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1. Introduction

The main subject of this paper is configuration spaces of smooth manifolds. Let M be a smooth manifold. A particular
case of configuration space is the space of all sequences (x1, . . . , xn) ∈ Mn of pairwise distinct points. This classical config-
uration space is of particular interest as the space of configurations of n points in classical mechanics. Some topological
properties of this space are studied in the book [20].

In this paper we are interested in the topology of the obvious action of the symmetric group Sn on the space of n-
configurations; we also consider the restriction of this action to some subgroups G ⊆ Sn . The space of n-configurations
in R

k was studied in [5,11,25]. The main object of these studies was some measure of complexity of the configuration
space, such as the homological index, or the genus in the sense of Krasnosel’skii and Schwarz [2–4], see Section 7. The
estimates on the genus of the configuration space of n pairwise distinct points in R

2 were used to study the “topological
complexity” of finding complex roots of a polynomial in [11], see also [10].

Along with the configuration space of pairwise distinct points, we consider more general configuration spaces. By a con-
figuration space for M we mean some subspace of its Cartesian power Mn , defined by removing configurations with some
multiple point coincidences. For example, some pairs in the configuration may be required to be distinct points, or every k
of points in the configuration may be required not to be the same point. One example of such a configuration space was
used in the author’s paper [26] and the previous studies [17,18] of billiards in smooth convex bodies in R

d . In the cited
papers, some estimates on the homological index (see Sections 2 and 3 for definitions) of the configuration space, combined
with the Lyusternik–Schnirelmann theory, gave some lower bounds on the number of distinct closed billiard trajectories. An-
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other application of configuration spaces with general coincidence constraints arises in the study of coincidences of maps,
see some examples in [15,23].

As it was already mentioned, in addition to considering the action of Sn on configuration spaces we also consider the
actions of G ⊂ Sn . Let the group G act on the points freely and transitively. In this case the configuration space may be
considered as the space of all maps G → M , denote it Map(G, M). The group G acts on itself by left multiplications, so
G acts on Map(G, M) by right multiplications. We denote this action by

(g, φ) ∈ G × Map(G, M) �→ φg,

by definition put φg(x) = φ(gx) for any g, x ∈ G .
The paper is organized in the following way. The main tool is considering the equivariant cohomology of configuration

spaces. In Section 2 we collect the general notions on the equivariant cohomology, define a measure of homological com-
plexity (index) of G-spaces. In Section 3 we focus on the case of G being a p-torus, introduce another index and prove a
new result: Theorem 1 on estimating the index from below.

In Section 5 some lower bounds of topological complexity (indexes) of particular configuration spaces with respect to
the group action are given.

In Sections 6 and 7 the main results on configuration spaces are formulated and proved. The results of Section 6 show the
existence of a configuration with certain symmetrical equalities, the author is particularly interested in metric symmetries,
but the results are stated for general functions instead of a metric. Results of Section 7 estimate the genus in the sense of
Krasnosel’skii–Schwarz of configuration spaces and may be used to find lower bounds on the number of critical points of a
smooth symmetric function using the Lyusternik–Schnirelmann theory.

Note that in this paper Theorems 7 and 9 and their corresponding Lemmas 5 and 6 (see below) are actually proved
for R

d . It seems plausible that for a closed manifold M the estimate on the index may be larger, as it was for the “billiard”
configuration space of the sphere in [26], where the bound was larger by 1 compared to Theorem 7.

2. Equivariant cohomology of G-spaces

In this section we state some facts on the equivariant cohomology and define a homological measure of complexity of a
G-space.

We consider topological spaces with continuous action of a finite group G and continuous maps between such spaces
that commute with the action of G . We call them G-spaces and G-maps.

The facts in this section are quite well known, see books [6,16].
We consider the equivariant cohomology (in the sense of Borel) of G-spaces, defined as

H∗
G(X, M) = H∗((X × EG)/G, M

)
,

where some Z[G]-module M (acted on by the fundamental group of (X × EG)/G) gives the coefficients for the cohomology.
Consider the G-equivariant cohomology of the point H∗

G(M) = H∗
G(pt, M) = H∗(BG, M). For any G-space X the natural

map X → pt induces the natural map of cohomology π∗
X : H∗

G(M) → H∗
G(X, M).

Definition 1. The upper cohomological index of a G-space X with coefficients in M is the maximal n such that the natural
map

Hn
G(M) → Hn

G(X, M)

is nontrivial. Denote the upper index indM X = n. Denote the supremum over all Z[G]-modules

indG X = sup
M

indM X .

If a G-space X has fixed points, its cohomology H∗
G(X, M) contains H∗

G(M) as a summand, thus its upper index is
obviously +∞.

The following property is obvious by definition.

Lemma 1 (Monotonicity of index). If there exists a G-map f : X → Y then indM X � indM Y for any coefficients M.

