

Abstract

Let H be a fixed graph. An H-covering of G is a set $L = \{H_1, H_2, \ldots, H_k\}$ of subgraphs of G, where each subgraph H_i is isomorphic to H and every edge of G appears in at least one member of L. If there exists an H-covering of G, G is called H-coverable. An H-covering of G with k copies H_1, H_2, \ldots, H_k of H is called minimal if, for any $H_j, \bigcup_{i=1}^{k} H_i \neq H_j$ is not an H-covering of G. An H-covering of G with k copies H_1, H_2, \ldots, H_k of H is called minimum if there exists no H-covering with less than k copies of H. A graph G is called H-equicoverable if every minimal H-covering in G is also a minimum H-covering in G. In this paper, we investigate the characterization of P_3-equicoverable graphs.

© 2007 Elsevier B.V. All rights reserved.

Keywords: H-covering; H-coverable; H-equicoverable

1. Introduction and preliminaries

A vertex of degree 0 is called an isolated vertex. All graphs considered here are finite, simple and without any isolated vertices. A graph G has order $|V(G)|$ and size $|E(G)|$. The edge-degree of an edge e in a graph G, written $d_G^{(1)}(e)$ or $d^{(1)}(e)$, is the number of edges adjacent to e. We denote by $NG(e)$ the set of all the adjacent edges of e. The edge with edge-degree 0 is an isolated edge. The maximum edge-degree of G is denoted by $d^{(1)}(G)$ and the minimum edge-degree of G is denoted by $\delta^{(1)}(G)$. The path and circuit on k vertices are denoted by P_k and C_k, respectively. A star is a tree consisting of one vertex adjacent to all the others. The $(n+1)$-vertex star is the biclique $K_{1,n}$. A double-star is a tree containing two central vertices plus leaves. A graph H is a subgraph of G if $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$. Suppose that E' is a nonempty subset of E. The subgraph of G whose vertex set is the set of ends of edges in E' and whose edge set is E' is called the subgraph of G induced by E' and is denoted by $G[E']$. $G[E']$ is an edge-induced subgraph of G.

Let H be a subgraph of G. By $G - H$, we denote the graph remaining after we delete from G the edges of H and any resulting isolated vertices. A collection of copies of H, say H_1, H_2, \ldots, H_k, is called an H-packing in G if they are edge-disjoint. An H-packing in G with k copies H_1, H_2, \ldots, H_k of H is called maximal if $G - \bigcup_{i=1}^{k} E(H_i)$ contains no subgraph isomorphic to H. An H-packing in G with k copies H_1, H_2, \ldots, H_k of H is called maximum if no more than k edge-disjoint copies of H can be packed into G. A graph G is called H-equipackable if every maximal H-packing in

P3-equicoverable graphs—Research on H-equicoverable graphs

Yuqin Zhang

Department of Mathematics, Tianjin University, 300072 Tianjin, China

Received 10 April 2006; received in revised form 1 August 2007; accepted 12 August 2007

Available online 29 September 2007

E-mail addresses: yuqinzhang@163.com, yuqinzhang@126.com.

© 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.dam.2007.08.020
\[G \text{ is also a maximum } H\text{-packing in } G. \] Recently, Vestergaard et al. [2,5,3] characterized \(P_3 \)-equipackable graphs and the author and Fan [6] characterized \(M_2 \)-equipackable graphs.

A related idea of graph packing is graph covering. An \(H\text{-covering} \) of \(G \) is a set \(L = \{H_1, H_2, \ldots, H_k\} \) of subgraphs of \(G \), where each subgraph \(H_i \) is isomorphic to \(H \) and every edge of \(G \) appears in at least one member of \(L \). If \(G \) has an \(H\text{-covering} \), \(G \) is called \(H\text{-coverable} \). A graph \(G \) is called \(H\text{-decomposable} \) if it has an \(H\text{-packing} \) which is also an \(H\text{-covering} \). The following lemma is a well-known result for \(H = P_3 \):

Lemma 1.1 (Caro, Ruiz [4]). A connected graph is \(P_3\text{-decomposable} \) if and only if it has even size.

Definition 1.2. An \(H\text{-covering} \) of \(G \) with \(k \) copies \(H_1, H_2, \ldots, H_k \) of \(H \) is called minimal if, for any \(H_j, \bigcup_{i=1}^k H_i - H_j \) is not an \(H\text{-covering} \) of \(G \). An \(H\text{-covering} \) of \(G \) with \(k \) copies \(H_1, H_2, \ldots, H_k \) of \(H \) is called minimum if there exists no \(H\text{-covering} \) with less than \(k \) copies of \(H \). A graph \(G \) is called \(H\text{-equicoverable} \) if every minimal \(H\text{-covering} \) in \(G \) is also a minimum \(H\text{-covering} \) in \(G \).

In this paper, we characterize \(P_3\text{-equicoverable} \) graphs.

The following proposition is clearly true.

Proposition 1.3. A graph is \(P_3\text{-coverable} \) if and only if it has no isolated edges.

Note that when \(G \) is isomorphic to \(K_2 \) or \(M_2 \), it is not \(P_3\text{-coverable} \). When \(G \cong P_3 \), \(G \) is clearly \(P_3\text{-equicoverable} \). So we characterize \(P_3 \)-graphs with size at least 3 and without any isolated edges in the following.

Proposition 1.4 (Ruiz [4]). Every connected graph \(G \) with at least two edges has an edge \(f \) such that \(G - f \) contains exactly one nonempty component.

Lemma 1.5. Let \(G \) be a connected graph with size \(m \geq 3 \). The number of \(P_3 \) in a minimum \(P_3\text{-covering} \) of \(G \) is \(\lceil \frac{m}{2} \rceil \).

Proof. When \(m \) is even, \(G \) is \(P_3\text{-decomposable} \) by Lemma 1.1. So \(G \) has a \(P_3\text{-covering} \) with only \(\frac{m}{2} = \lceil \frac{m}{2} \rceil \) copies of \(P_3 \) which clearly is minimum.

