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SUMMARY

Transcription-factor-induced reprogramming of
somatic cells to pluripotency is a very inefficient
process, probably due to the existence of important
epigenetic barriers that are imposed during differen-
tiation and that contribute to preserving cell identity.
In an effort to decipher the molecular nature of these
barriers, we followed a genome-wide approach, in
which we identified macrohistone variants (mac-
roH2A) as highly expressed in human somatic cells
but downregulated after reprogramming to pluripo-
tency, as well as strongly induced during differentia-
tion. Knockdown of macrohistone variants in human
keratinocytes increased the efficiency of reprogram-
ming to pluripotency, whereas overexpression had
opposite effects. Genome-wide occupancy profiles
show that in human keratinocytes, macroH2A.1 pref-
erentially occupies genes that are expressed at low
levels and aremarked with H3K27me3, including plu-
ripotency-related genes and bivalent developmental
regulators. The presence of macroH2A.1 at these
genes prevents the regain of H3K4me2 during re-
programming, imposing an additional layer of
repression that preserves cell identity.
INTRODUCTION

Chromatin structure plays fundamental roles in the regulation of

gene expression during development and contributes to defining

and preserving cell identity. The nucleosome, the basic subunit

of eukaryotic chromatin, is composed of two molecules of

each of the core histone proteins—H2A, H2B, H3, and H4—

around which DNA is wrapped. Histones are among the most

highly conserved proteins in terms of both structure and

sequence, but in higher organisms, each histone subtype is rep-

resented by a family of genes encoding multiple variants.

Although most variants appear highly similar and likely redun-

dant (for example, all H4 family members encode the same

protein), others show unique features and play roles in critical
C

aspects of chromatin structure regulation and are, therefore,

known as replacement variants. Such is the case of the H3 vari-

ants H3.3 (Ahmad and Henikoff, 2002) and CENPA (Sullivan

et al., 1994), and the H2A variants H2A.Z (Faast et al., 2001),

H2A.X (Rogakou et al., 1998), and macroH2A (Pehrson and

Fried, 1992).

ThemacroH2A variant contains an amino-terminal histone-like

region that is similar to histone H2A and a carboxy-terminal glob-

ular domain called macrodomain (Pehrson and Fried, 1992).

Although generally referred to as macroH2A, two different

genes,H2AFY andH2AFY2, encode for twomacroH2A isoforms

called macroH2A.1 and macroH2A.2, respectively (Chadwick

and Willard, 2001). In addition, the mRNA of macroH2A.1 can

be alternatively spliced, giving rise to the isoformsmacroH2A.1.1

and 1.2 (Rasmussen et al., 1999). The macrodomain protrudes

out of the nucleosome and in the case of macroH2A.1.1 variant,

can act as a ligand binding domain for metabolites of NAD+ (Kar-

ras et al., 2005). MacroH2A has been suggested to play roles in

transcriptional repression by physically impeding the access of

transcription factors to their binding sites and blocking the action

of ATP-dependent chromatin remodelers such as the SWI/SNF

complex (Angelov et al., 2003). Moreover, the macrodomain

can interact with histone deacetylases (HDACs) (Chakravarthy

et al., 2005) and certain subunits of the Polycomb complex

(Buschbeck et al., 2009) and, thus, might participate in the

recruitment or stabilization of repressor complexes at defined

genomic regions. Accordingly, macroH2A has been suggested

to be involved in X inactivation (Costanzi and Pehrson, 1998),

although more recent reports have located macroH2A in several

autosomal genes (Buschbeck et al., 2009; Gamble et al., 2010).

Despite the fact that macroH2A occupies mostly transcription-

ally inactive genes, its knockdown has been reported to block

the induction of genes by serum starvation (Gamble et al.,

2010). Therefore, the potential involvement of macrohistone vari-

ants in transcriptional activation remains controversial.