The G-equivariant cohomology is often calculated from the spectral sequence of the fibration XG = (X × EG)/G → BG
with fiber X . Here we state the lemma from [21, Section 11.4].

Lemma 2. Let R be a ring with trivial G-action. There exists a spectral sequence with E2-term

Ex,y
2 = Hx(BG, H y(X, R)

)
,

that converges to the graded module, associated with the filtration of H∗ (X, R).
G
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The system of coefficients H y(X, R) is obtained from the cohomology H y(X, R) by the action of G = π1(BG). The differentials of
this spectral sequence are homomorphisms of H∗(BG, R)-modules.

In this lemma we denote the grading in the spectral sequence by (x, y) (not usual), because the letter p is reserved for
the prime number throughout this paper.

3. Equivariant cohomology of G-spaces for G = (Z p)k

In this section we study in greater detail the equivariant cohomology of G-spaces in the case G = (Z p)k .
In this section the cohomology is taken with coefficients Z p , in notations we omit the coefficients. For a group G = (Z p)k

the algebra AG = H∗
G(Z p) has the following structure (see [6]). In the case p > 2 it has 2k multiplicative generators vi, ui

with dimensions dim vi = 1 and dim ui = 2 and relations

v2
i = 0, βvi = ui .

We denote β(x) the Bockstein homomorphism.
In the case p = 2 the algebra AG is the algebra of polynomials of k one-dimensional generators vi .
Consider again the spectral sequence from Lemma 2. For every term Er(X) of this spectral sequence there is a natural

map π∗
r : AG → Er(X) (it maps AG to the bottom row of Er(X)).

Definition 2. Denote the kernel of the map π∗
r by Indr

G X .

Let us list the properties of Indr
G X , that are obvious by the definition. We omit the subscript G when it is clear what

group is meant.

• (Monotonicity) If there is a G-map f : X → Y , then Indr X ⊇ Indr Y .
• Indr+1 X may differ from Indr X only in dimensions � r.
• ⋃

r Indr X = Ind X = kerπ∗
X : AG → H∗

G(X).

The first property in this list is very useful to prove nonexistence of G-maps. Following [19,23] we define a numeric
invariant of this system Indr X , that is enough for us.

Definition 3. Put

iG(X) = max
{

r: Indr
G X = 0

}
.

It is easy to see that i(X) � 1 for any G-space X , i(X) � 2 for a connected G-space X , and i(X) may be equal to +∞.
The following properties are quite clear from the definition.

• (Monotonicity) If there is a G-map f : X → Y , then iG(X) � iG(Y ).
• If Hm(X) = 0 for m > n, then either iG(X) = +∞ or iG(X) � n + 1.
• If H̃m(X) = 0 for m < n, then iG(X) � n + 1.

The following lemma from [23, Lemma 2.1] tells more about the monotonicity.

Lemma 3. Let X, Y be connected paracompact G-spaces and let f : X → Y be a G-map. Suppose that iG(X) = iG(Y ) = n + 1. Then
the map f ∗ : Hn(Y ) → Hn(X) is nontrivial.

We need the following result to estimate iG(X) from below. Some special case of it was used in the proof of Theorem 4
in the paper [26].

Theorem 1. Let G = (Z p)k, let G-space X be connected. Suppose the groups Hm(X, Z p) for m < n are composed of finite-dimensional
Z p[G]-modules, induced from proper subgroups H ⊂ G. Then

iG(X) � n + 1.

A Z p[G]-module M is induced from Z p[H]-module N iff M = Z p[G]⊗Z p [H] N . A finite-dimensional module is induced iff
it is coinduced: M = HomZ p [H](Z p[G], N) (see [8, Chapter III, Proposition 5.9]).

Proof of Theorem 1. Put SG = AG for p = 2, and SG = Z p[u1, . . . , uk] for p > 2. This is a subalgebra of polynomials in AG .
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If a G-module M is coinduced from an H-module N then H∗
G(M) = H∗

H (N) (see [8, Chapter III, Proposition 6.2]). In this
case the Hilbert polynomial of H∗

G(M) has degree no more than k − 1. If a G-module is composed of induced modules,
then it follows from the cohomology exact sequence that the Hilbert polynomial of its cohomology has degree � k − 1, or
otherwise the cohomology exact sequence could not be exact for large cohomology dimensions.

Therefore, the rows 1, . . . ,n − 1 in E2-term of the spectral sequence of Lemma 2 have Hilbert polynomials of de-
gree � k − 1. In all next terms Er (r � 2) this fact remains true, since the dimensions dim Ex,y

r decrease, and the Hilbert
polynomial of a row cannot get a larger degree.