When \(m \) is odd, by Proposition 1.4, there exists an edge \(f \) such that the subgraph induced by \(E(G - f) \) is connected and with size even. So \(G \) has a \(P_3\text{-covering} \) with \(\frac{m-1}{2} + 1 = \frac{m+1}{2} = \lceil \frac{m}{2} \rceil \) copies of \(P_3 \) which is minimum. \(\square \)

Lemma 1.6. Let \(G \) be a connected graph with size \(m \geq 3 \) and maximum edge-degree \(k \). If \(k > \lceil \frac{m}{2} \rceil \), then \(G \) is not \(P_3\text{-equicoverable} \).

Proof. Assume that \(e \) is an edge with edge-degree \(k \) and \(N_G(e) = \{e_1, e_2, \ldots, e_k\} \). Denote \(G[\{e, e_i\}] \) by \(H_i \). Then \(L = \{H_1, H_2, \ldots, H_k\} \) is a minimal \(P_3\text{-covering} \) of \(N_G(e) \cup e \). So the minimal \(P_3\text{-covering} \) of \(G \) that contains \(H_i(i = 1, 2, \ldots, k) \) has at least \(k > \lceil \frac{m}{2} \rceil \) copies of \(P_3 \). By Lemma 1.5, \(G \) is not \(P_3\text{-equicoverable} \). \(\square \)

By Lemma 1.6, we know that

Remark 1.7. All stars \(K_{1,t}(t \geq 4) \), the paw and the graph shown in Fig. 1 are not \(P_3\text{-equicoverable} \).

For convenience, we call a connected subgraph \(G_0 \) of \(G \) forbidden if \(G_0 \) is not \(P_3\text{-equicoverable} \) and \(G - G_0 \) contains no isolated edges. Then we have the following important lemma:

Lemma 1.8. Let \(G \) be a connected graph with size \(m > 2 \). If \(G \) contains a forbidden subgraph \(G_0 \), then \(G \) is not \(P_3\text{-equicoverable} \).

![Fig. 1. The paw and a graph which are not P3-equicoverable.](image)
Proof. Since G_0 is not P_3-equicoverable, by Lemma 1.5, it has a minimal P_3-covering with k_0 copies of P_3, where $k_0 > \lceil \frac{m_0}{2} \rceil$ (m_0 is the size of G_0). Suppose that $G - G_0$ has s components G_1, G_2, \ldots, G_s. Since G_0 is forbidden, each G_i ($i = 1, 2, \ldots, s$) has no isolated edges. Denote the size of G_i by m_i. Then G has a minimal P_3-covering with k copies of P_3, where $k = k_0 + \sum_{i=1}^{s} \lceil \frac{m_i}{2} \rceil > \lceil \frac{m_2}{2} \rceil$. So G is not P_3-equicoverable. □

2. Main results

We first characterize paths and cycles which are P_3-equicoverable.

Lemma 2.1. The path P_n is P_3-equicoverable if and only if $n = 3, 4, 5, 6, 8$.

Proof. We can easily verify that P_3, P_4, P_5, P_6, P_8 are all P_3-equicoverable.

The path P_7 has a minimal P_3-covering with $4 > 3$ copies of P_3, so it is not P_3-equicoverable. When $n \geq 9$, P_7 is a forbidden subgraph of P_n. By Lemma 1.8, P_n ($n \geq 9$) is not P_3-equicoverable. □

Lemma 2.2. The cycle C_n is P_3-equicoverable if and only if $n = 3, 4, 5, 7$.

Proof. We can easily verify that C_3, C_4, C_5, C_7 are all P_3-equicoverable.

The cycle C_6 has a minimal P_3-covering with $4 \geq 3$ copies of P_3, so it is not P_3-equicoverable. When $n \geq 8$, P_7 is a forbidden subgraph of C_n. By Lemma 1.8, C_n ($n \geq 8$) is not P_3-equicoverable. □

We introduce a useful definition.

Definition 2.3. A k-extendedstar is a tree obtained from a star $K_{1,k}$ by performing elementary subdivisions on each edge; that is, a k-extendedstar has one vertex of degree k (called the center of the k-extendedstar), k vertices of degree 2 and k leaves. We denote it by S^*_k.

See Fig. 2 for a 7-extendedstar S^*_7.

The following lemma is clearly true:

Lemma 2.4. Each k-extendedstar is P_3-equicoverable.

Remark 2.5. Clearly, P_3 can be denoted by S^*_1 and P_5 can be denoted by S^*_2.

Then we consider graphs that contains a cycle.

For convenience, we denote by $C_3 \cdot S^*_k$ a graph obtained from a cycle C_3 and a k-extendedstar S^*_k ($k \geq 1$) by identifying one vertex of the cycle C_3 with the center of S^*_k. See Fig. 3 for $k = 4$.

Lemma 2.6. Let G be a connected graph that is not a cycle. If G contains a 3-cycle, then G is P_3-equicoverable if and only if G is a graph of the form $C_3 \cdot S^*_k$.
Proof. Each graph \(C_3 \cdot S_k^+ \) is clearly \(P_3 \)-equicoverable.

Conversely, suppose that \(G \) is a \(P_3 \)-equicoverable graph that contains a 3-cycle. Let \(v_1, v_2, v_3 \) be the vertices of such a 3-cycle in \(G \). Since \(G \) is not a cycle and \(G \) is connected, there exists a vertex \(v_4 \) which is adjacent to some \(v_i (i = 1, 2, 3) \), say \(v_3 \).

Define \(S = \{v_1v_2, v_2v_3, v_1v_3, v_3v_4\} \). For the paw \(G[S] \), we first consider four cases.

Case 1: There exists no isolated edge in \(G - G[S] \). So \(G[S] \) is forbidden. By Lemma 1.8, \(G \) is not \(P_3 \)-equicoverable. This is a contradiction.

Case 2: There exist two isolated edges \(e_1, e_2 \) in \(G - G[S] \). Up to isomorphism, there are just six possibilities.

Subcase 1: One of the isolated edges is incident with \(v_1 \), the other is incident with \(v_2 \). We denote them by \(v_1u_1 \) and \(v_2u_2 \). Then the subgraph induced by the edges \(\{u_1v_1, v_1v_2, v_2u_2, v_2v_3\} \) is forbidden.