Several reports have described the induction of macrohistone

variants during the in vitro differentiation of mouse embryonic

stem cells (ESCs) (Creppe et al., 2012; Dai and Rasmussen,

2007; Pehrson et al., 1997), and recently, they have been sug-

gested to confer resistance to nuclear reprogramming of mouse

cells (Pasque et al., 2011, 2012). However, the regulation of the

expression of these variants and its mechanistic consequences

remain practically unaddressed in human cells.
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The epigenetic mechanisms that contribute to establish cell

identity during differentiation and to preserve it in somatic cells

are mostly unknown. These mechanisms, which presumably

protect cells against transformation, constitute an important

barrier to reprogramming (Barrero et al., 2010). Our data show

that macroH2A.1 expression protects human cells against re-

programming to pluripotency, probably through the repression

of pluripotency genes and bivalent germ layer-specific genes,

where it prevents the gain of H3K4me2 that takes place during

this process.

RESULTS

Macrohistone Variants AreMainly Expressed in Somatic
Cells and Downregulated after Reprogramming
We previously (Boué et al., 2010) compiled genome-wide

expression data from several independent reprogramming

experiments and extracted a list of candidates that showed

differential expression between human induced pluripotent

stem cells (iPSCs) and somatic cells and identified the mac-

roH2A isoform macroH2A.1 as one of the top 1,000 differentially

expressed genes. The ratio of expression levels of several

histone variants in somatic cells to that in ESCs or to their

corresponding iPSCs shows that the gene encoding for mac-

roH2A.1 (H2AFY) is consistently expressed at higher levels in

somatic cells (Figure 1A). qPCR confirmed that macroH2A.1

was upregulated in keratinocytes compared to iPSCs derived

from keratinocytes (KiPSCs) (Figure 1B). However, macroH2A.2

(H2AFY2) was expressed at lower levels, and the differences

between pluripotent and somatic cells were milder (Figures 1A

and 1B). Western blot (Figure 1C) and immunocytochemistry

(Figures S1A and S1B) showed that both macroH2A.1 and mac-

roH2A.2 were almost undetectable in pluripotent cells (ESCs and

iPSCs) but clearly expressed in somatic cell types (keratinocytes

and fibroblasts), whereas the levels of the canonical histone H2A

remained unchanged (Figure 1C). Interestingly, the presence of

macroH2A.1 in human ESCs (hESCs) grown under self-renewal

conditions could be readily detected in a few cells that under-

went spontaneous differentiation characterized by the loss of

expression of the pluripotency marker OCT4 and expression of

the differentiation marker FOXA2 (Figure S1C).

Macrohistone Variants Are Strongly Induced during
the Differentiation of Human Pluripotent Cell Lines
In agreement with the prevalent expression of macroH2A in

somatic cells, macroH2A.1 and macroH2A.2 were the most

conspicuously induced core histone variants during the differen-

tiation of hESCs (Figure 1A). These results were confirmed by

qPCR during the differentiation of two pluripotent cell lines (Fig-

ure 1D), western blot (Figure 1C), and immunocytochemistry

(Figures S1A and S1B). At day 20 of embryoid body (EB) differen-

tiation, the expression of macroH2A.1 andmacroH2A.2 could be

detected in most cells’ nuclei and colocalized with markers of all

three germ layers (Figures S2A and S2B), suggesting that its

induction takes place in cells of all three embryonic layers.

We also tested the possibility that macrohistone variants

could be induced during the differentiation of adult stem cells.

Neuronal precursors within neural rosettes marked with SOX9
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expressedvery low levelsofmacroH2A.2,but itsexpressioncould

be clearly detected at peripheral mature neurons positive for

TUJ1andMAP2 (FigureS2C), indicating thatmacroH2A.2expres-

sion is induced during the differentiation of neural precursors.