Now let us show that the image of the differentials d2, . . . ,dn in the bottom row of the spectral sequence is zero (that
is equivalent to i(X) � n + 1). Indeed, if an AG -module L has Hilbert polynomial of degree � k − 1 then

HomAG (L, AG ) = 0,

since every l ∈ L is annihilated by some nontrivial element of SG (or the Hilbert polynomial would have degree � k), and
none of the nonzero elements of AG is annihilated by nontrivial elements of SG . �
4. Definitions of configuration spaces

In this section we give the definitions of different configuration spaces and introduce some notation.

Definition 4. Let Δ : M → Map(G, M) be the diagonal map, i.e. Δ(x) is the constant map of G to x ∈ M . Denote
MapΔ(G, M) = Map(G, M) \ Δ(M). This is the space of nonconstant maps G → M .

Definition 5. Denote [n] = {1,2, . . . ,n}, and denote the configuration space

V (n, M) = Map
([n], M

)
.

Definition 6. Let S be a nonempty family of subsets in [n]. Denote V (n, M, S) the set of maps f : [n] → M such that
every f |S for S ∈ S is nonconstant. We call the family S a constraint system. Denote

w(S) = min
S∈S

|S|.
We consider only the nontrivial case w(S) � 2.

If the configurations are considered as maps G → M , the following definition is needed.

Definition 7. Let S be a nonempty family of subsets in G , and let S be invariant with respect to G-action on itself. Denote
V (G, M, S) the set of maps f : G → M such that every f |S for S ∈ S is nonconstant. Again, we call the family S a constraint
system. The number w(S) is defined as in the previous definition and is considered to be at least 2.

The constraint system S = {G} gives the space MapΔ(G, M), defined above.
For a finite set X denote

(X
w

)
the family of all w-element subsets of X . The classical configuration space, the set of n-

tuples of pairwise distinct points in Mn , is denoted V
(
n, M,

([n]
2

))
in our notation. The spaces V

(
n, M,

([n]
w

))
are called

configuration-like spaces in [7,24], here we call them simply configuration spaces.

5. The index of configuration spaces

Now we are ready to state and prove the core results of this paper, the lower bounds on indexes of configuration spaces.

Lemma 4. Let G = (Z p)k, let M be a smooth oriented (if p �= 2) closed manifold of dimension d. Then

iG
(
MapΔ(G, M)

)
� d

(
pk − 1

) + 1.

Note that in [15,23] the index of MapΔ(G, M) was estimated from above. It was needed to show that (under some
additional assumptions) for any continuous map f : X → M of a G-space X to M some G-orbit in X is mapped to a point.

Proof of Lemma 4. Denote q = pk . Obviously, M contains some copy of R
d and MapΔ(G, M) contains the respective copy

of S = MapΔ(G,R
d), the latter space is homotopy equivalent to a (d(q − 1) − 1)-dimensional sphere. For a sphere it is

obvious to see that i(S) = d(q − 1), thus i(MapΔ(G, M)) � d(q − 1).
Denote for brevity X = Map(G, M) and XΔ = MapΔ(G, M).
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Consider the contrary: i(XΔ) = d(q − 1). In this case by Lemma 3 the inclusion map j : S → XΔ of the sphere in-
duces a nontrivial map j∗ : Hd(q−1)−1(XΔ) → Hd(q−1)−1(S). Take the fundamental class y ∈ Hd(q−1)−1(S) and consider
x ∈ Hd(q−1)−1(XΔ) such that j∗(x) = y. From the following diagram

Hd(q−1)(X)

j∗

Hd(q−1)(X, XΔ)
π∗

j∗

Hd(q−1)−1(XΔ)
δ

j∗

Hd(q−1)−1(X)
ι∗

j∗

Hd(q−1)(Rdq) Hd(q−1)(Rdq, S)
π∗

Hd(q−1)−1(S)
δ

Hd(q−1)−1(Rdq)
ι∗

(1)

we see that j∗(δ(x)) = δ(y) �= 0.
Consider a tubular neighborhood N(Δ) of the diagonal Δ(M) in X . The pair (X, XΔ) has the same cohomology as

(B(V ), S(V )), where V is the normal vector bundle of the diagonal, B(V ) and S(V ) being its unit ball and unit sphere
spaces. Since the tangent bundle to Δ(M) is the same as the tangent bundle of M , then V fits to the following exact
sequence

0 → T (M) →
⊕
g∈G

T (M) → V → 0

over Δ(M), since the restriction of the tangent bundle of Map(G, M) to Δ(M) equals
⊕

g∈G T M . Hence, the group G acts
naturally on

⊕
g∈G T M , and on V .

The manifold M is Z p -oriented and the bundle V is Z p-oriented. Then by Thom’s isomorphism H∗(X, XΔ) = uH∗(M),
where u is the d(q − 1)-dimensional fundamental class of V . From δ(x) �= 0 it follows that δ(x) = au for some a ∈ Z∗

p . The
horizontal exactness of diagram (1) shows that π∗(au) = 0 and π∗(u) = 0.

