7) and (8)by a standard operator product expansion (OPE). Let us first consider the
loop” terms. In the OPE, operators of the leading termsare of dimension 4. We take into account the terms u
dimension 6. The result is in the following:

C(q)q = 10

q2mq〈q̄q〉N − 1

2q2

〈
αs

π
G2

〉
N

− 8qµqν

q4 i〈q̄SγµDνq〉N

− 22παs

3q4

〈
q̄γ µλaq

(
ūγµλau + d̄γµλad + s̄γµλas

)〉
N

+ 10παsq
µqν

q6

〈
S

(
q̄γµλaq

)(
ūγνλ

au + d̄γνλ
ad + s̄γνλ

as
)〉

N

(11)+ 32qµqνqλqσ

q8 i〈q̄SγµDνDλDσ q〉N,

whereDµ ’s are covariant derivatives,G2 ≡ Ga
µνG

aµν , andS denotes a symbol which makes the operators s
metric and traceless with respect to the Lorentz indices.

We now discuss about the nucleon matrix elements in Eq.(11). It is known well thatmq〈q̄q〉N is related to
theπ–N or K–N sigma-term as(mu + md)(〈ūu〉N + 〈d̄d〉N) = 2ΣπN and(ms + mu)(〈s̄s〉N + 〈ūu〉N) = 2ΣKN .
〈(αs/π)G2〉N is expressed by the nucleon mass andmq〈q̄q〉N through the QCD trace anomaly:〈(αs/π)G2〉N =
−(8/9)(M − ∑

q=u,d,s mq〈q̄q〉N). The matrix elements which contain covariant derivatives are related to th

ton distributions as〈Sq̄γµ1Dµ2 · · ·Dµnq(µ2)〉N = (−i)n−1A
q
n(µ2)Tµ1µ2...µn , whereAn(µ

2) is thenth moment of
the parton distributions at scaleµ2, andTµ1µ2...µn = S[Pµ1Pµ2 · · ·Pµn ]. For the matrix elements of four qua
operators, we apply the factorization hypothesis[8]: the matrix elements are factorized by assuming that the
tribution from one nucleon state dominates in the intermediate states:〈O1O2〉N ≈ 〈O1〉N 〈O2〉0 + 〈O1〉0〈O2〉N .
We apply this hypothesis to the following type of the nucleon matrix elements, which appear in Eq(11):
〈q̄f γµλaqf q̄f ′γνλ

aqf ′ 〉N = −(8/9)gµν〈q̄f qf 〉0〈q̄f qf 〉Nδf,f ′ , wheref andf ′ are flavor indices.
Let us next consider the “two-loop term”, Eq.(8). There is no contribution from this term as long as we do

account for higher-dimensional terms (larger than dimension 6) in the OPE and perturbative corrections. H
“two-loop term” receives a contribution arising from instantons. We evaluate it under the “dilute instanton
approximation” (DIGA)[12]. Namely we assume there exists only one instanton or anti-instanton in vacuu
have two reasons why this approximation is expected to be valid. The first is that since we use the frame
QCD sum rules we are interested only in the short distance behavior of the correlation function. The secon
instantons in vacuum is sufficiently dilute[12]. Indeed, it is known that the density of instantons is about 1 fm−4

and the critical size of an (anti-)instantonρc is ρc � 0.3 fm. The value ofρc is significantly smaller than the typica
separation between instantons.

