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Abstract

We derive a QCD sum rule for the flavour-singlet axial coupling congt%?t)mom a two-point correlation function of flavour-
singlet axial vector currents in a one-nucleon state. In evaluating the correlation function by an operator product expansion we
take into account the terms up to dimension 6. This correlation function receivelliioel two-loop diagram which comes

from an (anti-)instanton. If we do not include gt(o) is estimated to be 0.8. However, the additional diagram due to instantons

contributes negatively and redut@‘g) towards the experimental value.
0 2004 Elsevier B.VOpen access under CC BY license,

PACS:14.20.Dh; 13.40.-f; 12.38.Lg
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Axial coupling constants are defined by nucleon matrix elements of axial currents at zero momentum transfer.
Since an axial curreng,(x)y,. ysq(x), is a spin operator, the flavour-singlet axial coupling congé%trepresents
the fraction of the nucleon spin carried by quarks. In the naive parton mg)ﬁéis expected to be close to 1.

However, an unexpected small value gff) was found from the EMC experiment, which implies the quarks
contribute only a small fraction to the proton’s spin. This has led to the so-called “spin crisis” and raised a number
of questions of understanding the dynamics of the proton[&piA number of subsequent experiments have been

performed. The results are in the ra@g = (0.28-041), se€2] for a recent review.
The investigations og“’) by QCD sum rules have been done so far by the authors in Be#. loffe and
Oganesian3] derived a QCD sum rule fog(o) by considering a two-point correlation function of nucleon inter-
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polating fields in an external flavour-singlet axial-vector field. In their sum [gifé,is expressed by expectation
values of QCD composite operators induced by the external field. An important contribution comes from dimension
3 term in the operator product expansion, which is related to the derivative of QCD topological susceptibil-
ity x’(0). They found the lower limit ofggo) and x’(0) from the self consistency of the sum ru@lo) > 0.05,
x'(0) > 1.6 x 1073 Ge\~.

The authors in Refl4] considered a three-point function of nucleon interpolating fields and the divergence of
a flavour-singlet axial-vector current. They took into account chiral anomaly by using the anomaly relation from
the very beginning. The form factog,(f) (¢%), is related to the vacuum condensates of the quark—gluon composite

operators through a double dispersion relation. To krgé%(qz) at g2 = 0 one must evaluate the correlation
function at zero momentum. Although the method to evaluate it is krjByyiit involves large uncertainty.

Recently, we have proposed a new method to constr@@ Qum rules for axial coupling constants from two-
point correlation functions of axial-vector currents in a one-nucleon fht&Vith the method, the axial coupling
constants are expressed in terms of A&V and K—N sigma-terms and the moments of parton distributions. We

have seen good agreement with experiment for the non-singlet congtghtmdg .

In this Letter, we extend the previous work to the casegﬁB’r. For the calculation oj;io) we need to fully take
into account the chiral anomaly. Since the origin of the chiral anomaly is considered to be instantons, one might

suspect the anomalous suppressiorgﬁ&f is somehow related to instantons. We therefore evaluate their effects

on gi‘o).

Following Ref.[6], we consider a correlation function of flavour-singlet axial-vector currents in a one-nucleon
state:

19 Py=i f dx &1/, j2O)),. )

whereg" = (w, q) and the nucleon matrix element is defined py-)y = (1/2) Y "([(N(PS)|---IN(PS)) —
(--)o(N(PS)|N(PS))], whereP" = (E, P) is the nucleon momentunP€ = M2, M is the mass)$ the nucleon
spin, (- --)o = (0| - - - |0), and the one-nucleon state is normalizeddeP S)|N (P'S")) = (21)383(P— )55 . The
flavour-singlet axial-vector current is defined as

Q) = @)y (x) + d ()Y ysd () + 5 ()68 (x), 2)

whereu, d ands are the up, down and strange quark fields, respectively.
We write a Lehmann representation of Etj):
O,
0 . puv (@', Q; P)
ngv)(w, q’ P) = / da)/wi

—00

— 3
w—
wherep,,, is the spectral function. We derive a Borel sum rule from@gjfor the even function part of Eq1) in
w, H/S?J)(wzv 0; P)even as[6]
o0
é[ﬂl(g)) (a)z, U: P)yer] = — f do' o exp(—a)/z/s)pfg (@', q; P), (4)
—00
wheres denotes the square of the Borel mass anthe Borel transformation with respect é&. In Eq. (4) the
left-hand side is evaluated theoretically, winigive rise to a Borel transformed QCD sum rule.