Note that the map π∗ : Hd(q−1)(X, XΔ) → Hd(q−1)(X) has to be injective, this is a consequence of the Poincaré duality
and injectivity of the natural map Hd(N(Δ)) = Hd(M) → Hd(X). Thus π∗(u) �= 0, that is a contradiction. �
Lemma 5. For any constraint system S on G = (Z p)k and d-dimensional smooth manifold M

iG
(

V (G, M, S)
)
� (d − 1)(p − 1)pk−1 + w(S) − 1.

Note that in [7,23,24] the case M = R
m and S = (G

w

)
was considered and some upper bounds on the index were found.

The result of paper [24] states that

iG

(
V

(
G,R

m,

(
G

w

)))
� (d − 1)

(
pk − 1

) + w − 1,

so there is some gap between lower and upper bounds for k > 1.

Proof of Lemma 5. The index is monotonic, so it suffices to consider the case M = R
d , which is assumed in this proof.

We are going to apply Theorem 1, so we have to know the cohomology H∗(V (G, M, S), Z p) first. The coefficients Z p of
the cohomology are omitted in the notation in this proof. The space V (G, M, S) is a complement to the set of linear (as
subspaces of R

dpk
) subspaces L S ⊂ Map(G, M), here we denote for any S ∈ S

LS = { f : G → M such that f |S is constant}.
For nonempty T ⊆ S put LT = ⋂

S∈T L S .
By the result from book [13], cited here by the review [22, Corollary 2], the reduced cohomology of V (G, M, S) can be

represented as follows

H̃ i(V (G, M, S)
) =

⊕
T ⊆S

Hqd−i−dim LT −1
(
Δ(T ), ∂Δ(T )

)
, (2)

the sum being taken over distinct subspaces LT . In [22] this formula is proved so that the isomorphism may be not
natural, so we have to be careful to introduce G-action on this formula. Actually this formula becomes natural, if we note
that this formula is a particular case of the Leray spectral sequence for the direct image of a sheaf under the inclusion
V (G, M, S) → Map(G, M). Hence, the reduced cohomology H̃∗(V (G, M, S)) should be replaced by its associated graded
module, obtained from some filtering of the cohomology.

Thus the action of G on the right side of Eq. (2) describes the action of G on the associated graded module of the
cohomology. Let us study this action.

The cohomology to the right in Eq. (2) is the cohomology of the order complex for the poset of spaces LU ⊇ LT , relative
to its subcomplex, spanned by proper inclusions LU ⊃ LT . The order complex of a poset P is a simplicial complex, that has P
as the vertex set, and the set of chains in P as the set of simplices.
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In this proof, it suffices to note that the dimension of the order complexes in question is no more than q − dim LT /d −
w(S) + 1.

Now consider the G-action on the right part of Eq. (2). If the space LT is not fixed under G-action, then the summand,
that corresponds to LT , has G-action, induced from the stabilizer of LT . Theorem 1 allows us to ignore such summands. The
subspaces LT that are fixed under G-action have dimension no more than dpk−1. Thus, they contribute to they cohomology
H̃ i(V (G, M, S)) with the following inequality on the dimension

qd − i − dim LT − 1 � q − dim LT /d − w(S) + 1,

then by simple transformations

i � q(d − 1) − (d − 1)dim LT /d + w(S) − 2 � (d − 1)
(
q − pk−1) + w(S) − 2 = (d − 1)(p − 1)pk−1 + w(S) − 2.

We have proved that in dimensions i � (d − 1)(p − 1)pk−1 + w(S) − 1, the right part of Eq. (2) is composed of induced
Z p[G]-modules, but this right part is itself a decomposition of the cohomology H̃ i(V (G, M, S)). Thus Theorem 1 can be
applied to complete the proof. �

Now we are going to study the classical configuration space. Denote by ±Z p the Z[Sn]-module, which is Z p with the
action of Sn by the sign of permutation. In the case p = 2, put ±Z2 = Z2.

Lemma 6. Let n = pk be a prime power, let M be a smooth manifold of dimension d � 2, let the constraint system S ⊂ 2n consist of
all pairs S = ([n]

2

)
. Then under the natural action of Sn on the configuration space we have

indN V (n, M, S) = (d − 1)(n − 1),

where N = ±Z p for even d, and N = Z p for odd d.

Proof. Actually the proof for d = 2 is given in [11] and works for arbitrary d � 2 in the same way. Below we give a short
sketch.

We go to the case M = R
d , consider the configuration space X = V (n, M, S), and its one-point compactification X ′ =

X ∪ pt. The Poincaré–Lefschetz duality tells that there is a natural isomorphism (since N = (±Z p)⊗d−1 and (±Z p)⊗d gives
the orientation of X )

Hdn−k(X ′/Sn,pt,±Z p) = Hk
Sn

(X, N).