Subcase 2: One of the isolated edges is incident with \(v_1 \), the other is incident with \(v_3 \). We denote them by \(v_1u_1 \) and \(v_3u_2 \). Then the subgraph induced by the edges \(\{v_1v_3, v_2v_3, u_2v_3, v_4v_3\} \) is forbidden.

Subcase 3: One of the isolated edges is incident with \(v_1 \), the other is incident with \(v_4 \). We denote them by \(v_1u_1 \) and \(v_4u_2 \). Then the subgraph induced by the edges \(\{v_1v_3, v_2v_3, u_2v_4, v_4v_3\} \) is forbidden.

Subcase 4: One of the isolated edges is incident with \(v_3 \), the other is incident with \(v_4 \). We denote them by \(v_3u_1 \) and \(v_4u_2 \). Then the subgraph induced by the edges \(\{v_1v_3, v_2v_4, u_2v_4, u_4v_3\} \) is forbidden.

Subcase 5: One of the isolated edges is \(v_1v_4 \), the other is incident with \(v_3 \). We denote it by \(v_3u_1 \). Then the subgraph induced by the edges \(\{v_1v_3, v_2v_3, u_1v_3, v_4v_3\} \) is forbidden.

Subcase 6: One of the isolated edges is \(v_1v_4 \), the other is incident with \(v_2 \). We denote it by \(v_2u_1 \). Then the subgraph induced by the edges \(\{v_1v_2, v_2v_3, v_1v_3, v_2u_1\} \) is forbidden.

In all subcases, \(G \) is not \(P_3 \)-equicoverable; that is, \(G - G[S] \) cannot contain two isolated edges.

Case 3: There exist three isolated edges \(e_1, e_2, e_3 \) in \(G - G[S] \). Up to isomorphism, there are just three possibilities.

Subcase 1: \(e_1 = u_1v_1, e_2 = u_2v_2, e_3 = u_3v_3 \). Then the subgraph induced by the edges \(\{v_1v_3, v_2v_3, v_3u_4, v_3u_3\} \) is forbidden.

Subcase 2: \(e_1 = u_1v_1, e_2 = u_2v_3, e_3 = u_3v_4 \). Then the subgraph induced by the edges \(\{v_2v_3, u_2v_3, v_3v_4, v_4u_3\} \) is forbidden.

Subcase 3: \(e_1 = u_1v_1, e_2 = u_2v_2, e_3 = u_3v_4 \). Then the subgraph induced by the edges \(\{v_1v_3, v_2v_3, v_3u_4, v_4u_3\} \) is forbidden.

So \(G - G[S] \) cannot contain three isolated edges.
Case 4: There exist four isolated edges e_1, e_2, e_3, e_4 in $G - G[S]$. $e_1 = u_1v_1, e_2 = u_2v_2, e_3 = u_3v_3, e_4 = u_4v_4$. Then G is the graph $G[S] \cup \{e_1, e_2, e_3, e_4\}$ which contains a forbidden subgraph induced by the edges $\{u_3v_3, v_2v_3, v_3v_4, v_4u_4\}$.

So $G - G[S]$ cannot contain four isolated edges.

Thus there remains only one possibility: the graph $G - G[S]$ has exactly one isolated edge e. Define $G_0 = G[S] \cup \{e\}$.

Then $G - G_0$ has no isolated edges. We can get the following statements:

1. The isolated edge e must be only incident with v_4 (we denote e by v_4v_5). Otherwise, if e is incident with v_1, v_2 or v_3, then $A^{(1)}(G_0) > \frac{m(G_0)}{2}$. By Lemma 1.6, the subgraph G_0 is forbidden.

So G is not P_3-equicoverable.

2. Only v_3 has neighbors in $G - G_0$.

 (i) By (1), v_4 and v_5 have no other neighbors in $G - G_0$.

 (ii) Vertices v_1 and v_2 have no other neighbors in $G - G_0$.

Otherwise, if v_1 and v_2 have other neighbors (edge v_1v_2 has adjacent edge) in $G - G_0$, let $G_1 = G_0 - v_1v_2$. Since there are no isolated edges at v_3, v_4 and v_5 in $G - G_0$, there are no isolated edges at v_3, v_4 and v_5 in $G - G_1$. Then $G - G_1$ has no isolated edges, G_1 is forbidden.

So G is not P_3-equicoverable. This is a contradiction.

3. For any adjacent vertex u of v_3, $d(u) = 2$.

 Otherwise, let u be a neighbor of v_3. Whether $d(u) = 1$ or $d(u) \geq 3$, the subgraph induced by the edges $\{v_2v_3, uv_3, v_3v_4, v_4v_5\}$ is always forbidden.

4. In $G - G_0$, all the paths beginning with v_3 have length no more than 2.

 Otherwise, if there exists a l-path $v_3u_1u_2 \ldots u_l (l \geq 3)$ with one endpoint v_3 in $G - G_0$, we can find a forbidden subgraph induced by the edges $\{u_1v_3, u_2v_3, v_3v_4, v_4v_5\}$.

From above, G is a graph of the form $C_3 \cdot S_k^*$. □

We denote by $C_4 \cdot P_2 \cdot S_k^*$ a graph obtained from a cycle C_4 and a k-extended star $S_k^* (k \geq 0)$ by adding an edge between a vertex of the cycle C_4 and the center of the k-extended star. See Fig. 4 for $k = 4$.

Lemma 2.7. Let G be a connected graph that is not a cycle. If G contains a 4-cycle, then G is P_3-equicoverable if and only if G is a graph of the form $C_4 \cdot P_2 \cdot S_k^*$.

Proof. Clearly, each graph $C_4 \cdot P_2 \cdot S_k^*$ is P_3-equicoverable.
Conversely, suppose that G is a P_3-equicoverable graph that contains a 4-cycle. By Lemma 2.6, G contains no 3-cycle. Let v_1, v_2, v_3, v_4 be the vertices of such a 4-cycle in G. Since G is not a cycle and is connected, there exists a vertex v_5 which is adjacent to some $v_i (i = 1, 2, 3, 4)$, say v_3.

Let G_0 be the subgraph induced by the edges $\{v_1v_2, v_2v_3, v_3v_4, v_3v_5\}$. For $G - G_0$, we first consider four cases.