The Knockdown of Macrohistone Variants Increases
the Reprogramming Efficiency
Because macrohistone variants are prevalent in somatic cells

and downregulated during their reprogramming to pluripotency,

we asked whether the knockdown of these proteins could affect

the efficiency of reprogramming. For that, human keratinocytes

were infected four independent times with GFP and previously

described shRNA (Buschbeck et al., 2009) encoding lentiviruses

that were able to efficiently knock down the expression of

macroH2A.1 (shM1) or macroH2A.2 (shM2) (Figures 2A and

2B), and the efficiency of reprogramming to keratinocytes in-

fected with a nontarget shRNA (shRD) was compared (Fig-

ure 2C). The knockdown of macroH2A.1 increased the number

of alkaline phosphatase (AP)-positive colonies in all four reprog-

ramming experiments. However, the knockdown of macroH2A.2

had milder effects on the efficiency of reprogramming. These

results are in agreement with the predominant expression of

macroH2A.1 compared to macroH2A.2 in human keratinocytes

(Figures 1B, S3A, and S3B).

About 3 weeks after viral transduction, reprogrammed colo-

nies were picked and expanded. Three lines of KiPSCs (induced

pluripotent cells from keratinocytes) were established for each

condition, which remained AP positive after several passages

(Figure S4A) and showed expression of the endogenous plurip-

otency markers (Figures S4B and S4C). The downregulation of

the expression of the transgenes (Figure S4D) further confirmed

that cells had reached a fully reprogrammed pluripotent state.

Karyotype was found to be normal (Figure S4E). Moreover, all

the tested lines were able to produce teratomas positive for

markers of the three germ layers in immunosuppressed mice

(Figure S5A). Importantly, the expression of macrohistone vari-

ants was downregulated in all KiPSC clones compared to the

original keratinocytes (Figures S5B and S5C).

To confirm that the effects of knocking down themacrohistone

variants in the reprogramming of human keratinocytes are

specific, we tested the effects of macroH2A.1 overexpression

(Figure 2D). Figure 2E shows that the number of AP-positive

colonies obtained after the reprogramming of keratinocytes

that overexpress a HA-tagged version of macroH2A.1 is signifi-

cantly reduced compared to keratinocytes transduced with an

empty vector.

MacroH2A.1 Occupies Pluripotency and Bivalent Genes
in Somatic Cells
To gain insight into the process by which macrohistone variant

expression affects the efficiency of reprogramming, we analyzed

the genome-wide occupancy of macroH2A.1 by chromatin

immunoprecipitation sequencing (ChIP-seq) in human keratino-

cytes. Because the available specific antibodies against

macroH2A.1 were not displaying good enough signal to back-

ground ratios to carry out genome-wide studies, we took advan-

tage of the established lines of keratinocytes that overexpress

the HA-tagged version of macroH2A.1 and used antibodies
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Figure 1. Differential Expression of Macrohistone Variants in Human Pluripotent and Differentiated Cells

(A) Heatmaps showing log fold changes of expression levels. Left panel shows fold change between keratinocytes (HEK) and hESCs, and keratinocytes and

KiPSCs. Middle panel shows fold change between fibroblasts (HF) and hESCs, and fibroblast and induced pluripotent cells from fibroblast (FiPSCs). Right panel

shows fold change between undifferentiated ESCs and cells at day 8 or 15 (d8 or d15) of differentiation.

(B) mRNA levels of macroH2A.1 and macroH2A.2 in two lines of keratinocytes (HEK1 and HEK2), two lines of hESCs (ES[4] and ES[2]), and two lines of KiPSCs

(KiPS4F1 and KiPS4F8) determined by qPCR. Primers for macroH2A.1 amplify both splice variants. Levels were corrected according to the amplification effi-

ciency of each pair of oligonucleotides and normalized to GAPDH, HPRT, and HMBS. The mean and SD (n = 3) are shown.

(C) Protein levels of macroH2A.1, macroH2A.2, OCT4, and canonical H2A determined by western blot in keratinocytes (HEK), fibroblasts (HF), KiPSCs (KiPS4F1

and [H]KiPS4F1), ESCs (ES[4]), and EBs from ES[4] and KiPS4F1 at day 15 of differentiation. Levels of ACTB were used as a loading control.