Let us now consider the physical content of the spectral function with the insertion of intermediate states
between the currents. Here the lowest one is a one-nucleon state. The continuum state consist€lebn
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states, excited nucleon states and so on. There is an energy gap between the nucleon pole and the contin
uum threshold. The contribution of the one-nucleon state to the spectral function is expressed in terms of ax-

ial coupling constants, becausesthucleon matrix element ojfg is written as(N(PS)|j§?(O)|N(P/S’)> =

i(PS)(gX @ vuys + ' (gDquyslu(P'S'), whereu(PS) is a Dirac spinor ang = P’ — P [6]. The contri-

bution of the continuum state becomes small in the Borel sum rule, since it is exponentially suppressed compared
to that of the one-nucleon state because of the energyidppefore, it is allowed to use a rough model of the con-
tinuum: the form of the continuum is approximated by the step function with the coefficient being the imaginary
part of the asymptotic form of the correlation function in the JBE In the present case, however, the continuum
contribution to the spectral function is absent within thpr@ximation, because the pethative part is subtracted

from the definition of Eq(1). This means that the continuum contribution may be very small at least in the high
energy region. We therefore neglect the continuum contribution in this work.

Hereafter we consider the correlation function in the rest frame of the initial and final nucleon states and con-
tract the Lorentz indices of the currents. Expanding the right-hand side q#Eiq. powers of|q|2, we find the
coefficient of|q|? is proportional tOIgZO) (0)? [6]. hf) (0) contributes to higher order terms sir‘h:@ (¢%) has no
singularity atg? = 0. From the first derivative of Eq4) with respect tdq|? we obtain the desired QCD sum rule
at|q|2=0:

IBITO(w?, Qever _ _i|g(0) 2 ®)
dlqf2 g0 M AT
wherell (w, q) = I1,*(w,q; M, 0).
Let us now turn to the evaluation &f© (¢). 179 (¢) consists of the following two terms:
n%g= Y C@yg+ Y. D@yq- (6)
g=u,d,s q,.q9'=u,d,s

whereC(q), is a connected or “one-loop” term which is given by

Clq)g =i f d*x — y) €9 NTHT (g ()G () |yuysT [a ()G ]y " vs))y @
andD(q),, adisconnected or “two-loop” term:

D(q)gqy =i / d*(x — y) 1 I(Tr{y, s T [q ()G () ]} Ty vsT[q' (a3 ]} - (8)

Note here thabnly the correlator of flavousinglet currents receives the contributions of tieo-loop” terms
Indeed, for the correlation function of iso-vector curreqyg = (1/2)(iyuysu — czyuy5d), “two-loop” terms
cancel with each other if we neglect the differences of quark masses:

1@ =i [atvdn(1[j@w. 20,

= (1/2)?[Cu(q) + Ca(q) + D(@uw — 2D(@)ud + D(q)ad]
= (1/2)*[Cu(q) + Ca(@)]- )

Similarly, for the 8th component of flavour-octet currerj;g) = (1/2\/§)(ﬁyﬂy5u + d_yu ysd — 25y, ¥55),
1% =i [atvdn(1]j@w. iL0),

= (1/2v/3)*[Cu(q) + Ca(q) + 4C(q)
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+ D(@uu + D(@)ad +4D(q)ss + 2D(@)ud — 4D (q)us — 4D (q)as |
= (1/2/3)[Cu(q) + Calq) +4Cs(q)]- (10)

We evaluate Eqg7) and (8)by a standard operator product expansion (OPE). Let us first consider the “one-
loop” terms. In the OPE, operators of the leading tearesof dimension 4. We take into account the terms up to
dimension 6. The result is in the following:

10 _ 1l /|« kqv .
C(q)g = qu(qu - ?<;§G2> - 8qq4q i{gSyuDvg)N

2210

36]4
10 Kgv -
+ %(S(éyﬂkaq)(ﬁyvk"u +dy,\d + Ey,,)»”s))N

(v rq(ay ru +dyr'd +5y,%))

3201 gV A0 _
+ %uqsmvmuaqm, (11)

whereD,,’s are covariant derivativeg;? = G}, G, andS denotes a symbol which makes the operators sym-
metric and traceless with resgt to the Lorentz indices.