Case 1: The graph $G - G_0$ has four isolated edges. One must be v_1v_4. Denote the others by u_2v_2, u_3v_3, u_4v_5. Then G is the graph $G_0 \cup \{v_1v_4, u_2v_2, u_3v_3, u_4v_5\}$ which contains a forbidden subgraph induced by the edges $\{u_2v_2, v_1v_2, v_2v_3, v_3u_3\}$.

So G is not P_3-equicoverable. This is a contradiction; that is, $G - G_0$ cannot contain four isolated edges.

Case 2: The graph $G - G_0$ has three isolated edges e_1, e_2, e_3. Since G has no 3-cycle, there are four possibilities.

Subcase 1: They are, respectively, incident with v_2, v_3, v_5. Denote them by $e_1 = u_2v_2, e_2 = u_3v_3, e_3 = u_4v_5$. Then the subgraph induced by the edges $\{u_2v_2, v_1v_2, v_2v_3, v_3u_3\}$ is forbidden.

Subcase 2: One of the isolated edges is v_1v_4, the others are, respectively, incident with v_2 and v_3 (denote them by v_2u_2, v_3u_3). Then the subgraph induced by the edges $\{v_2v_2, v_3u_4, v_3v_5, v_3u_3\}$ is forbidden.

Subcase 3: One of the isolated edges is v_1v_4, the others are, respectively, incident with v_2 and v_5 (denote them by v_2u_2, v_5u_4). Then the subgraph induced by the edges $\{v_3v_2, v_3u_4, v_3v_5, v_5u_4\}$ is forbidden.

Subcase 4: One of the isolated edges is v_1v_4, the others are, respectively, incident with v_3 and v_5 (denote them by v_3u_3, v_5u_4). Then the subgraph induced by the edges $\{v_3u_3, v_3v_4, v_3v_5, v_5u_4\}$ is forbidden.

So $G - G_0$ cannot contain three isolated edges.

Case 3: The graph $G - G_0$ has two isolated edges e_1, e_2. Since G has no 3-cycle, there are six possibilities.

Subcase 1: One of the isolated edges is v_1v_4, the other is incident with v_2 (denote it by v_2u_1). Then the subgraph induced by the edges $\{v_4v_1, v_1v_2, v_2v_3, v_2u_1\}$ is forbidden.

Subcase 2: One of the isolated edges is v_1v_4, the other is incident with v_3 (denote it by v_3u_1). Then the subgraph induced by the edges $\{v_4v_3, v_2v_3, u_1v_3, v_3u_3\}$ is forbidden.

Subcase 3: One of the isolated edges is v_1v_4, the other is incident with v_5 (denote it by v_5u_1). Then the subgraph induced by the edges $\{v_4v_3, v_2v_3, v_3v_5, v_5u_1\}$ is forbidden.

Subcase 4: One of the isolated edges is incident with v_2, the other is incident with v_3. Denote them by v_2u_1 and v_3u_2. Then the subgraph induced by the edges $\{u_1v_2, v_2v_3, v_3u_2, v_3u_3\}$ is forbidden.

Subcase 5: One of the isolated edges is incident with v_2, the other is incident with v_5. Denote them by v_2u_1 and v_5u_2. Then the subgraph induced by the edges $\{v_4v_3, v_2v_3, v_3v_5, v_5u_2\}$ is forbidden.

Subcase 6: One of the isolated edges is incident with v_3, the other is incident with v_5. Denote them by v_3u_1 and v_5u_2. Then the subgraph induced by the edges $\{u_1v_3, v_2v_3, v_3v_5, v_5u_2\}$ is forbidden.
In all subcases, \(G \) is not \(P_3 \)-equicoverable; that is, \(G - G_0 \) cannot contain two isolated edges.

Case 4: The graph \(G - G_0 \) has no isolated edge. So \(G_0 \) is forbidden, and \(G \) is not \(P_3 \)-equicoverable.

Thus there remains one possibility: \(G - G_0 \) has only one isolated edge \(e \). The following statements are true.

1. The edge \(e \) must be \(v_1v_4 \).
 Otherwise, since \(G \) has no 3-cycles, there are three possibilities.
 (i) The isolated edge is incident with \(v_2 \). We denote it by \(uv_2 \). Then the subgraph induced by the edges \(\{uv_2, v_1v_2, v_2v_3, v_3v_5\} \) is forbidden.
 (ii) The isolated edge is incident with \(v_3 \). We denote it by \(uv_3 \). Then the subgraph induced by the edges \(\{uv_3, v_1v_2, v_2v_3, v_3v_5\} \) is forbidden.
 (iii) The isolated edge is incident with \(v_5 \). We denote it by \(uv_5 \). Then the subgraph induced by the edges \(\{uv_5, v_5v_3, v_3v_4, v_3v_2\} \) is forbidden.

So the isolated edge \(e \) must be \(v_1v_4 \).

2. None of the vertices \(v_1, v_2 \) and \(v_4 \) has a neighbor in \(G - G_0 - e \) since the edge \(v_1v_4 \) is isolated and \(v_2 \) is symmetric to \(v_4 \) in \(G_0 \cup v_1v_4 \) (we can let \(G_0 \) be the subgraph induced by the edges \(\{v_1v_4, v_2v_3, v_3v_4, v_3v_5\} \), then the edge \(v_1v_2 \) is isolated in \(G - G_0 \)).

3. The vertex \(v_3 \) has no neighbor in \(G - G_0 - e \).
 Otherwise, if \(v_3 \) has a neighbor \(u \) in \(G - G_0 - e \), we denote by \(G_2 \) the subgraph induced by the edges \(\{uv_3, v_1v_2, v_2v_3, v_3v_5\} \). For \(G - G_2 \), since \(G - G_0 - e \) has no isolated edge, there are two possibilities.
 (i) There exists no isolated edge in \(G - G_2 \). So \(G_2 \) is forbidden.
 (ii) There exists exactly one isolated edge \(e \) which must be incident with \(u \). Then the subgraph induced by the edges \(\{v_5v_3, v_4v_3, v_3u, e\} \) is forbidden.