In [5] a certain relative cellular decomposition of the pair (X ′,pt) that respects Sn-action was constructed. It can be
described as follows: consider the graded trees, such that the grades of the vertices are 0,1, . . . ,d, every vertex of grade < d
has children, all the leafs (vertices with no children) have grade d, and the number of leafs is n. We consider such a tree T
along with the following data: for every vertex v ∈ T its children are ordered, and the leafs have labels 1,2, . . . ,n in some
order.

Say that the number i ∈ [n] belongs to vertex v , if the leaf with mark i is a descendant of v . We say that indexes i and j
split on level k, if they belong to the same vertex v of grade k − 1, but belong to different vertices vi and v j of grade k. If
the vertices vi and v j are ordered as vi < v j as children of v , we write i <k j to show that i and j split on level k in this
given order.

Now define the open cell CT in X , corresponding to T , by the following rule:

CT = {
(x1, . . . , xn) ∈ Mn: if i <k j, then xik < x jk, and ∀l < k xil = x jl

}
,

where xik is the k-th coordinate of i-th point.
The cellular decomposition of X can be described informally as follows: every two points xi and x j in a configuration

(x1, . . . , xn) must be distinct, consider the minimal k such that their coordinates xik and x jk are different, and if xik < x jk ,
say that i <k j. The pattern of such relations i <k j is exactly a tree with d + 1 levels and n marked leaves at the bottom
level.

The cellular decomposition of (X ′,pt) is obtained by taking the closures of CT . It is clear from the definition, that the
dimension of a cell CT is equal to the number of vertices in T minus one. It is also clear that Sn permutes the cells, so a
cellular decomposition of (X ′/Sn,pt) is induced. On the level of trees it corresponds to forgetting the labels on the leafs.

This cellular decomposition of (X ′/Sn,pt) has only one cell σ of minimal dimension n + d − 1, that corresponds to the
tree with 1 vertex on each of levels 0, . . . ,d − 1, and n vertices on the bottom level. The cells of dimension n +d correspond
to the trees with 1 vertex on levels 0, . . . ,d − 2, 2 vertices on level d − 1, and n vertices on level d. The coefficients of
the boundary operator between (n + d)-dimensional and (n + d − 1)-dimensional cells has the form ±(n

k

)
(k = 1, . . . ,n − 1),

see [11, Theorem 2.5.1]; this is true for coefficients Z p , or ±Z p , as we need.
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If n is a prime power n = pk , then all the coefficients ±(n
k

)
are zero modulo p. Hence, the minimal cell gives a nontrivial

element of homology σ ∈ Hn+d−1(X ′/Sn,pt,±Z p) (in fact it is also true for both coefficients ±Z p and Z p) and its Poincaré–

Lefschetz dual ξ is a nontrivial element of H(d−1)(n−1)
Sn

(X, N).
In fact ξ is an image of the element of H∗(BSn, N) that is the (d − 1)-th power of the Euler class of the standard

(n − 1)-dimensional irreducible representation W of Sn . This can be shown by considering the map π : X → R
(d−1)n , that

forgets the last coordinate of every point xi , this map is Sn-equivariant, its target space is W d−1 as Sn-representation, and
its zero set σ (note that all zeros are nondegenerate) must be dual to the Euler class e(W )d−1.

Thus by definition indN X = (d − 1)(n − 1). �
6. Existence of symmetric configurations

In this section we consider certain equations for a system of functions on some configuration space, for such equations
we prove existence of their solutions.

Let us describe the idea more precisely. The results of this section are mostly inspired by the theorems of inscribing
regular figures. One example of such theorems is the famous theorem of Schnirelmann [1] that every simple smooth closed
curve in R

2 has an inscribed square. Some more results on inscribing Z p-symmetric configurations are found in the pa-
per [12] and other papers of V.V. Makeev.

Unlike the original problems on inscribing a congruent (or similar) copy of a given configuration, we consider here
configurations of points on a manifold and try to find configurations with some metric equalities, which are not required to
determine the configuration rigidly. The following particular result has explicit geometric meaning.

Theorem 2. Let p > 2 be a prime, let M be an oriented closed smooth manifold of dimension d. Consider a continuous function
ρ : M × M → R.

Suppose that we have d elements g1, . . . , gd of the group G = Z p . Then there exists a nonconstant map φ : G → M such that (group
operation in G is denoted +)

∀g ∈ G, ∀i = 1, . . . ,d ρ
(
φ(g),φ(g + gi)

) = ρ
(
φ(e),φ(gi)

)
.

In the case when ρ is some continuous metric, we obtain more equalities because ρ is symmetric (ρ(x, y) = ρ(y, x)).
Moreover, in this case the numbers ρ(φ(g),φ(g + gi)) have to be positive.