(D) mRNA levels of macroH2A.1, macroH2A.2, and OCT4 during the differentiation of ES[4] or KiPS4F1 determined by qPCR. Levels were normalized to GAPDH

and represented relative to the maximum expression. The mean and SD of two independent experiments per cell line are shown.

See Figures S1 and S2 for immunostaining analysis. See also Table S2.
against the HA tag to perform the ChIP. To rule out potential

unspecific binding of the tagged histone to chromatin, we

confirmed its differential occupancy in two cell lines of different

germ layer origin (Figure S6A) and that its expression levels

resembled those of the endogenous protein (Figure 2D).
C

Genomic intervals occupied by macroH2A.1 showed larger

overlap with those marked with H3K27me3 and lower with those

marked with H3K36me3, H3K4me3, or occupied by RNA Poly-

merase II (Pol II) (Figure S6B), suggesting that macroH2A.1 is

associated with transcriptional repression. Analysis of binding
ell Reports 3, 1005–1011, April 25, 2013 ª2013 The Authors 1007



A

0.4
0.6
0.8
1.0
1.2

macroH2A.1
macroH2A.2

m
R

N
A

le
vl

es Em
pt

y

αα-HA
HA:macro
H2A.1
macroH2A 1macroH2A 1

H
A

:m
ac

r
oH

2A
.1

D

ACTB

0.0
0.2

sh
R

D

sh
M

1

sh
M

2

m
sh

R
D

sh
M

1

sh
M

2

ES
[4

]

HEKB

ACTB
macroH2A.1macroH2A.1

E

80
100
120

ic
ie

nc
y p=0.003

p=0.02

ov
er p=0.004

10
12

C

macroH2A.1
macroH2A.2
ACTB

0
20
40
60

R
el

at
iv

e 
ef

fi

Fo
ld

ch
an

ge
o

sh
R

D

0
2
4
6
8

sh
R

D

sh
M

1

sh
M

2

Empty HA:macro
H2A.1

shRD shM1 shM2

Figure 2. MacroH2A Knockdown Facilitates Reprogramming

(A) Levels of mRNA for each variant quantified by qPCR, normalized to the

levels of GAPDH, and plotted relative to the control levels (shRD). Means and

SDs (n = 3) are shown.

(B) Protein levels for each variant determined by western blot. ACTB was used

as loading control. Relative protein levels of macrohistone variants in human

keratinocytes can be found in Figure S3.

(C) Upper panel shows themean and SD of the number of AP-positive colonies

obtained after four independent reprogramming experiments of keratinocytes

knocked down for macroH2A.1 (shM1) or macroH2A.2 (shM2) or control

(shRD). Each experiment was carried out in duplicate. Lower panel shows

a representative AP staining of colonies after the reprogramming of human

keratinocytes knocked down for the macrohistone variants. See Figures S4

and S5 for characterization of the established KiPSC lines.

(D) Western blot with antibodies against HA or against macroH2A.1 in kerati-

nocytes transduced with empty or HA:macroH2A.1-overexpressing vectors.

(E) Relative efficiency of reprogramming in keratinocytes transduced with

empty or HA:macroH2A.1-overexpressing vectors. AP-positive colonies

were counted and plotted as percent relative to the empty vector. The mean

and SD (n = 3) are shown. Lower panel shows a representative AP staining of

colonies after the reprogramming of human keratinocytes overexpressing

HA:macroH2A.1.