We now discuss about the nucleon matrix elements in(Et). It is known well thatm, (gq)y is related to
thew—N or K—N sigma-term agm,, + mq)((iiu) y + (dd)n) =257 n and(mg +m,)((5s)y + (du)n) = 2Tk .

((as /m)G?)y is expressed by the nucleon mass andgq)y through the QCD trace anomali(w, /7)G2) y =
—(8/9)(M — Zq:uvd,s mg{qq)n). The matrix elements which contain covariant derivatives are related to the par-
ton distributions a$Sgy,, Dy, - - Dy, g (W) N = (=)' LA (WD) Ty iy 1 » WhereA,, (u?) is thenth moment of

the parton distributions at scal€?, and Ty, i, 1, = S[Pyu; Py, - - Py, 1. For the matrix elements of four quark
operators, we apply the factorization hypothg¢8jsthe matrix elements are factorized by assuming that the con-
tribution from one nucleon state dominates in the intermediate stafgg2,;)y ~ (O1)n {(O2)0 + (O1)o(O2)N.

We apply this hypothesis to the following type of the nucleon matrix elements, which appear {11q.
@rvuriarqpyvoriqr)n =—8/9guwidrariolarar)ndy s, wheref and f’ are flavor indices.

Let us next consider the “two-loop term”, E@). There is no contribution from this term as long as we do not
account for higher-dimensional terms (larger than dimension 6) in the OPE and perturbative corrections. However,
“two-loop term” receives a contributioarising from instantons. We evaluate it under the “dilute instanton gas
approximation” (DIGA)[12]. Namely we assume there exists only one instanton or anti-instanton in vacuum. We
have two reasons why this approximation is expected to be valid. The first is that since we use the framework of
QCD sum rules we are interested only in the short distance behavior of the correlation function. The second is that
instantons in vacuum is sufficiently dilufg2]. Indeed, it is known that the density of instantons is about 1%m
and the critical size of an (anti-)instantppis p. ~ 0.3 fm. The value of, is significantly smaller than the typical
separation between instantons.

In order to evaluate E@8), we first consider the correlation function in nuclear matter with its baryon number
density beingog. Then Eq(8) is obtained as the first derivative of the correlator in nuclear matter with respect to
o, because, in general, expanding a vacwexpectation value of an operator at finite baryon number density
in powers ofpp the coefficient of the linear term is nothing but the nucleon matrix eleméh;, = (O)o +
p(O)ny + ---. Thus Eq{(8) can be written as

el ; ,
D(Q)qq/=[873 / d4<x—y)e’Q<x”(Tr{msT[qu)q‘(x)]}Tr{y“ysT[q%y)ci/(y)]})pﬁ] . 12

pp=0

where Q is an Euclidean momentum defined B = —¢2 and (- --) means that averaging is performed over all
gauge configurations with the weight function €x), wheres is the Euclidean action. Under DIGA E{{L2)
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become$15]

d i Oy
D(Q)gq Z/dp[%”(ﬂ,PB)} /d4xele Tr[VuVSSq(X,X)]/d4ye = TrivysSy (v, 0], (13)
pp=0
where S, (x, y) is a quark(g) propagator in the field of an (anti-)instanton. We performed integrations over the
center of an (anti-)instantanand instanton size with a weightn(p, pp). n(p, pp) is the tunneling rate at finite
baryon number density.
Sq(x, y) is expressed as follows:

)
5,ry) = 3 LOWO) a4

A Atimg

where; (x) is an eigen function of Dirac operator with the eigen valu@v; (x) = Ay (x). Then the dominant
contribution comes from the zero-mod)(x). In Eq.(13), however, quarks do not propagate in zero-mode states.
The reason is very simple. A zero-mode changeshigality in passing through an instanton (d€g. 1(a)). On

the other hand, quarks created by an axial current have same chiFigdjtyl(b)). So zero-modes are not allowed

in Eg. (13) and only non-zero-modes contribute. Non-zero-mode propaggl?éf(x, y), in which all non-zero-
modes are summed up,

NZM e VY ()
Sq (X,Y)=ZW, (15)
A#£0

satisfies the equation

B +img)SNM(x, y) = 6@ (x — y) — Yo Y (). (16)

Subtracting the zero-mode contribution in the right-hand side, the remﬁgfﬂ@(x, y) is ensured to be orthogo-
nal to the zero-mod|.6]. The solution of this equation, in general, has the following fgt8i:

- 1+ 5 < 1—ys5
SPM (e, 3) = Py —img) A(x, y) 5+ AE D (17)
Wheref))ﬂ and (ISM are covariant derivativesI_D)M = 5} - i%A;’L and (ISM = —<8_M - i%Aﬁ, with t¢’s are Pauli
matrices andi}, being an (anti-)instanton solution:
Ad N 2xv ﬁap,vpz 18
li(x)_ ;xz_i_pz- ( )

Eq.(18)is the solution in the singular gauge. Hereafter we work in this gauge. An anti-instanton solution is obtained
by replacingjau. 10 nauv. Napw andig,, are the 't Hooft symbolfl2]. A(x, y) is the propagator of a scalar field
which satisfies the equation

(—D?+m?2)Alx,y) =8P (x — y). (19)
It is known that this equation is solved by
1 pz -1/2 pz -1/2 Zf—,m+_y
Ax,y)=—5—=|14+— 1+ — 1 —_— |, 20
cr-gme() (+5) () 2

whererlf = (?, Fi) [16,17] Here we have neglectt@l(mg) terms. The propagator in the field of an anti-instanton
is obtained by interchanging™ andz .
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The calculation of 'I[ry,Ly5Sg‘ZM (x,x)] in Eq. (13) needs some care, sinsg'z"" (x, y) is not well defined at
x — y. Thisis becausﬁg'z"" (x, y) atx # y is not gauge invariant. The trace should be defined as limit of an gauge
invariant expression in which a path ordered product is inserted:
x+e€/2 Y
TF[)/uysSg‘ZM (x’x)] — ”moTr VMVSS;\IZM(X —€/2,x+¢€/2) exp|:i / r7Aﬁ(z) dzy:| } (21)
€—
x—e/2

where the right-hand side must be averaged over all the direction of the four ¥gctss a result we obtain

1 9 2p?
Tr SNZM (v )] = ) 22
vy ™ x. 0] 472 9x,, (p? + x2)? (22)

The Fourier transform of this equation is given by

/ d*x &2 Trly,y5S(x, x)] = —ip? Q. Ko(Qp). (23)
Here Ko(z) is an Oth modified Bessel function. Then E#j3) reads
d
Dyy(Q) = f dp[a—n(p, p3>} 0%p*Ko(Qp)*. (24)
LB o5=0

Animportant quantity in Eqi24)is the tunneling ratei(p, pp). In normal vacuum, where vacuum condensation
does not exist, the tunneling rate at one-loop was first given in [R8f. After the pioneering work, it is now
available in two-loop renormalization group invariant fofid],

s (h0)

n(p)=no(p) [ mgp)(ppo)" /7 4, (25)
g=u,d,s
whereng(p) is that for quarkless theory:
de= 2 2N, 2 ag=(pQ)
no(p) = -2 (7”) exp(‘in) (ppg)Po+(PraNeho g™ (26)
P> \ oy (o) ays (o)
28/ 1.511374 0.291746 27
dgs = exp(—1. .
S 2N, — DI, — 21 O N+ 7): 27
11 2
ﬂo: ENC— él/lf, (28)
34 , (13 1
=N?>—(Z=N.— = )ny, 29
/31 3 e ( 3 NC)l’lf ( )
N? -1
=3-¢ . 30
Y0 N (30)

In Egs.(25)—(30) no is some arbitrary normalization poi¥, = 3 andn ; = 3 are the numbers of color and flavor.