We can get that \(G \) is not \(P_3 \)-equicoverable. So \(v_3 \) has no neighbor in \(G - G_0 - e \).

4. The vertex \(v_5 \) has no neighbor or has neighbors with degree 2 in \(G - G_0 - e \).
 (a) If \(v_5 \) has no neighbor, then \(G = G_0 \cup v_1v_4 \). And \(G \) is clearly \(P_3 \)-equicoverable.
 (b) If \(v_5 \) has neighbors, then for any neighbor \(u \) of \(v_5 \), \(d(u) = 2 \).
 Denote by \(G_3 \) the subgraph induced by the edges \(\{uv_5, v_5v_3, v_2v_3, v_3v_4\} \).
 If \(d(u) = 1 \), there are two possibilities for \(G - G_3 \).
 (i) There exists no isolated edge in \(G - G_3 \). So \(G_3 \) is forbidden.
 (ii) There exists exactly one isolated edge \(e \) which must be incident with \(v_5 \). Then the subgraph induced by the edges \(\{v_2v_3, v_3v_5, v_5u, e\} \) is forbidden.
If \(d(u) \geq 3 \), \(G_3 \) is forbidden.
So \(d(u) = 2 \).
Another neighbor \(u_1 \) of \(u \) is a leaf. Otherwise, \(G - G_3 \) contains no isolated edge and \(G_3 \) is forbidden.
From above, \(G \) is a graph of the form \(C_4 \cdot P_2 \cdot S_k \). \(\square \)

Lemma 2.8. Let \(G \) be a connected graph that is not a cycle. If there exists a cycle with length larger than 4 in \(G \), then \(G \) is not \(P_3 \)-equicoverable.

Proof. Assume that there exists a cycle \(C = v_1 v_2 \ldots v_k v_1 \) with \(k \geq 5 \) in \(G \). Let \(V_1 = \{ v_1, v_2, \ldots, v_k \} \). We consider two cases.

Case 1: \(V_1 = V(G) \); that is, \(G \) has no vertex outside \(V_1 \). Since \(G \) is not a cycle, there exist two vertices \(v_i \) and \(v_j \) in \(V_1 \) which are adjacent. We denote by \(G_0 \) the subgraph induced by the edges \(\{v_{i+2}v_{i+1}, v_{i+1}v_i, v_iv_j, v_jv_{i-1}\} \) (subscripts modulo \(k \)). Note that all the edges in \(G - G_0 \) are attached to the \((k - 3) \)-path \(v_{i-1}v_{i-2} \ldots v_1v_kv_{k-1} \ldots v_{i+2} \) (\(k \geq 5 \)). So \(G - G_0 \) contains no isolated edges. And \(G_0 \) is forbidden. Consequently, \(G \) is not \(P_3 \)-equicoverable.

Case 2: \(V_1 \subset V(G) \); that is, \(G \) has other vertices outside \(V_1 \). Since \(G \) is connected, there exists a vertex \(v_l \) in \(V(G) - V_1 \) which is adjacent to some vertex \(v_i \) in \(V_1 \).

We denote by \(G'_0 \) the subgraph induced by the edges \(\{v_{i+2}v_{i+1}, v_{i+1}v_i, v_iv_j, v_jv_{i-1}\} \). Since \(v_{i-1} \) and \(v_{i+2} \) are endpoints of the \((k - 3) \)-path \(v_{i-1}v_{i-2} \ldots v_1v_kv_{k-1} \ldots v_{i+2} \), there are four subcases for \(G - G'_0 \):

Subcase 1: The graph \(G - G'_0 \) contains only one isolated edge \(e \). Then there are three possibilities for \(e \).

(i) It is incident with \(v_i \). We denote it by \(v_iw \). Then \(w \) and \(v_i \) have no neighbors and there is no isolated edge at \(v_i \). The subgraph induced by the edges \(\{wv_i, v_iv_j, v_iv_{i+1}, v_{i+1}v_i\} \) is forbidden.

(ii) It is incident with \(v_l \). We denote it by \(v_iw \). Then \(w \) is not in \(V_1 \). The subgraph induced by the edges \(\{wv_i, v_iv_j, v_iv_{i+1}, v_{i+1}v_i, v_{i+1}v_{i+2}\} \) is forbidden.

(iii) It is incident with \(v_{i+1} \). We denote it by \(v_iw \). Then \(w \) is not in \(V_1 \). The subgraph induced by the edges \(\{wv_i, v_iv_j, v_iv_{i+1}, v_{i+1}v_i, v_{i+1}v_{i+2}\} \) is forbidden.

Subcase 2: The graph \(G - G'_0 \) contains two isolated edges \(e_1, e_2 \). By Lemma 2.1, \(G \) contains no 3-cycles. There are three possibilities.

(i) One of the isolated edges is incident with \(v_i \), the other is incident with \(v_{i+1} \). We denote them by \(v_iw_1 \) and \(v_{i+1}w_2 \). Then the subgraph induced by the edges \(\{w_1v_i, v_iw_j, v_iv_{i+1}, v_{i+1}v_i\} \) is forbidden.

(ii) One of the isolated edges is incident with \(v_i \), the other is incident with \(v_{i} \). We denote them by \(v_iw_1 \) and \(v_iw_2 \). Then the subgraph induced by the edges \(\{w_1v_i, v_iw_j, v_iw_{i+1}, v_{i+1}v_i\} \) is forbidden.
(iii) One of the isolated edges is incident with \(v_i \), the other is incident with \(v_{i+1} \). We denote them by \(v_i w_1 \) and \(v_{i+1} w_2 \). Then the subgraph induced by the edges \(\{ w_1 v_i, v_i v_{i+1}, v_i v_{i+1} w_2 \} \) is forbidden.

Subcase 3: The graph \(G - G'_0 \) contains three isolated edges. There is only one possibility, that is, each vertex of \(\{ v_i, v_{i+1}, v_l \} \) has an incident isolated edge. We denote them by \(v_i w_1, v_i w_2, v_{i+1} w_3 \). Then the subgraph induced by the edges \(\{ w_2 v_i, v_i v_{i-1}, v_i v_{i+1}, v_i w_1 \} \) is forbidden.