In order to evaluate Eq.(8), we first consider the correlation function in nuclear matter with its baryon num
density beingρB . Then Eq.(8) is obtained as the first derivative of the correlator in nuclear matter with resp
ρB , because, in general, expanding a vacuumexpectation value of an operatorO at finite baryon number densit
in powers ofρB the coefficient of the linear term is nothing but the nucleon matrix element:〈O〉ρB = 〈O〉0 +
ρB〈O〉N + · · · . Thus Eq.(8) can be written as

(12)D(Q)qq ′ =
[

∂

∂ρB

∫
d4(x − y)eiQ(x−y)

〈
Tr

{
γµγ5T

[
q(x)q̄(x)

]}
Tr

{
γ µγ5T

[
q ′(y)q̄ ′(y)

]}〉
ρB

]
ρB=0

,

whereQ is an Euclidean momentum defined byQ2 = −q2 and〈· · ·〉 means that averaging is performed over
gauge configurations with the weight function exp(−S), whereS is the Euclidean action. Under DIGA Eq.(12)
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(13)D(Q)qq ′ =
∫

dρ

[
∂

∂ρB

n(ρ,ρB)

]
ρB=0

∫
d4x eiQx Tr

[
γµγ5Sq(x, x)

]∫
d4y e−iQy Tr

[
γνγ5Sq ′ (y, y)

]
,

whereSq(x, y) is a quark(q) propagator in the field of an (anti-)instanton. We performed integrations ove
center of an (anti-)instantonz and instanton sizeρ with a weightn(ρ,ρB). n(ρ,ρB) is the tunneling rate at finit
baryon number density.

Sq(x, y) is expressed as follows:

(14)Sq(x, y) =
∑
λ

ψλ(x)ψ
†
λ(y)

λ + imq

,

whereψλ(x) is an eigen function of Dirac operator with the eigen valueλ: /Dψλ(x) = λψλ(x). Then the dominan
contribution comes from the zero-mode,ψ0(x). In Eq.(13), however, quarks do not propagate in zero-mode sta
The reason is very simple. A zero-mode changes itschirality in passing through an instanton (seeFig. 1(a)). On
the other hand, quarks created by an axial current have same chirality (Fig. 1(b)). So zero-modes are not allowe
in Eq. (13) and only non-zero-modes contribute. Non-zero-mode propagatorSNZM

q (x, y), in which all non-zero-
modes are summed up,

(15)SNZM
q (x, y) ≡

∑
λ 	=0

ψλ(x)ψ
†
λ(y)

λ + imq

,

satisfies the equation

(16)(/D + imq)S
NZM
q (x, y) = δ(4)(x − y) − ψ0(x)ψ

†
0(y).

Subtracting the zero-mode contribution in the right-hand side, the remainingSNZM
q (x, y) is ensured to be orthogo

nal to the zero-mode[16]. The solution of this equation, in general, has the following form[16]:

(17)SNZM
q (x, y) = (

−→
/Dx − imq)∆(x, y)

1+ γ5

2
+ ∆(x,y)

←−
/Dy

1− γ5

2
,

where
−→
Dµ and

←−
Dµ are covariant derivatives:

−→
Dµ = −→

∂ µ − i τa

2 Aa
µ and

←−
Dµ = −←−

∂ µ − i τa

2 Aa
µ, with τa ’s are Pauli

matrices andAa
µ being an (anti-)instanton solution:

(18)Aa
µ(x) = 2

xν

x2

η̄aµνρ
2

x2 + ρ2 .

Eq.(18)is the solution in the singular gauge. Hereafter we work in this gauge. An anti-instanton solution is ob
by replacingη̄aµν to ηaµν . ηaµν andη̄aµν are the ’t Hooft symbols[12]. ∆(x,y) is the propagator of a scalar fie
which satisfies the equation

(19)
(−D2 + m2

q

)
∆(x,y) = δ(4)(x − y).

It is known that this equation is solved by

(20)∆(x,y) = 1

4π2(x − y)2

(
1+ ρ2

x2

)−1/2(
1+ ρ2

y2

)−1/2(
1+ ρ2 τ− · xτ+ · y

x2y2

)
,

whereτ±
µ ≡ (

→
τ ,∓i) [16,17]. Here we have neglectedO(m2

q) terms. The propagator in the field of an anti-instan
is obtained by interchangingτ+ andτ−.
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The calculation of Tr[γµγ5S
NZM
q (x, x)] in Eq. (13) needs some care, sinceSNZM

q (x, y) is not well defined a
x → y. This is becauseSNZM

q (x, y) atx 	= y is not gauge invariant. The trace should be defined as limit of an g
invariant expression in which a path ordered product is inserted:

(21)Tr
[
γµγ5S

NZM
q (x, x)

] = lim
ε→0

Tr

{
γµγ5S

NZM
q (x − ε/2, x + ε/2)exp

[
i

x+ε/2∫
x−ε/2

τa

2
Aa

ν(z) dzν

]}
,

where the right-hand side must be averaged over all the direction of the four vectorεµ. As a result we obtain

(22)Tr
[
γµγ5S

NZM
q (x, x)

] = 1

4π2

∂

∂xµ

2ρ2

(ρ2 + x2)2
.

The Fourier transform of this equation is given by

(23)
∫

d4x eiQx Tr
[
γµγ5S(x, x)

] = −iρ2QµK0(Qρ).

HereK0(z) is an 0th modified Bessel function. Then Eq.(13) reads

(24)Dqq ′(Q) =
∫

dρ

[
∂

∂ρB

n(ρ,ρB)

]
ρB=0

Q2ρ4K0(Qρ)2.

An important quantity in Eq.(24)is the tunneling rate,n(ρ,ρB). In normal vacuum, where vacuum condensat
does not exist, the tunneling rate at one-loop was first given in Ref.[13]. After the pioneering work, it is now
available in two-loop renormalization group invariant form[14],

(25)n(ρ) = n0(ρ)
∏

q=u,d,s

(mqρ)(ρµ0)
nf γ0

αMS(µ0)

4π ,

wheren0(ρ) is that for quarkless theory:

(26)n0(ρ) = dMS

ρ5

(
2π

αMS(µ0)

)2Nc

exp

(
− 2π

αMS(µ0)

)
(ρµ0)

β0+(β1−4Ncβ0)
αMS(µ0)

4π ,

(27)dMS = 2e5/6

π2(Nc − 1)!(Nc − 2)! exp(−1.511374Nc + 0.291746nf ),

(28)β0 = 11

3
Nc − 2

3
nf ,

(29)β1 = 34

3
N2

c −
(

13

3
Nc − 1

Nc

)
nf ,

(30)γ0 = 3
N2

c − 1

Nc

.

In Eqs.(25)–(30), µ0 is some arbitrary normalization point,Nc = 3 andnf = 3 are the numbers of color and flavo
In physical vacuum, where vacuum condensation exists, according to Shifman et al.[18], the current quark mas

in Eq.(25) is substituted by a dynamical one. Shifman et al. considered the tunneling rate for small size instanto
Then it can be expanded in powers ofρ. The coefficient of each term of the expansion should be a qua
characterizing the vacuum structure. They found that the tunneling rate is written as a vacuum expectation valu
an “effective Lagrangian”, which has form analogous to a standard operator product expansion. The Lagra
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as follows:

∆L= n0(ρ)(ρµ0)
nf γ0

αMS(µ0)

4π

{ ∏
q=u,d,s

(
mqρ − 4

3
π2ρ3q̄Γ q

)

+ 3

32

(
4

3
π2ρ3

)2[(
ūΓ aud̄Γ ad − 4

3
ūΓ a

µνud̄Γ a
µνd

)(
msρ − 4

3
π2ρ3s̄Γ s

)

+ 9

40
· 4

3
π2ρ3dabcūΓ a

µνud̄Γ b
µνds̄Γ cs + (2 permutations)

]

(31)+ 9

320

(
4

3
π2ρ3

)3

dabcūΓ aud̄Γ bds̄Γ cs + 9

256
i

(
4

3
π2ρ3

)3

fabcūΓ a
µνud̄Γ b

νγ ds̄Γ c
γµs

}
,

whereΓ = (1 − γ5)/2, Γ a = (1 − γ5)/2 · (λa/2), Γ a
µν = σµν(1 − γ5)/2 · (λa/2) andfabc anddabc are SU(3)

symbols. For anti-instanton replace 1− γ5 to 1+ γ5. Then the tunneling rate at finite density is given by
average of Eq.(31)over the ground state of nuclear matter:

(32)n(ρ,ρB) = 〈∆L〉ρB .