See also Table S2.
enrichment along the genome (Figure S6C) shows that

macroH2A.1 is mainly located at promoter regions and depleted

from distal intergenic regions. Therefore, we examined the pres-

ence of macroH2A.1 at ±5 kb from the TSS of known UCSC
1008 Cell Reports 3, 1005–1011, April 25, 2013 ª2013 The Authors
genes (Table S1). MacroH2A.1 occupies about one-fourth of

total genes, which are depleted of RNA Pol II (p = 1.57 3

10�206) and H3K36me3 (p = 0) (Figure 3A) and are enriched in

H3K27me3 (p = 0) (Figures 3B and S6D). In accordance, the

presence of macroH2A.1 correlated with lower levels of gene

expression (Figure S6E).

To clarify the role of macrohistone variants in reprogramming,

we compared the profile of histonemodifications around the TSS

of macroH2A.1 target genes in keratinocytes and hESCs (Fig-

ure 3C). According to this, macroH2A.1 target genes could be

distributed in five major clusters. Importantly, clusters 1, 3, and

4 correspond to genes that show increased levels of H3K4me2

in pluripotent cells compared to keratinocytes, a mark that has

been suggested to change early during reprogramming (Koche

et al., 2011). Both clusters 1 and 3 are enriched in genes marked

with bivalent domains in both keratinocytes and ESCs (p = 0) that

are involved in developmental processes (p = 4.80 3 10�64 and

p = 9.103 10�22 for clusters 1 and 3, respectively). Interestingly,

cluster 1 was found to be enriched in transcription factors (p =

1.80 3 10�83) that are tightly repressed in both keratinocytes

and ESCs (Figure 3D), whereas cluster 3 was enriched in trans-

membrane activities (p = 3.30 3 10�20) and showed a more

permissive expression in ESCs (Figure 3D). Cluster 4 corre-

sponds to genes that are highly expressed in ESCs compared

to keratinocytes (Figure 3D), including important pluripotency

transcription factors such as NANOG and SALL2. Genes

included in cluster 5 are silent and show DNA hypermethylation

in both cell types (p = 0) with a low content in CpG islands (p = 0)

and likely correspond to tissue-specific genes (Barrero et al.,

2012; Fouse et al., 2008). Cluster 2 contains a large number of

macroH2A.1 target genes that are marked with H3K4me3

alone in human keratinocytes and are highly expressed in both

ESCs and keratinocytes; however, the levels of macroH2A.1 at

these genes are low compared to genes marked with

H3K27me3 (Figure 3E).

TheKnockdown ofMacroH2A.1 Facilitates theRegain of
H3K4me2at PluripotencyGenesduringReprogramming
Our data suggest potential antagonistic roles for macroH2A.1

occupancy and presence of H3K4me2 because (1) pluripotency

genes are active and marked with H3K4me2 in ESCs, while

occupied by macroH2A.1 and silent in keratinocytes; and (2)

the levels of macroH2A.1 at bivalent genes drop at the TSS

where the levels of H3K4 methylation peak (Figure 3E). There-

fore, we asked if the knockdown of macroH2A.1 could be

facilitating the gain of H3K4me2 at pluripotency-related and

developmental genes during reprogramming. We performed

ChIP assays to monitor the gain of H3K4me2 at macroH2A.1

target genes during the early stages of reprogramming. Figure 4

shows that cells knocked down for macroH2A.1 show higher

levels of H3K4me2 at four macroH2A.1 target genes compared

to control cells at days 4 and 8 of reprogramming.

DISCUSSION

MacroH2A.1 was selected as a differentially expressed candi-

date based on the analysis of genome-wide expression data

from several reprogramming experiments (Boué et al., 2010).
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Figure 3. Overlap of MacroH2A.1 Occu-

pancy and Histone Modifications

(A) Intersect of USCS known genes (n = 80,922)

occupied by macroH2A.1 at ±5 kb of the TSS and

presence of RNA Pol II and H3K36me3.

(B) Intersect of USCS known genes (n = 80,922)

occupied by macroH2A.1 at ±5 kb of the TSS and

presence of H3K4me3 and H3K27me3.

(C) Profile of histone modifications in human ker-

atinocytes (HEK) and in hESCs at ±2.5 kb around

the TSS of macroH2A.1 target genes.