Subcase 4: The graph \(G - G'_0 \) contains no isolated edge. So \(G'_0 \) is forbidden.

So \(G \) is not \(P_3 \)-equicoverable. □

Finally, we consider trees.

Except for \(P_4 \), the tree with size 3 is \(K_{1,3} \) which is clearly \(P_3 \)-equicoverable. So we consider trees with size larger than 3 in the following.

Lemma 2.9. Let \(T \) be a tree of size \(m > 3 \) that is not a path. If \(\text{diam}(T) \leq 3 \), then \(T \) is not \(P_3 \)-equicoverable.

Proof. When \(\text{diam} (T) = 2 \), \(T \) is a star \(K_{1,m} (m > 3) \) which is clearly not \(P_3 \)-equicoverable by Lemma 1.6.

When \(\text{diam} (T) = 3 \), \(T \) is a double-star which also satisfies Lemma 1.6, so \(T \) is not \(P_3 \)-equicoverable. □

We denote by \(P_2 \cdot S^*_k (k \geq 2) \) a graph obtained from a path \(P_2 \) and a \(k \)-extendedstar \(S^*_k \) by identifying an endpoint of the path \(P_2 \) with the center of the \(k \)-extendedstar \(S^*_k \). See the first graph of Fig. 5 for \(k = 5 \). We denote by \(K_{1,3} \cdot S^*_k (k \geq 1) \) a tree obtained from a star \(K_{1,3} \) and a \(k \)-extendedstar \(S^*_k \) by identifying a leaf of the star \(K_{1,3} \) with the center of the \(k \)-extendedstar \(S^*_k \). See the second graph of Fig. 5 for \(k = 3 \).

Remark 2.10. Clearly, \(P_4 \) can be denoted by \(P_2 \cdot S^*_1 \) and \(K_{1,3} \) can be denoted by \(K_{1,3} \cdot S^*_0 \).
Lemma 2.11. Let T be a tree that is not a path. If $\text{diam}(T) = 4$, then T is P_3-equicoverable if and only if T belongs to one of the three families below:

1. T is a tree $K_{1, 3} \cdot S_k^+(k \geq 1)$.
2. T is a tree $P_2 \cdot S_k^+(k \geq 2)$.
3. T is a k-extended star $S_k^+(k \geq 2)$.

Proof. Clearly, the trees described in the statement of the Lemma are all P_3-equicoverable.

Assume that T is a P_3-equicoverable tree with $\text{diam}(T) = 4$. Let $V_1 = \{v_1, v_2, v_3, v_4, v_5\}$ be the vertices of a 4-path, then v_1 and v_5 have no neighbors outside V_1.

Since $\text{diam}(T) = 4$, we have two possibilities.

1. The vertex v_2 has at least one neighbor u with degree 1 outside V_1. Then we can get the following:

 (a) The vertex u is the only neighbor of v_2 outside V_1.
 Otherwise, T contains a star $K_{1, k}(k \geq 4)$ which is forbidden.
 (b) For any adjacent vertex u_1 of v_3, $d(u_1) = 2$.
 Otherwise, if $d(u_1) = k > 2$ or $d(u_1) = 1$, we can find a forbidden subgraph induced by the edges $\{uv_2, u_1v_2, v_2v_3, v_3v_4\}$.

 (c) All the paths beginning with v_3 outside the 4-path $v_1v_2v_3v_4v_5$ have length no more than 2 since $\text{diam}(T) = 4$.

 (d) The vertex v_4 has no neighbor outside V_1.
 Otherwise, the subgraph induced by the edges $\{uv_2, u_1v_2, v_2v_3, v_3v_4\}$ is forbidden.

From above, T is a tree $K_{1, 3} \cdot S_k^+$.

2. The vertex v_2 has no neighbor outside V_1. Similar to the former proofs, we can get the following statements:

 (i) If the vertex v_3 has one neighbor u with degree 1 outside V_1, then we can get: u is the only neighbor of v_3 with degree 1; all the paths beginning with v_3 outside the 4-path $v_1v_2v_3v_4v_5$ are of length no more than 2; for any other adjacent vertex u_1 of v_3, $d(u_1) = 2$; v_4 has no neighbor outside V_1.

 So T is a tree $P_2 \cdot S_k^+.$

 (ii) If the vertex v_3 has no neighbor u with degree 1 outside V_1, then we can get: all the paths beginning with v_3 outside the 4-path $v_1v_2v_3v_4v_5$ are of length no more than 2; for any adjacent vertex u_1 of v_3, $d(u_1) = 2$; v_4 has at most one neighbor u outside V_1 and $d(u) = 1$.

 So T is a k-extended star $S_k^+(k \geq 2)$ or a tree $K_{1, 3} \cdot S_k^+$.

Proposition 2.12. Let $P = v_1v_2 \ldots v_n \ (n \geq 6)$ be a longest path of a tree T. If T is P_3-equicoverable, then v_2 and v_{n-1} have no neighbors outside P.

Proof. Suppose that \(v_2 \) has neighbors outside \(P = v_1v_2 \ldots v_n \). Since \(P \) is the longest path of a tree \(T \), then each neighbor \(u \) of \(v_2 \) outside \(P \) is of degree 1. Denote by \(T_0 \) the subgraph induced by the edges \(\{uv_2, v_1v_2, v_2v_3, v_3v_4\} \). Since \(n \geq 6 \), there are three cases for \(T - T_0 \).

Case 1: The graph \(T - T_0 \) has no isolated edges. Then \(T_0 \) is forbidden.

Case 2: The graph \(T - T_0 \) has only one isolated edge \(e \) which must be incident to \(v_2 \) or \(v_3 \). Then the subgraph induced by the edges \(\{e, v_1v_2, v_2v_3, u_1v_2\} \) is forbidden.

Case 3: The graph \(T - T_0 \) has exactly two isolated edges \(e_1, e_2 \). Then the subgraph induced by the edges \(\{e_1, u_2v_2, v_1v_2, v_2v_3\} \) is forbidden.