More specially, in the case (d = 2, G = Z5) Theorem 2 gives the following statement: for any continuous metric ρ on a
two-dimensional oriented manifold there are five distinct points p1, p2, . . . , p5 such that

ρ(p1 p2) = ρ(p2 p3) = ρ(p3 p4) = ρ(p4 p5) = ρ(p5 p1)

and

ρ(p1 p3) = ρ(p3 p5) = ρ(p5 p2) = ρ(p2 p4) = ρ(p4 p1).

In fact, Theorem 3 (see below) tells, that in the two above equalities we may take two distinct metrics ρ1 and ρ2.
Let us state the results more generally. Theorem 2 has the following general form, where the functions ρ are replaced

by arbitrary continuous functions on the configuration space.

Theorem 3. Let p > 2 be a prime, let M be an oriented closed smooth manifold of dimension d, let G = Z p , let αi : Map(G, M) → R

(i = 1, . . . ,d) be some continuous functions on the configuration space.
Then there exists a configuration φ ∈ MapΔ(G, M) such that for any i = 1, . . . ,d the number αi(φ

g) does not depend on g ∈ G.

Now we replace the special constraint system in Theorem 3 by some arbitrary constraint system and formulate the
following result.

Theorem 4. Let p > 2 be a prime, let M be a smooth manifold of dimension d, let G = (Z p)k, and let S be some constraint system. Put

m =
⌊

(d − 1)(pk − pk−1) + w(S) − 2

pk − 1

⌋
.

Consider some m continuous functions αi : V (G, M, S) → R.
Then there exists a configuration φ ∈ V (G, M, S) such that for every i = 1, . . . ,m the number αi(φ

g) does not depend on g ∈ G.

In this theorem the number of functions decreased compared to Theorem 3, but the constraint system can be arbitrary
and the manifold does not have to be closed or oriented.
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Proof of Theorem 3. For every αi in Theorem 3 consider the G-map of the configuration space f i : MapΔ(G, M) → R
q by

the formula

f i(φ) =
⊕
g∈G

αi
(
φg).

Consider the diagonal Δ(R) ∈ R
q and the space R

q/R = W i , f i induces the map hi : MapΔ(G, M) → W i .
We have to prove that the total map h = h1 ⊕ · · · ⊕ hd maps some point MapΔ(G, M) to zero in W = W1 ⊕ · · · ⊕ Wd .

The latter space has G-action, so h can be considered as G-equivariant section of a G-bundle over MapΔ(G, M).
The considered G-bundle over MapΔ(G, M) is a pullback of the G-bundle W over pt. The latter bundle (representation)

has nonzero Euler class in Hd(p−1)
G (pt) (see [6,15]). Since i(MapΔ(G, M)) � d(p − 1) + 1, the image of this Euler class in

Hd(p−1)
G (MapΔ(G, M)) is nonzero too. This guarantees the existence of a zero and Theorem 3 is proved. �

Theorem 4 is deduced from Lemma 5 in the similar way.

7. The genus and the category

The estimates in the cohomological index of the configuration spaces in Section 5 give estimates for the genus in the
sense of Krasnosel’skii–Schwarz and the equivariant Lyusternik–Schnirelmann category of those spaces.

Let us start from the Lyusternik–Schnirelmann category. We formulate some special cases of definitions from the
book [16].

Definition 8. Let X be a G-space, G-category of X is the minimal size of G-invariant open cover (i.e. cover by G-invariant
open subsets) {X1, . . . , Xn} of X such that every inclusion map Xi → X is G-homotopic to inclusion of some orbit G/H → X .
Denote G-category of X by G-cat X .

This category gives a lower bound on the number of G-orbits of critical points for some G-invariant C2-smooth func-
tion f on X , if f is a proper function bounded either from below or from above. One of the main ways to find lower
bounds for G-category is to use G-genus, introduced in [2,3] for free G-actions, in [4] for fiber bundles, and in [9,14] for
arbitrary G-action. In fact there are different types of genus (see also the book [16] for a detailed discussion), here we use
one certain type.

Definition 9. Let A be some family of G-spaces. Let X be a G-space, A-genus of X is the minimal size of G-invariant open
cover (i.e. cover by G-invariant open subsets) {X1, . . . , Xn} of X such that every Xi can be G-mapped to some D ∈ A. Denote
A-genus of X by A-gen X .

Equivalently (see [16]), for paracompact spaces and finite groups G the genus can be defined in the following way. Note
that in this paper we consider paracompact spaces and finite groups only.

Definition 10. Let X be a G-space, A-genus of X is the minimal n such that X can be G-mapped to a join D1 ∗ D2 ∗ · · · ∗ Dn ,
where Di ∈ A.

The following theorem estimates the equivariant category by the genus, it follows directly from the definitions.

Theorem 5. For any G-space X denote OG(X) the set of distinct types of orbits G/H ⊆ X. Then

G-cat X � OG(X)-gen X .

The genus OG(X)-gen X is usually estimated by the following type of genus.