The expectation values of multi quark operators in Eq.(32) are evaluated by applying factorization hypothesis
this approximation, all the terms in Eq.(31)containingγ5, σµν , λa/2 drop off[18]. As a result, Eq.(32) is reduced
to the same form as Eq.(25)but with the current quark mass replaced by the “effective mass”:

(33)n(ρ,ρB) = n0(ρ)(ρµ0)
nf γ0

αMS(µ0)

4π

∏
q=u,d,s

m∗
q(ρ,ρB)ρ,

where the “effective mass” is defined by

(34)m∗
q(ρ,ρB) = mq − 2

3
π2ρ2〈q̄q〉ρB .

In order to know the derivative of Eq.(33) with respect toρB in Eq. (24), we must know theρB dependence o
〈q̄q〉ρB in the effective quark mass.〈q̄q〉ρB is expanded in powers ofρB as 〈q̄q〉ρB = 〈q̄q〉0 + ΣπN

mu+md
ρB + · · ·

for q = u,d and〈s̄s〉ρB = 〈s̄s〉0 + y ΣπN

mu+md
ρB + · · · [10], wherey = 2〈s̄s〉N/(〈ūu〉N + 〈d̄d〉N) is the strangenes

content of the nucleon. Then we obtain the derivative of Eq.(33)with respect toρB as[
∂

∂ρB

n(ρ,ρB)

]
ρB=0

= n0(ρ)(ρµ0)
nf γ0

αMS(µ0)

4π
−2π2ρ5

3

ΣπN

mu + md

(35)× [
m∗

u(ρ,0)m∗
s (ρ,0) + m∗

d(ρ,0)m∗
s (ρ,0) + ym∗

u(ρ,0)m∗
d(ρ,0)

]
.

Now we have all the ingredients for deriving the QCD sum rule. Collecting all the terms in Eq.(6), namely,
the one-loop term Eq.(11) and the two-loop term Eq.(24) with Eq. (35), and substituting Eq.(6) into Eq.(5), we
obtain the QCD sum rule forg(0)

A as follows:

∣∣g(0)
A

∣∣2 = −M

3

{
ΣπN

s

[
28

3

(
1− ms

mu + md

)]
+ ΣKN

s

[
56

3

ms

ms + mu

]

+ M

s

[
2

3
− 7

(
Au

2

(
µ2) + Ad

2

(
µ2) + As

2

(
µ2))]

− 4παs〈q̄q〉0

s2

[
352

27

ΣπN

mu + md

]
− 4παs〈s̄s〉0

s2

[
176

27

(
2ΣKN

ms + mu

− ΣπN

mu + md

)]

(36)+ 15M3

s2

[
Au

4

(
µ2) + Ad

4

(
µ2) + As

4

(
µ2)] + I (s)

}
,
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Fig. 1. (a) Zero-modes propagating through an instanton. The solid
lines correspond to zero-modes with the chirality left-handed (L) and
right-handed (R). An instanton is shown as an open circle with “I”.
A zero-mode changes its chiralitywhen passing through an instan-
ton. (b) The diagram corresponding to the two-loop term, Eq.(8).
Quarks created by an axial current have same chirality. So quarks do
not propagate in an zero-mode state, which changes its chirality in
passing through an instanton.