In all cases, \(T \) is not \(P_3 \)-equicoverable. This is a contradiction. So \(v_2 \) has no neighbors outside \(P \). By symmetry, \(v_{n-1} \) has no neighbors outside \(P \). □

A tree is called a double-extendedstar if it is obtained from two extendedstars \(S_{k_1}^* \) and \(S_{k_2}^* \) \((k_1 \geq 1, k_2 \geq 1)\) by adding an edge between their centers, which is denoted by \(S_{k_1}^* \cdot P_2 \cdot S_{k_2}^* \). See Fig. 6 for the case \(k_1 = 3, k_2 = 3 \).

Remark 2.13. We see that \(P_6 \) can be denoted by \(S_{1}^* \cdot P_2 \cdot S_{1}^* \).

Lemma 2.14. Let \(T \) be a tree that is not a path. If \(\text{diam}(T) = 5 \), then \(T \) is \(P_3 \)-equicoverable if and only if \(T \) is a double-extendedstar \(S_{k_1}^* \cdot P_2 \cdot S_{k_2}^* \) \((k_1 \geq 1, k_2 \geq 1)\).

Proof. Clearly, each double-extendedstar \(S_{k_1}^* \cdot P_2 \cdot S_{k_2}^* \) \((k_1 \geq 1, k_2 \geq 1)\) is \(P_3 \)-equicoverable.

Assume that \(T \) is a \(P_3 \)-equicoverable tree with \(\text{diam}(T) = 5 \). Let \(P = v_1v_2v_3v_4v_5v_6 \) be a longest 5-path, then \(v_1 \) and \(v_6 \) have no neighbors outside \(P \). By Proposition 2.12, \(v_2 \) and \(v_5 \) have no other neighbors, either. The following statements are true:

1. The vertex \(v_3 \) has no neighbor with degree 1.
Fig. 7. The tree $S^*_1 \cdot K_{1,3} \cdot S^*_1$.

Fig. 8. The tree $S^*_2 \cdot P_4 \cdot S^*_3$.

Otherwise, suppose that v_3 has a neighbor u with degree 1 and let T_0 be the subgraph induced by $\{v_1 v_2, v_2 v_3, u v_3, v_3 v_4\}$. For $T - T_0$, there are two possibilities:

(i) There exists no isolated edge. Then T_0 is a forbidden subgraph of T.

(ii) There exists one isolated edge e which must be incident to v_3. Then the subgraph induced by $\{v_1 v_2, v_2 v_3, u v_3, e\}$ is forbidden.

So v_3 has no neighbor with degree 1.

(2) In $T - P$, all the 2-paths beginning with v_3 are edge-disjoint. Otherwise, T contains a forbidden graph again.

(3) By symmetry, v_4 has no neighbor with degree 1 and all the 2-paths beginning with v_4 in $T - P$ are edge-disjoint. So T must be a double-extendedstar $S^*_k \cdot P_2 \cdot S^*_k (k_1 \geq 1, k_2 \geq 1)$.

We denote a tree by $S^*_k \cdot K_{1,3} \cdot S^*_k$ which is the union of two extendedstars $S^*_k \cdot S^*_k (k_1 \geq 1, k_2 \geq 1)$ and a star $K_{1,3}$ satisfying two leaves of $K_{1,3}$ are, respectively, the centers of the two extendedstars. See Fig. 7 for the case $k_1 = 1, k_2 = 1$.

Lemma 2.15. Let T be a tree that is not a path. If $\text{diam}(T) = 6$, then T is P_3-equicoverable if and only if T is a tree $S^*_k \cdot K_{1,3} \cdot S^*_k$.

Proof. Each tree $S^*_k \cdot K_{1,3} \cdot S^*_k (k_1 \geq 1, k_2 \geq 1)$ is clearly P_3-equicoverable.

Assume that T is a P_3-equicoverable tree with $\text{diam}(T) = 6$.

Let $P = v_1 v_2 v_3 v_4 v_5 v_6 v_7$ be a longest 6-path. In the same way, v_1, v_2, v_6, v_7 has no neighbor with degree 1. Similar to the proof of Lemma 2.14, neither v_2 nor v_5 has neighbor with degree 1; all the paths beginning with v_2 and v_5 are of length 2 and edge-disjoint; v_4 has exactly one neighbor with degree 1 outside P (Otherwise, P is a forbidden subgraph of T). So T is a tree $S^*_k \cdot K_{1,3} \cdot S^*_k (k_1 \geq 1, k_2 \geq 1)$.

We denote a tree by $S^*_k \cdot P_4 \cdot S^*_k$ which is the union of two extendedstars $S^*_k \cdot S^*_k (k_1 \geq 1, k_2 \geq 1)$ and a path P_4 satisfying two endpoints of P_4 are, respectively, the centers of the two extendedstars. See Fig. 8 for the case $k_1 = 2, k_2 = 3$.
Remark 2.16. Clearly, \(P_8 \) can be denoted by \(S_1^* \cdot P_4 \cdot S_1^* \).

Lemma 2.17. Let \(T \) be a tree that is not a path. If \(\text{diam}(T) = 7 \), then \(T \) is \(P_3 \)-equicoverable if and only if \(T \) is a tree \(S_{k_1}^* \cdot P_4 \cdot S_{k_2}^* \) \((k_1 \geq 1, k_2 \geq 1) \).

Proof. Each tree \(S_{k_1}^* \cdot P_4 \cdot S_{k_2}^* \) \((k_1 \geq 1, k_2 \geq 1) \) is clearly \(P_3 \)-equicoverable.

Assume that \(T \) is a \(P_3 \)-equicoverable tree with \(\text{diam}(T) = 7 \).

Let \(P = v_1v_2v_3v_4v_5v_6v_7v_8 \) be a longest \(T \)-path in \(T \). As the proofs of former lemmas, \(v_1, v_2, v_7, v_8 \) has no neighbors with degree 1, \(v_3 \) and \(v_6 \) have no neighbor with degree 1 and the 2-paths beginning with \(v_3 \) and \(v_6 \) are edge-disjoint. In the following, we only need to prove that \(v_4 \) and \(v_5 \) have no neighbor outside \(P \).

If \(v_4 \) has a neighbor \(u \) outside \(P \), we denote by \(T_0 \) the subgraph induced by the edges \(\{uv_4, v_3v_4, v_4v_5, v_5v_6\} \). For \(T - T_0 \), we consider four cases.