Definition 11. If the family A contains only one G-space, which is the disjoint union of all nontrivial orbit types

DG =
⊔

H⊂G

G/H,

then we denote A-gen X = G-gen X .

In the paper [24] this genus is denoted gG(X). In the sequel we shall mainly use this genus by the following reason. If a
G-space has G-fixed points, then OG(X)-gen X = 1. If a G-space has no fixed points, then OG(X)-gen X � G-gen X . Still, for
free G-spaces we use the OG(X)-gen X itself.

Now let us state some estimates on the genus of certain configuration spaces.
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Theorem 6. Suppose that G = (Z p)k, M is a smooth oriented (if p > 2) closed manifold of dimension d. Then

G-gen MapΔ(G, M) � d
(

pk − 1
) + 1.

Theorem 7. Suppose that G = (Z p)k, S is a constraint system on G. Then for any d-dimensional smooth manifold M

G-gen V (G, M, S) � (d − 1)(p − 1)pk−1 + w(S) − 1.

In order to prove the estimates on the genus, we need some well-known lemmas. In the case of a free G-action of
arbitrary finite group G the genus can be estimated in the following way (see [3]).

Lemma 7. If G acts freely on X then

OG(X)-gen X � indG X + 1.

It should be mentioned that the above lemma is a simple consequence of the second definition of genus and the fact
that H∗

G(X, M) = H∗(X/G, M) for a free G-space X . The following lemma is clear from the definition of genus and existence
of an H-map G → H , where H acts on G by left multiplications.

Lemma 8. If G acts freely on X and H ⊂ G is a subgroup, then

OG(X)-gen X � O H (X)-gen X .

There is a good estimation of the genus by iG(X), we restate Proposition 4.7 from the paper [23], noting Remark 4.5
from the same paper.

Lemma 9. Suppose G = (Z p)k acts on X without fixed points. Then

G-gen X � iG(X).

Now Theorem 6 is deduced from Lemmas 9 and 4, and Theorem 7 is deduced from Lemmas 9 and 5.
Let us state some corollary of Theorem 7.

Corollary 8. Let G = (Z p)k, let M be a smooth manifold of dimension d, let the constraint system S consist of all pairs S = (G
2

)
. Then

G-gen V (G, M, S) � (d − 1)(p − 1)pk−1 + 1.

Definition 12. Denote the group of permutations of [n] by Sn .

In the papers [5,11,25] the classical configuration space V
(
n, M,

([n]
2

))
was considered, and the genus of V

(
n, M,

([n]
2

))
with respect to Sn-action was estimated from below. The estimates for n being a prime power in the case d = 2 and for
n = 2k in the case of arbitrary d were better than in Corollary 8. Here we prove the appropriate result for Sn-genus.

Definition 13. For a positive integer n and a prime p denote D p(n) the sum of digits in the p-ary representation of n.

Theorem 9. Let M be a smooth manifold of dimension d � 2, let the constraint system S ⊂ 2n consist of all pairs S = ([n]
2

)
. Denote

X = V (n, M, S). Then for every prime p we have

OSn(X)-gen X � (d − 1)
(
n − D p(n)

) + 1.

Here we formulate the result for arbitrary manifold, but actually we give prove for the case M = R
d , as in the previous

works. The author does not know whether the genus

OSn(X)-gen V (n, M, S)

can be replaced by

(Z p)k-gen V (n, M, S)

in this theorem for the case when the number of points is a prime power n = pk , as it is done in the statement of
Corollary 8.
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Proof of Theorem 9. The theorem for prime powers is deduced from Lemmas 7 and 6 directly.
Consider the general case: take some n and represent it as a sum of D p(n) powers of p:

n =
D p(n)∑
i=1

pki .

As in [11], we can select D p(n) disjoint open subsets M1, . . . , MD p(n) of M , each being homeomorphic to R
d . Consider

the subspace of V (n, M, S) formed by the following configurations: the first pk1 points lie in M1, the other pk2 points lie
in M2 and so on. So we can state that

V (n, M, S) ⊃
D p(n)∏
i=1

V
(

pki , Mi, S
)
.

The spaces Xi = V (pki , Mi, S) have actions of their respective groups Gi = Spki , and have by Lemma 6 some nontrivial

cohomology classes in H(d−1)(pki −1)
Gi

(Xi, N) as natural images of some classes in H∗(BGi, N), N is the same as in Lemma 6.

By the Künneth formula the product of these classes is a nontrivial natural image of some class from H (d−1)(n−D p(n))(BG1 ×
· · · × BG D p(n), N). Denote G = G1 × · · · × G D p(n) , so we see that for the upper G-index

indG V (n, M, S) � indG

∏
i

Xi � (d − 1)
(
n − D p(n)

)
.