Fig. 2. The square of the Borel mass,s, dependence of|g(0)
A

| in
Eq.(36)with and without the instantoncontribution. The upper curve
(long-dashed line) corresponds to thatwithout the instanton contri-
bution. The lower three curves show those with the instanton c
tribution for different choices ofρc ; The solid line corresponds to
ρc = 0.3 fm, the dotted line toρc = 0.29 fm and the short-dashe
line to ρc = 0.31 fm.

where〈q̄q〉0 ≡ 〈ūu〉0 = 〈d̄d〉0. In Eq.(36) we assumemu = md . I (s) is the instanton contribution which is give
by

(37)I (s) = 9

ρc∫
0

dρ

[
∂

∂ρB

n(ρ,ρB)

]
ρB=0

ρ4

∞∫
0

dt
(
s − ρ2 cosh2 t · s2)exp

(−ρ2 cosh2 t · s).
Here the integration overρ has been cut off at the critical sizeρc. We note that the value ofρc estimated by Shurya
is close to the upper boundary for the validity of the expansion Eq.(31) [18].

We show inFig. 1 the square of the Borel mass,s, dependence of|g(0)
A | in Eq. (36). In plotting the curve in

Fig. 1, we used the following values of the constants in the right-hand side in Eq.(36). Theπ–N sigma-term is
taken from Ref.[9], which areΣπN = 45 MeV. The quark masses are taken to bemu = md = 7 MeV, ms =
110 MeV[7]. Using the above values and the ratioy = 2〈s̄s〉N/(〈ūu〉N + 〈d̄d〉N) = 0.2 given in Ref.[9], we can
calculate theK–N sigma-term averaged over the iso-spin states and the result isΣKN = 226 MeV. We calculated
the moments of parton distributions adopting the LO scheme in Ref.[11]: Au

2(1 GeV2) + Ad
2(1 GeV2) = 1.1,

Au
4(1 GeV2)+Ad

4(1 GeV2) = 0.13,As
2(1 GeV2) = 0.03,As

4(1 GeV2) = 0.002. The vacuum condensates are ta
from Ref.[7], which are〈q̄q〉0 = (−225 MeV)3 and〈s̄s〉0 = 0.8〈q̄q〉0. The normalization pointµ0 in Eq.(33)was
taken to be 1 GeV, which is the relevant scale for QCD sum rules. For the critical size of an (anti-)instan
used the valueρc = 0.3 fm. The upper curve inFig. 2 corresponds tog(0)

A in Eq. (36) but without the instanton

contributionI (s). We see that the curve is well stabilized. In the stabilized regiong
(0)
A � 0.8. This is consisten

with the well-known fact thatg(0)
A is about 30% suppressed due to relativistic effect compared with the naive

model’s expectation, but is much larger than the experimental valueg
(0)
A = (0.28–0.41). The lower three curve

correspond tog(0)
A including the instanton contributionI (s) with different choices ofρc. We see the Borel curve i

extremely sensitive toρc and not stabilized. Therefore we cannot predict the value ofg
(0)
A . However, we can sa

that apparently instantons tend to lowerg
(0)
A compared with that without the instanton contribution.

In summary, we have derived a QCD sum rule forg
(0)
A from a two-point correlation function of flavour singl

axial-vector currents in one-nucleon state. In deriving the sum rule, we evaluated the correlation functio
OPE up to dimension 6. We have also took into account an additional contribution arising from an (anti-)instanton
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and evaluated it under DIGA. When we do not include the instanton contribution,g
(0)
A is not so suppressed as t

experimental value and is about 0.8. Including the instanton contributiong(0)
A tends to be suppressed compared w

the result when we do not include the instantoncontribution. Recently, Schäfer and Zetocha[19] have computed
the axial coupling constants of the nucleon using numerical simulations of the instanton liquid. They fou
isovector axial coupling constant isg(3)

A = 1.28, in good agreement with experiment, while flavour singlet coup

is g
(0)
A = 0.77.g(0)

A comes from a connected part and OZI violating disconnected part of the three-point corr

function. Taking into account only the connected part they foundg
(0)
A = 0.79, while the disconnected part is ve

small,g(0)
A (dis) = −(0.02± 0.02). It would be interesting if we can clarify the relation between the present r

obtained by adding a single instanton contribution to the OPE-based QCD sum rules and that by the i
liquid model.
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