View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

@ Journal of

Combinatorial
Theory

Series A

ACADEMIC
PRESS Journal of Combinatorial Theory, Series A 103 (2003) 383-386

http://www.elsevier.com/locate/jcta
Note

An upper bound for the number of planar
lattice triangulations

Emile E. Anclin
Institute of Mathematics, MA 6-2, TU Berlin, D-10623 Berlin, Germany

Received 10 December 2002

Abstract

We prove an exponential upper bound for the number f(m, n) of all maximal triangulations
of the m x n grid:

f(m,n) <23,

In particular, this improves a result of S.Yu. Orevkov [2].
© 2003 Elsevier Inc. All rights reserved.

We consider lattice polygons P (with vertices in Z?), for example the convex hull of
the grid P, ={0,1,...,m} x{0,1,...,n}. We want to estimate the number of
maximal lattice triangulations of P, i.e., triangulations using all integer points PnZ> in
P. These are exactly the unimodular triangulations, in which all the triangles have integer
vertices and area % From now on we will talk only about unimodular triangulations.
Denote by f(P) the number of (unimodular) triangulations of P and by f(m,n) the
number of triangulations of P, ,. S.Yu. Orevkov’s upper bound [2] is f(m,n) <43

Theorem 1. The number f(P) of maximal triangulations of a lattice polygon P is
bounded by

f(P)<2*,

where |E'| is the cardinality of the set E' of inner (non-boundary) edges of an arbitrary
unimodular triangulation of P.
In particular, the number of unimodular triangulations of the grid P, , is bounded by

f(m, l’l) <23mn7m7n <23mn.
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The haystack approach

Let P be a closed, not necessarily convex lattice polygon and int(P) its interior.
Define M = (1 7*\7*) nint(P), the possible midpoints of the inner edges of a lattice
triangulation of P.

Lemma 2. For any unimodular triangulation T of P, there is a canonical bijection from
the set E' of inner edges to the set M’ of half-integral but not integral points in P, which
sends each edge in E' to its midpoint.

Proof. The injection from E’ to M is clear.
On the other hand all unimodular triangles are SL(2,7)-equivalent to Z°-
translates of conv{0, e, e,}, so they do not contain interior points from M. O

Notation. For a subcomplex S of a triangulation of P and re M, if there is an edge

through r in S we denote it by es(r). We use a lexicographic order on (3 7)*:

(x1,01)<(x2,32) : = [y1<y2] or [y =y and x;<x].

Definition 3. A haystack H (with respect to some re M) is a subcomplex of a
triangulation of P that consists of the boundary of the polygon and of a set of
interior edges whose midpoints are the points ¥ € M with ¥ <r.

Proof of Theorem 1. The idea is to run through M lexicographically, and at each
step to add an edge through re M. We will see that in each step there are at most two
possibilities to put the new edge through r.

We proceed by induction on the totally ordered set (M, <), thus proving that the
number of haystacks with respect to some re M is <2, where ¢, is the number of
predecessors of ¥ in M. Thus after the final step (that is, after processing the largest
rin (M, <)) we have obtained that there are at most 2/ =2/l unimodular
triangulations of P.

Now for some re M consider a haystack H with respect to r (Fig. 1). We want to
add a ‘“needle” to our haystack so that the resulting subcomplex will again be a
haystack. So we consider the set 4, of possible endpoints v of edges through r,
with v<r:

A, = {veZ*|v<r and Hu{[v,v+ 26r]} is a haystack}.
We want to prove that |4,]<2 for all re M.

We say that v is visible from r if the edge [v,r] crosses no other edge or integral
point. Consider

A = {veconv({r}ud,)nZ*|v is visible from r}.
As ve A, is visible from r we have 4> A,. Furthermore v<r holds for all ve 4.

We now order A4 by the angles o(v) of 7v with the x-axis turning counter-clockwise
and starting by 7, so that we have 4 = {v1,vp, ..., vk}, o = a(vy), o <oy < --+ <o
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Fig. 2. Here 4, = {v1,v3} and 4 = {v;, v2,v3}, while by definition v,v' ¢ 4 and o) <o <w3.

Indeed, we never have «; = o;, otherwise r,v;,v; would lie on a line, but then one of
the two points v;, v; could not be visible from r, because both are <r.

Observe that v € 4,: We have v<r for all ve A, so a point v with a smaller angle to
the x-axis than the first one in A, cannot be in conv(4,u{r})> 4 (Fig. 2).

Now we consider any triangle [v;, v;41,7]. Its boundary edges [v;, 7] and [v;41,7] do
not intersect any vertices or edges of the haystack except for the endpoints v;, v;41,
since this would obstruct the visibility. Also the interior of [v;,v;+1,7] does not
contain any part of an edge of the haystack nor any integral or half-integral points,
since this would immediately yield an integral point visible from r between v; and
vi+1- (Indeed, any haystack edge meeting the interior of [r, v;, v;41] must also have an
(integral) endpoint in the interior. At least one vertex of the convex hull of the
integral points in the interior would be visible from r.) Thus we also get that the
midpoint s; := %(v,- + v;+1) is visible from r, so it must be half-integer, s;€ M. We also
have s;<r, and so ey(s;) = [v;,v;11] is an edge of the haystack, since the triangle
[vi, vit+1, 7] does not admit any alternative integral endpoints. We also derive from this
that the triangle [v;, v;11, 7] has area %.

Define w; = r + tir and ¥ = %(vl +wy), 1" = %(02 + wy). Then vy, wa, v2, w; form a
parallelogram with center r, and r, ', are on a line (parallel to (v1v;)). So either
¥<rorv'<r.

Case 1: Suppose first that ' <r.

The triangle 4 = [v),v2,w2] is unimodular as area(4) = 2area[vy, v2,1] = 3; so
there are no integer points between the line (w;w;) and the line (v;v;). The edge
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ey (r') has nonempty intersection with these two lines (but does not cross [vi, wi],
since v; €A4,).

But where could a third point ve 4, (other than vy, v;) be? The line (+r) is parallel
to (viv2), we have a(r) <oy <oy; and ' <r, v<r for all ve 4,. So all points of 4 are
on the same side of (r'r) as v; and v,. So v is on or beyond the line (v,v;) and hence
the edge through r starting at v would necessarily cross the edge ey (#'). So there can
be no other point v in A4,, that is, |4,|<2.

Case 2: The situation for ¥’ <r is similar:

The edge through " must be e(r") = [v2, wi], otherwise it would cut [v;, w;] or [vy, v2];
in the first case we would have v; ¢ A, and in the second case v, would not be visible from
r. And [vy, vp, wy] is again unimodular, so there is no possibility for a third ve 4,. O

Our Theorem 1 and its proof clearly extend to a more general situation, namely
the case of a not necessarily simply connected lattice polygon (which may have
holes), possibly with additional, fixed inner edges.

We can define the capacities ¢, , = W; see [1]. From sublinearity of f(m, n) it
follows by Fekete’s lemma [3, p. 85] that the limit capacities
1 : . ;
cm = lim logy /(m, ) ”), cs = lim 70g2f2(n )
n— oo mn n— oo n

exist. Theorem 1 yields the upper bounds

1
Cm<3__a
m

which includes the best known upper bounds for all ¢,, (compare [1]).

In generating triangulations with the ‘“haystack approach” as in the proof of
Theorem 1, one will in many situations have |4,| = 1. So probably our upper bound
¢4 <3 for the limit capacity ¢, is not sharp.

As for lower bounds, the recursion formulas for narrow strips as given in [1],
together with submultiplicativity, show that ¢, >c4>2.055.
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