(D) Box blot of themRNA levels of genes belonging

to the indicated clusters in keratinocytes (HEK)

and ESCs. Number of genes in each category and

p values are shown.

(E) Frequency of macroH2A.1 signal at 3 kb around

the TSS of target genes marked with bivalent

domains, H3K27me3 only, or H3K4me3 only.

See also Figure S6. List of genes occupied by

macroH2A.1 can be found in Table S1.

See also Table S2.
Comparison of the levels of expression of histone variants

between reprogramming experiments (Figure 1A) revealed

histone variants, such as HIST1H2BC, with differential expres-

sion depending on the cell of origin. However, macroH2A.1

was the most consistent differentially expressed variant among

all experiments. Although macroH2A.2 follows a similar pattern

of differential expression between somatic and pluripotent cells

at the protein level (Figure 1C), it did not show up in our list of the

top 1,000 differentially regulated genes, likely due to less

dramatic differences in expression of this gene at the mRNA

level. Both variants have been reported likely to be recruited to

the same set of target genes (Gamble et al., 2010), suggesting

that their functions might be redundant. However, the prevalent

expression of macroH2A.1 over macroH2A.2 may explain why

the macroH2A.1 knockdown had more consistent functional

consequences for reprogramming, whereas the knockdown of

macroH2A.2 showed milder effects, most likely dependent on

whether the efficiency of its knockdown could contribute to

significantly reduce the total macrohistone pool.

In agreement with our results, it has been reported that

macroH2A is quickly degraded after nuclear transfer (Chang

et al., 2010), and a recent report describes that the knockdown

of macroH2A in mouse cells facilitates nuclear transfer and high-

lights a role for macroH2A in X chromosome inactivation (Pasque

et al., 2011). However, our findings argue against a major role of

macroH2A in X chromosome inactivation because macroH2A is

barely expressed in the female human pluripotent cell line [H]

KiPS4F1 in which the X chromosome is inactivated (Barrero

et al., 2012; Tchieu et al., 2010), and we found functional implica-

tions for the reprogramming of male cells. Our results indicate
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that macroH2A.1 occupies a subset of

pluripotency and bivalent developmental

genesmarked with H3K27me3 in somatic

cells, where it likely provides an additional

layer of repression that prevents the gain

of H3K4me2 at those genes during re-

programming to pluripotency. Our find-
ings are in agreement with a recent report describing that the

gain of H3K4me2 methylation at pluripotency-related and devel-

opmental genes is a key event that takes place during the early

stages of reprogramming (Koche et al., 2011). The fact that the

macrodomain has been previously shown to block the access

of transcription factors to their binding sites (Angelov et al.,

2003) tempts us to speculate that the presence of macroH2A.1

might be compromising the accessibility of the reprogramming

factors to their binding sites. However, further dissection of the

reprogramming process will be needed in order to determine

the critical responsive elements that might be influenced by

the presence of macroH2A.1 during the reprogramming of

human cells.

In humans, macroH2A.1 was found specifically downregu-

lated in a significant fraction of breast and lung tumors, and its

reduced expression correlated with the risk of cancer recurrence

(Sporn et al., 2009). Similarly, macroH2A loss has also been re-

ported to correlate with increasing melanoma malignancy

(Kapoor et al., 2010). These data, together with our results,

suggest that these histone variants act as critical players that

preserve cell identity in humans.

EXPERIMENTAL PROCEDURES

Cell Culture

The hESC lines ES[4] and ES[2] (Raya et al., 2008) and KiPSCs lines (Aasen

et al., 2008) were grown in Matrigel-coated plates, hESC media, and subcul-

tured using trypsin. For in vitro differentiation, cells were trypsinized and

seeded into 96-well v-bottom plates in hESC media. After 3 days, EBs were

transferred to gelatin-coated dishes and cultured in differentiation media up

to 20 days. Human keratinocytes were isolated from juvenile foreskin as
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Figure 4. MacroH2A.1 Knockdown Facilitates the Gain of H3K4me2

during Reprogramming

(A) Timeline of the reprogramming experiment.