From Lemma 7 it follows that if X = V (n, M, S), then OG(X)-gen X � (d − 1)(n − D p(n)) + 1. Then by Lemma 8
OSn (X)-gen X � OG(X)-gen X � (d − 1)(n − D p(n)) + 1. �
Acknowledgement

The author thanks A.Yu. Volovikov for useful discussions and remarks.

References

[1] L.G. Schnirelmann, On some geometric properties of closed curves, Uspekhi Mat. Nauk 10 (1934) 34–44 (in Russian).
[2] M.A. Krasnosel’skii, On the estimation of the number of critical points of functionals, Uspekhi Mat. Nauk 7 (2) (1952) 157–164 (in Russian).
[3] A.S. Schwarz, Some estimates of the genus of a topological space in the sense of Krasnosel’skii, Uspekhi Mat. Nauk 12 (4 (76)) (1957) 209–214

(in Russian).
[4] A.S. Schwarz, The genus of a fibre space, Tr. Mosk. Mat. Obs. 11 (1962) 99–126; translation in: Amer. Math. Soc. Transl. 55 (1966) 49–140.
[5] D.B. Fuks, The mod 2 cohomologies of the braid group, Mat. Zametki 5 (2) (1970) 227–231 (in Russian).
[6] Wu Yi Hsiang, Cohomology Theory of Topological Transformation Groups, Springer-Verlag, Berlin, 1975.
[7] F. Cohen, E.L. Lusk, Configuration-like spaces the Borsuk–Ulam theorem, Proc. Amer. Math. Soc. 56 (1976) 313–317.
[8] K. Brown, Cohomology of Groups, Grad. Texts in Math., vol. 87, Springer-Verlag, New York, 1982.
[9] M. Clapp, D. Puppe, Invariants of Lusternik–Schnirelmann type and the topology of critical sets, Trans. Amer. Math. Soc. 298 (1986) 603–620.

[10] S. Smale, On the topology of algorithms. I, J. Complexity 4 (4) (1987) 81–89.
[11] V.A. Vasil’ev, Braid group cohomologies algorithm complexity, Funktsional. Anal. i Prilozhen. 22 (3) (1988) 15–24 (in Russian); translation in: Funct.

Anal. Appl. 22 (3) (1988) 182–190.
[12] V.V. Makeev, The Knaster problem almost spherical sections, Mat. Sb. 180 (3) (1989) 424–431 (in Russian); translation in: Mat. USSR Sb. 66 (2) (1990)

431–438.
[13] M. Goresky, R. MacPherson, Stratified Morse Theory, Springer-Verlag, Berlin, 1988.
[14] M. Clapp, D. Puppe, Critical point theory with symmetries, J. Reine Angew. Math. 418 (1991) 1–29.
[15] A.Yu. Volovikov, A Bourgin–Yang-type theorem for Zn

p -action, Mat. Sb. 183 (2) (1992) 115–144 (in Russian); translation in: Russian Acad. Sci. Sb.
Math. 76 (2) (1993) 361–387.

[16] T. Bartsch, Topological Methods for Variational Problems with Symmetries, Springer-Verlag, Berlin, 1993.
[17] M. Farber, S. Tabachnikov, Topology of cyclic configuration spaces and periodic trajectories of multi-dimensional billiards, Topology 41 (3) (2002)

553–589.
[18] M. Farber, Topology of billiard problems, II, Duke Math. J. 115 (2002) 587–621.
[19] A.Yu. Volovikov, On the index of G-spaces, Mat. Sb. 191 (9) (2000) 3–22 (in Russian); translation in: Sb. Math. 191 (9) (2000) 1259–1277.
[20] E.R. Fadell, S.Y. Husseini, Geometry Topology of Configuration Spaces, Springer-Verlag, Berlin, 2001.
[21] J. McCleary, A User’s Guide to Spectral Sequences, Cambridge Univ. Press, 2001.
[22] V.A. Vasil’ev, Topology of plane arrangements and their complements, Russian Math. Surveys 56 (2 (365)) (2001) 365–401.
[23] A.Yu. Volovikov, Coincidence points of maps of Z

n
p -spaces, Izv. Math. 69 (5) (2005) 913–962.

[24] A.Yu. Volovikov, On the Cohen–Lusk theorem, Fundam. Appl. Math. 13 (8) (2007) 61–67 (in Russian).
[25] F. Roth, On the category of Euclidean configuration spaces and associated fibrations, Geom. Topol. Monogr. 13 (2008) 447–461.
[26] R.N. Karasev, Periodic billiard trajectories in smooth convex bodies, Geom. Funct. Anal., in press; available at: http://arxiv.org/abs/0905.1761.

http://arxiv.org/abs/0905.1761

	The genus and the category of configuration spaces
	Introduction
	Equivariant cohomology of G-spaces
	Equivariant cohomology of G-spaces for G=(Zp)k
	Definitions of configuration spaces
	The index of configuration spaces
	Existence of symmetric configurations
	The genus and the category
	Acknowledgement
	References