In physical vacuum, where vacuum conddimaexists, according to Shifman et H8], the current quark mass
in Eq.(25)is substituted by a dynamical one. Shifman et al. cargid the tunneling rate for small size instantons.
Then it can be expanded in powers @f The coefficient of each term of the expansion should be a quantity
characterizing the vacuum structure. They found thattimneling rate is written as a vacuum expectation value of
an “effective Lagrangian”, which has form analogous to a standard operator product expansion. The Lagrangian is
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as follows:

. msro) 4 _
AL = no(p)(ppo)" 10~ 4 { [1 (mqp - 5”203611“‘1)
q=u,d,s

3/4 . 4 . 4
+ 32<3n2p3) [(ﬁF”udF”d - éﬁFguungud) (ms,o — §n2p3§Fs>

9 4 . 5 , ,
+20 3" 2p dabCuFlfvudFlfvdsFCs +(2 permutatlon)s]

9 (4 9 .(4 :
320(3 2 ) dape I udlI'’dsres + 2—561<3 /03> fabcur udrb dsr)fu } (31)

wherel' = (1—y5)/2, I'* =1 — y5)/2- (A?/2), Fw =0l —ys5)/2- (A*/2) and fup. anddyp. are SU3)
symbols. For anti-instanton replace-1ys to 1+ ys. Then the tunneling rate at finite density is given by the
average of Eq(31) over the ground state of nuclear matter:

n(p, pp) = (AL)py. (32)

The expectation values of multi quark operators in @) are evaluated by applying factorization hypothesis. In
this approximation, all the terms in EB1) containingys, o,,,, A*/2 drop off[18]. As a result, Eq(32)is reduced
to the same form as E(R5) but with the current quark mass replaced by the “effective mass™:

 ogsro)
n(p, pg) =no(p)(ppo) 5[] mi(p, pr)p, (33)
q=u,d,s

where the “effective mass” is defined by
2 _
my(p, pg) =mg — 5772102(‘]‘]),03- (34)
In order to know the derivative of E¢33) with respect tgop in Eq. (24), we must know theyp dependence of
(Gq),p In the effective quark mas$(}q>p8 is expanded in powers gfp as{qq),; = (Gq)o + m +md oB + -

for g =u,d and(5s),, = (5s)o + ym +md pp +--- [10], wherey = 2(5s)y /((iiu) y + (dd) ) is the strangeness
content of the nucleon. Then we obtain the derlvatlve of(B8) with respect tqop as

S”O) —27'[2 5 XaN

3 my +my

J
[8—n(p, 03)] =no(p)(ppo)"/°
PB 05=0

x [m(p,0)m}(p,0) +m}(p, O)m}(p,0) + ym;(p, 0m}(p, 0)]. (35)

Now we have all the ingredients for deriving the QCD sum rule. Collecting all the terms i(6Eqamely,
the one-loop term Eq11)and the two-loop term Eq24) with Eq. (35), and substituting E(6) into Eq.(5), we
obtain the QCD sum rule for'Y as follows:

| (0)|2__K{27TN[2_8<1_ mg >i|+2KN|:5—6 myg ]
Sl = 3 § 3 my +mg s 3 my +my
M2 , )
+— [:—3 — 7(A4 (1) + A% (1?) + AZ(MZ))]

47'[0[5( q)o[352 Xin Arag(ss)o[ 176/ 2X kN YN
2 27 my +my 52 27 \mg+m, my +my

N

3
(4500 + 4400%) + 4300+ 10 . @)
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Fig. 1. (a) Zero-modes propagating through an instanton. The soliffig. 2. The square of the Borel mass, dependence Ofg(AO)\ in

lines correspond to zero-modes with the chirality left-handed (L) andEq. (36) with and without the instantocontribution. The upper curve
right-handed (R). An instanton is shown as an open circle with “I". (long-dashed line) corresponds to théthout the instanton contri-