(B) The levels of H3K4me2 relative to total H3 content at the regulatory regions

of the indicated genes were determined by ChIP in human keratinocytes

(HEK), KiPSCs, and in two independent reprogramming experiments of ker-

atinocytes control (shRD) and keratinocytes knocked down for macroH2A.1

(shM1) collected at days 4 or 8 after addition of hESC media. Means and SDs

are shown.

See also Table S2.
described by Aasen et al. (2008) and cultured in EpiLife (Invitrogen). Human

fibroblasts were isolated and expanded in DMEM supplemented with 10%

fetal bovine serum and 2 mM L-glutamine.

This study was done in accordance with Spanish laws and regulations

regarding the generation of human iPSCs and following protocols approved

by the Spanish competent authorities (Comisión de Seguimiento y Control

de la Donación de Células y Tejidos Humanos del Instituto de Salud Carlos III).

Histone Variant Expression Profiling

Gene expression profiles for all core histone variants were extracted from

GSE12583, GSE9865, GSE9832, GSE13828, GSE15148, GSE14711,

GSE12390, and GSE16093. Data were imported in R, normalized by experi-

ments usingGCRMA, and a log fold changewas calculated between the states

of interest. Heatmaps showing log fold changes were generated using the

heatmap2 function from the gplots package in R.
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At passage 2, keratinocytes were transduced with lentiviral vectors to

knock down the expression of macroH2A.1 or macroH2A.2 or to overexpress

HA:macroH2A.1. Infections were done at a high moi (five to ten) to ensure at

least 90% of infection efficiency. At passage 3, 50,000–100,000 cells were

infected with retroviruses encoding for Oct4, Sox2, Klf4, and c-Myc by spin-

fection as previously described by Aasen et al. (2008), transferred to Matri-

gel-coated dishes, and cultured in hESC media. AP staining or expansion of

clones was performed after 3 weeks.

ChIP-Seq

About 4 3 106 cells were used for immunoprecipitation using anti-HA anti-

bodies (Ab9110 from Abcam) as described in Extended Experimental Proce-

dures. Two independent immunoprecipitations were performed. Libraries for

input and immunoprecipitated material were constructed selecting fragments

from 200 to 500 bp and processed in the Solexa GAIIx Sample Sequencing

(single reads of 36 nt). Sequence analysis was carried out using Galaxy

(https://main.g2.bx.psu.edu/) and Galaxy Cistrome (http://cistrome.org/). Bio-

logical replicatesweremappedagainst thehumangenomeusingBowtie (Lang-

mead et al., 2009) andpooled, resulting inmore than 403 106 uniquelymapped

reads.Genomic intervalsboundbymacroH2A.1werecalledusingSICER (Zang

et al., 2009) (window size, 200; fragment size, 260; gap size, 600; FDR, 0.01).

The relative enrichment level of ChIP regions in each gene feature with respect

to the whole genome and profiles around the TSS was analyzed using cis-

regulatory element annotation system (Shin et al., 2009). Data corresponding

to histone modifications and Pol II occupancy in human keratinocytes and

ESCs were generated in the Bradley E. Bernstein lab and downloaded from

the ENCODE Project at UCSC (http://genome.ucsc.edu/). DNA methylation

data in hESCs and keratinocytes are described in Barrero et al. (2012).

Statistical Methods

p values regarding the enrichment of macroH2A.1 occupancy at given

genomic locations were calculated using the chi-square test. The significance

of the differences in gene expression between specific categories was

analyzed using the Student’s t test. p values for gene ontology functional

annotation were obtained using the DAVID analysis tool (http://david.abcc.

ncifcrf.gov/).

ACCESSION NUMBERS

Chip-seq data have been deposited into the NCBI Gene Expression Omnibus

database under accession number GSE44400.
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