Case 1: There exists no isolated edge in \(T - T_0 \). So \(T_0 \) is forbidden.

Case 2: There exists only one isolated edge \(e \) in \(T - T_0 \). No matter which vertex of \(\{u, v_4, v_5\} \) is incident with \(e \), the subgraph induced by the edges \(\{uv_4, v_3v_4, v_4v_5, e\} \) is forbidden.

Case 3: There exist two isolated edges \(e_1, e_2 \) in \(T - T_0 \). If they are, respectively, incident with \(u, v_4 \) or \(v_4, v_5 \), then the subgraph induced by \(\{uv_4, v_3v_4, e_1, e_2\} \) is forbidden. If \(e_1 \) is incident with \(u \) and \(e_2 \) is incident with \(v_5 \), then the subgraph induced by \(\{uv_4, v_3v_4, v_4v_5, e_1\} \) is forbidden.

Case 4: There exist three isolated edges \(e_1, e_2, e_3 \) in \(T - T_0 \). In the same way, \(T \) also contains a forbidden subgraph induced by \(\{e_1, e_2, uv_4, v_4v_5\} \).

In all cases, \(T \) is not \(P_3 \)-equicoverable. So \(v_4 \) has no neighbor outside \(P \).

By symmetry, \(v_5 \) has no neighbor outside \(P \).

From above, we know that \(T \) is a tree \(S_{k_1}^* \cdot P_4 \cdot S_{k_2}^* \) \((k_1 \geq 1, k_2 \geq 1) \). \(\Box \)

Lemma 2.18. Let \(T \) be a tree that is not a path. If \(\text{diam}(T) = k \geq 8 \), then \(T \) is not \(P_3 \)-equicoverable.

Proof. Let \(P = v_1v_2v_3v_4v_5v_6v_7 \ldots v_kv_{k+1} \) be a longest \(k \)-path \((k \geq 8) \) in \(T \). As the proofs of former lemmas, \(v_1, v_2, v_3 \) have no neighbors with degree 1. Let \(T_0 \) denote the path \(P_1 = v_1v_2v_3v_4v_5v_6v_7 \). For \(T - T_0 \), there are four cases.

Case 1: There exists no isolated edge in \(T - T_0 \). So \(T_0 \) is forbidden. \(T \) is not \(P_3 \)-equicoverable.
Case 2: There exists only one isolated edge e in $T - T_0$. When e is incident with v_4 or v_5, the subgraph induced by the edges $\{v_3v_4, v_4v_5, v_5v_6, e\}$ is forbidden. When e is incident with v_6, the subgraph induced by the edges $\{v_4v_5, v_5v_6, v_6v_7, e\}$ is forbidden.

\[\begin{array}{c}
\text{Case 3: There exist two isolated edges } e_1, e_2 \text{ in } T - T_0. \text{ In the same way, we can always find a forbidden subgraph induced by } \{e_1, e_2, v_4v_5, v_5v_6\} \text{ or } \{v_3v_4, v_4v_5, v_5v_6, e_1\}. \\
\end{array} \]

\[\begin{array}{c}
\text{Case 4: There exist three isolated edges } e_1, e_2, e_3 \text{ in } T - T_0. \text{ Then the subgraph induced by } \{v_3v_4, v_4v_5, e_1 = u_1v_4, e_2 = u_2v_5\} \text{ is forbidden.} \\
\end{array} \]

In all cases, T is not P_3-equicoverable. \square

We summarize the characterization in the following theorem:

Theorem 2.19. Let G be a connected graph, then G is P_3-equicoverable if and only if G satisfies one of the following:

1. G is a cycle C_n ($n = 3, 4, 5, 7$);
2. G is a k-extendedstar $S^*_k(k \geq 1)$;
3. G is a graph $C_3 \cdot S^*_k(k \geq 1)$ obtained from a cycle C_3 and a k-extendedstar S^*_k by identifying one vertex of C_n with the center of the k-extendedstar S^*_k;
4. G is a graph $C_4 \cdot P_2 \cdot S^*_k(k \geq 0)$ obtained from a cycle C_4 and a k-extendedstar S^*_k by adding an edge between a vertex of the cycle C_4 and the center of the k-extendedstar;
5. G is a tree $K_{1,3} \cdot S^*_k(k \geq 0)$ obtained from a star $K_{1,3}$ and a k-extendedstar S^*_k by identifying a leaf of the star $K_{1,3}$ with the center of the k-extendedstar S^*_k;
6. G is a tree $P_2 \cdot S^*_k(k \geq 1)$ obtained from a path P_2 and a k-extendedstar S^*_k by identifying an endpoint of the path P_2 with the center of the k-extendedstar;
7. G is a double-extendedstar $S^*_{k_1} \cdot P_2 \cdot S^*_k(k_1 \geq 1, k_2 \geq 1)$;
8. G is a tree $S^*_{k_1} \cdot K_{1,3} \cdot S^*_k$, which is the union of two extendedstars $S^*_{k_1}(k_1 \geq 1), S^*_k(k_2 \geq 1)$ and a star $K_{1,3}$ satisfying two leaves of $K_{1,3}$ are, respectively, the centers of the two extendedstars;
9. G is a tree $S^*_{k_1} \cdot P_4 \cdot S^*_k$, which is the union of two extendedstars $S^*_{k_1}(k_1 \geq 1), S^*_k(k_2 \geq 1)$ and a path P_4 satisfying two endpoints of P_4 are, respectively, the centers of the two extendedstars.

For disconnected graphs, we can easily get:

Theorem 2.20. A graph G is P_3-equicoverable if and only if each component of G is P_3-equicoverable.

This problem of characterizing H-equicoverable graphs stems from the studies of H-decomposable graphs [4], randomly H-packable graphs [1] and H-equipackable graphs. There have been many results for randomly H-packable graphs and H-equipackable graphs, see [5]. So there are much related work that can be done for H-equicoverable graphs.
Acknowledgments

We are very grateful to the referees for carefully reading this paper and for many useful suggestions and corrections. We also thank Professor P. D. Vestergaard and Professor Liang Sun for their help.

References