A zero-mode changes its chiralityhen passing through an instan- bution. The lower three curves show those with the instanton con-
ton. (b) The diagram corrpsnding to the two-loop term, E¢8). tribution for different choices op.; The solid line corresponds to
Quarks created by an axial current have same chirality. So quarks de. = 0.3 fm, the dotted line tgp,. = 0.29 fm and the short-dashed
not propagate in an zero-mode state, which changes its chirality ifine to p. = 0.31 fm.

passing through an instanton.

where(gq)o = (iiu)o = (dd)o. In Eq.(36) we assumen, = my. I(s) is the instanton contribution which is given
by

Pe

I(s) = 9/dp|:in(p, pB)] p4/dt (s — p2costfr - s2) exp(—,o2 costfr - 5). (37)
0 0B p=0

Here the integration over has been cut off at the critical sipe. We note that the value @f. estimated by Shuryak
is close to the upper boundary for the validity of the expansior(&n.[18].

We show inFig. 1the square of the Borel mass,dependence qu;°)| in EqQ. (36). In plotting the curve in
Fig. 1, we used the following values of the constants in the right-hand side i(3BY.The z—N sigma-term is
taken from Ref[9], which are X,y = 45 MeV. The quark masses are taken tonbg=my =7 MeV, m; =
110 MeV[7]. Using the above values and the raie- 2(5s)y /({(itu) y + (dd)n) = 0.2 given in Ref[9], we can
calculate theK—N sigma-term averaged over the iso-spin states and the restitys= 226 MeV. We calculated
the moments of parton distributions adopting the LO scheme in [R&f. A5(1 GeV?) + Ag(l GeV®) = 1.1,
A4(1GeVP) + A%(1 GeVP) = 0.13,A5(1 GeVP) = 0.03, A}(1 Ge\P) = 0.002. The vacuum condensates are taken
from Ref.[7], which are(gq)o = (—225 MeV)2 and(5s)o = 0.8(3¢)o. The normalization pointg in Eq.(33)was
taken to be 1 GeV, which is the relevant scale for QCD sum rules. For the critical size of an (anti-)instanton we
used the valug, = 0.3 fm. The upper curve iifrig. 2 corresponds t@;f’) in EqQ. (36) but without the instanton
contribution/ (s). We see that the curve is well stabilized. In the stabilized regﬁ&nz 0.8. This is consistent
with the well-known fact thaggo) is about 30% suppressed due to relativistic effect compared with the naive quark
model’'s expectation, but is much larger than the experimental \éﬁﬁ@: (0.28-041). The lower three curves
correspond t@io) including the instanton contributiah(s) with different choices op.. We see the Borel curve is
extremely sensitive tp. and not stabilized. Therefore we cannot predict the valugg%f However, we can say
that apparently instantons tend to Iovgé?) compared with that without the instanton contribution.

In summary, we have derived a QCD sum rulegéﬁ) from a two-point correlation function of flavour singlet
axial-vector currents in one-nucleon state. In deriving the sum rule, we evaluated the correlation function by an
OPE up to dimension 6. We have also took into accountalitianal contribution arisig from an (anti-)instanton
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and evaluated it under DIGA. When we do not include the instanton contribtgti%s not so suppressed as the

experimental value and is abou80Including the instanton contributi@rjo) tends to be suppressed compared with

the result when we do not include the instantmmtribution. Recently, Schéafer and Zetoghf] have computed

the axial coupling constants of the nucleon using numerical simulations of the instanton liquid. They found the
isovector axial coupling constantg'§3) =1.28, in good agreement with experiment, while flavour singlet coupling

is gg‘” = o.77.gg°> comes from a connected part and OZ| violating disconnected part of the three-point correlation

function. Taking into account only the connected part they fogjj%z 0.79, while the disconnected part is very

small,gE‘O) (dis) = —(0.024 0.02). It would be interesting if we can clarify the relation between the present result

obtained by adding a single instanton contribution to the OPE-based QCD sum rules and that by the instanton
liquid model.
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