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Abstract

We prove an exponential upper bound for the number f ðm; nÞ of all maximal triangulations
of the m � n grid:

f ðm; nÞo23mn:

In particular, this improves a result of S.Yu. Orevkov [2].

r 2003 Elsevier Inc. All rights reserved.

We consider lattice polygons P (with vertices in Z2), for example the convex hull of
the grid Pm;n :¼ f0; 1;y;mg � f0; 1;y; ng: We want to estimate the number of

maximal lattice triangulations of P; i.e., triangulations using all integer points P-Z2 in
P: These are exactly the unimodular triangulations, in which all the triangles have integer

vertices and area 1
2
: From now on we will talk only about unimodular triangulations.

Denote by f ðPÞ the number of (unimodular) triangulations of P and by f ðm; nÞ the
number of triangulations of Pm;n: S.Yu. Orevkov’s upper bound [2] is f ðm; nÞp43mn:

Theorem 1. The number f ðPÞ of maximal triangulations of a lattice polygon P is

bounded by

f ðPÞp2jE
0 j;

where jE0j is the cardinality of the set E0 of inner (non-boundary) edges of an arbitrary
unimodular triangulation of P:

In particular, the number of unimodular triangulations of the grid Pm;n is bounded by

f ðm; nÞp23mn	m	no23mn:
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The haystack approach

Let P be a closed, not necessarily convex lattice polygon and intðPÞ its interior.
Define M :¼ ð1

2
Z2

\Z2Þ-intðPÞ; the possible midpoints of the inner edges of a lattice
triangulation of P:

Lemma 2. For any unimodular triangulation T of P; there is a canonical bijection from

the set E0 of inner edges to the set M 0 of half-integral but not integral points in P; which

sends each edge in E0 to its midpoint.

Proof. The injection from E0 to M is clear.

On the other hand all unimodular triangles are SLð2;ZÞ-equivalent to Z2-
translates of convf0; e1; e2g; so they do not contain interior points from M: &

Notation. For a subcomplex S of a triangulation of P and rAM; if there is an edge

through r in S we denote it by eSðrÞ: We use a lexicographic order on ð1
2
ZÞ2:

ðx1; y1Þ!ðx2; y2Þ :3½ y1oy2� or ½ y1 ¼ y2 and x1ox2�:

Definition 3. A haystack H (with respect to some rAM) is a subcomplex of a
triangulation of P that consists of the boundary of the polygon and of a set of
interior edges whose midpoints are the points r0AM with r0!r:

Proof of Theorem 1. The idea is to run through M lexicographically, and at each
step to add an edge through rAM:We will see that in each step there are at most two
possibilities to put the new edge through r:
We proceed by induction on the totally ordered set ðM;!Þ; thus proving that the

number of haystacks with respect to some rAM is p2er ; where er is the number of
predecessors of r in M: Thus after the final step (that is, after processing the largest

r in ðM;!Þ) we have obtained that there are at most 2jMj ¼ 2jE
0j unimodular

triangulations of P:
Now for some rAM consider a haystack H with respect to r (Fig. 1). We want to

add a ‘‘needle’’ to our haystack so that the resulting subcomplex will again be a
haystack. So we consider the set Ar of possible endpoints v of edges through r;
with v!r:

Ar :¼ fvAZ2 j v!r and H,f½v; v þ 2~vvr�g is a haystackg:
We want to prove that jArjp2 for all rAM:
We say that v is visible from r if the edge ½v; r� crosses no other edge or integral

point. Consider

A :¼ fvAconvðfrg,ArÞ-Z2 j v is visible from rg:
As vAAr is visible from r we have A+Ar: Furthermore v!r holds for all vAA:
We now order A by the angles aðvÞ of~rrv with the x-axis turning counter-clockwise

and starting by p; so that we have A ¼ fv1; v2;y; vkg; ai ¼ aðviÞ; a1oa2o?oak:
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Indeed, we never have ai ¼ aj ; otherwise r; vi; vj would lie on a line, but then one of

the two points vi; vj could not be visible from r; because both are !r:

Observe that v1AAr: We have v!r for all vAA; so a point v with a smaller angle to
the x-axis than the first one in Ar cannot be in convðAr,frgÞ*A (Fig. 2).
Now we consider any triangle ½vi; viþ1; r�: Its boundary edges ½vi; r� and ½viþ1; r� do

not intersect any vertices or edges of the haystack except for the endpoints vi; viþ1;
since this would obstruct the visibility. Also the interior of ½vi; viþ1; r� does not
contain any part of an edge of the haystack nor any integral or half-integral points,
since this would immediately yield an integral point visible from r between vi and
viþ1: (Indeed, any haystack edge meeting the interior of ½r; vi; viþ1� must also have an
(integral) endpoint in the interior. At least one vertex of the convex hull of the
integral points in the interior would be visible from r:) Thus we also get that the

midpoint si :¼ 1
2
ðvi þ viþ1Þ is visible from r; so it must be half-integer, siAM: We also

have si!r; and so eHðsiÞ ¼ ½vi; viþ1� is an edge of the haystack, since the triangle
½vi; viþ1; r� does not admit any alternative integral endpoints. We also derive from this

that the triangle ½vi; viþ1; r� has area 1
4
:

Define wi :¼ r þ~vvir and r0 :¼ 1
2
ðv1 þ w2Þ; r00 :¼ 1

2
ðv2 þ w1Þ: Then v1;w2; v2;w1 form a

parallelogram with center r; and r; r0; r00 are on a line (parallel to ðv1v2Þ). So either
r0!r or r00!r:

Case 1: Suppose first that r0!r:

The triangle D ¼ ½v1; v2;w2� is unimodular as areaðDÞ ¼ 2 area½v1; v2; r� ¼ 1
2
; so

there are no integer points between the line ðw1w2Þ and the line ðv1v2Þ: The edge
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Fig. 1. A haystack with respect to r:

Fig. 2. Here Ar ¼ fv1; v3g and A ¼ fv1; v2; v3g; while by definition v; v0eA and a1oa2oa3:
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eHðr0Þ has nonempty intersection with these two lines (but does not cross ½v1;w1�;
since v1AAr).

But where could a third point vAAr (other than v1; v2) be? The line ðr0rÞ is parallel
to ðv1v2Þ; we have aðr0Þoa1pai; and r0!r; v!r for all vAAr: So all points of A are
on the same side of ðr0rÞ as v1 and v2: So v is on or beyond the line ðv1v2Þ and hence
the edge through r starting at v would necessarily cross the edge eHðr0Þ: So there can
be no other point v in Ar; that is, jArjp2:

Case 2: The situation for r00!r is similar:
The edge through r00 must be eðr00Þ ¼ ½v2;w1�; otherwise it would cut ½v1;w1� or ½v1; v2�;

in the first case we would have v1eAr and in the second case v2 would not be visible from
r: And ½v1; v2;w1� is again unimodular, so there is no possibility for a third vAAr: &

Our Theorem 1 and its proof clearly extend to a more general situation, namely
the case of a not necessarily simply connected lattice polygon (which may have
holes), possibly with additional, fixed inner edges.

We can define the capacities cm;n :¼ log2 f ðm;nÞ
mn

; see [1]. From sublinearity of f ðm; nÞ it
follows by Fekete’s lemma [3, p. 85] that the limit capacities

cm :¼ lim
n-N

log2 f ðm; nÞ
mn

; cD :¼ lim
n-N

log2 f ðn; nÞ
n2

exist. Theorem 1 yields the upper bounds

cmp3	 1

m
;

which includes the best known upper bounds for all cm (compare [1]).
In generating triangulations with the ‘‘haystack approach’’ as in the proof of

Theorem 1, one will in many situations have jArj ¼ 1: So probably our upper bound
cDp3 for the limit capacity cD is not sharp.
As for lower bounds, the recursion formulas for narrow strips as given in [1],

together with submultiplicativity, show that cDXc442:055:
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