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Abstract

Let E/Q be an elliptic curve and lep be an odd supersingular prime fd&. In this
article, we study the simplest case of lwasawa theory for elliptic curves, namely Wt@n
is finite, III(E/Q) has nop-torsion and the Tamagawa factors férare all prime top. Under
these hypotheses, we prove thatQ,) is finite and make precise statements about the size
and structure of thep-power part of III(E/Q;). Here Q, is the n-th step in the cyclotomic
Z p-extension ofQ.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let E/Q be an elliptic curve with good supersingular reduction at an odd pgme
Let Qo be the cyclotomicZ ,-extension ofQ with subfieldsQ, of degreep”. In [8],
Kurihara proved precise statements about the size and the structure gpéne of the
Tate—Shafarevich grouflI(E/Q,) when ord,(L(E, 1)/Qg) = 0 and when the Galois
representation on thp-torsion is surjective. His proof made deep use of Kato’'s Euler
system for the Tate module & (and hence the need for an assumption on the Galois
representation).
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In this paper, we offer a completely algebraic proof of a variant of a theorem
of Kurihara (see [8, Theorem 0.1]) where his analytic assumptions are converted to
algebraic ones (equivalent under the Birch and Swinnerton-Dyer conjecture). Before
stating the result, we fix some notation. §ét= Gal(Q~/Q), I', = Gal(Qs/Q;,) and
G, = GalQ,/Q). Let A, = Z,[G,] be the group algebra at leveland A = Z ,[[I']]
be the Iwasawa algebra. ForZg,-module M, denote byM” its Pontrjagin dual.

Theorem 1.1. Let E/Q be an elliptic curve with p an odd prime of good supersingular
reduction. Assume that

(1) E(Q) is finite

(2) ptTam(E/Q).

(3) II(E/Q)[p] =0.

Then

(1) E(Q,) is finite for all n>0.

(2) ord, #II(E/Qp)) = e, Whereeg = e; =0 and

o pt4p 3+ + p— 4 for evenn>2,
n = pn71+pn—3+...+p2_"—§1for odd n>3.

(3) Whena, =0, we have
HI(E/QIp™1" = A /(S + T,
as Z,[G,]-modules where
Jf ={f ed,:y(f)=0for y a char. of G, of even(resp odd) order}.

Remark 1.2. The above theorem is false for = 2. If E = Xo(19) then E(Q) is
finite, Tam(E/Q) is odd andIII(E/Q)[2] = 0. However, E(Q(+/2)) is infinite and
Q(V/2) is the first step in the cyclotomiZ,-extension.

Remark 1.3. The conclusion of Theorem 1.1 is identical to Kurihara's theorem; it is
only the hypotheses that have changed. For supersingutae Birch and Swinnerton-

Dyer conjecture predicts that oydL(E, 1)/Qg) = 0 if and only if E(Q) is finite,
ptTam(E/Q) and II(E/Q)[p] = 0. The “if part” is still unknown, but the “only if”

part is known via Kato's Euler system when the Galois representation op-tibvesion

is surjective. Hence the above hypotheses are logically weaker than Kurihara’s since
we make no assumptions on the Galois representation. In particular, our results apply
to CM curves.

The analogue of Theorem 1.1 in the ordinary case follows from Mazur’s control
theorem. However, in the supersingular case the control theorem fails (due to the
triviality of the universal norms of the formal grouB/Q, along the local cyclotomic
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Z ,-extension). We will make a careful study of the how the control theorem fails in
terms of E and combining this with a precise enough description of this formal group,
we will be able to prove Theorem 1.1.

These techniques are not new as they form the basis of Perrin—Riou’s construction
of an algebraig-adic L-function in [12]. Also, many of the calculations in this paper
were inspired by the beautiful ideas of Kurihara in [8]. It should also be mentioned
that similar results were announced by Nasybullin [11] over 25 years ago, but in his
short paper no proofs were given.

One advantage to the algebraic approach of this paper is that it can be generalized
more easily toZ ,-extensions of a number field that are not necessarily cyclotomic.
To successfully carry out such a generalization, the key local input that is needed is
a good understanding of the Galois module structuretoélong the Z ,-extensions
of some finite extension oQ,. In a forthcoming paper with Adrian lovita (see [6])

a strong enough local result is obtained to generalize the results of this paper to any
Z ,-extension of a number field in which splits completely.

The format of the paper will be as follows: in the following section we will implement
the needed Iwasawa theory to precisely describe the failure of the control theorem in
terms of £. The third section will state results of Kobayashi on the structuré afs a
Galois module. In the fourth section, we will defimeand A-invariants of elements of
A, and discuss their basic properties. In the final section, we will perform the needed
computations to complete the proof of Theorem 1.1.

2. lwasawa theory

Let E/Q be an elliptic curvep some prime of good reduction ari¢l some finite
extension ofQ. We define thep-Selmer group of over K by

Sel,(E/K) = ker (Hl(K, E[p™]) — ]_[ HY(K,, E)) ,

where v runs over the places df. Also, define a looser Selmer group by dropping
the condition atp, i.e.

Sel,(E/K) = ker | HX(K, E[p™]) — ]_[ HY(K,, E)
vip

We then have the following exact sequence relating these two Selmer groups:

0 — Sel,(E/K) — Seg,(E/K) — HHl(KU, E)[p*™]. Q)
vlp
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For the infinite extensiomQ., we define SeJ(E/Qs) = lim Sel,(E/Q,) and
Serp(E/Qoo) = lim Serp(E/Qn). As mentioned in the introduction, the control the-

orem for Se}(E/Qx) fails for supersingulap. However, the control theorem for
Sel,(E/Qx) is always true.

Theorem 2.1. Let p be a prime of good reduction fdf/Q. Then the natural map
Sel,(E/Qy) — Sel,(E/Qoo)"

has finite kernel and cokernel that are bounded independent of n
Moreover if E(Q)[p] =0, ptTam(E/Q) and a;, # 1(modp) then the above map
is an isomorphism

Proof. This theorem was originally proven by Mazur in [10]. See also [9] and [3,
Chapter 3] for an exposition of this theorem that uses Galois cohomology instead of
flat cohomology. Note that in all of these papers the ordinary hypothesis is only used
in studying the primes ovar. Since we are dealing with Sehnd not Sel these proofs
apply to our situation. [J

We now work under the hypotheses of Theorem 1.1, namelypghsatsupersingular
for E, E(Q) is finite, p{Tam(E/Q) and III(E/Q)[p] = 0. Sincep is supersingular,

ap # 1(modp) and E(Q)[p] = 0. Hence, the map in Theorem 2.1 is an isomorphism
and (1) becomes

0 — Sel,(E/Q,) — Sel,(E/Qu)'" — HYQu p. E)[p™]. )

whereQ, , denotes the completion @, at the unique prime ovep.
The main reason for the failure of the control theorem in the supersingular case is
that the local condition defining the Selmer grouppatlisappears ove®...

Proposition 2.2. For p supersingular
H*Qoo,p, E)[p®1=0
and hence

Sel, (E/Qx) = Sel,(E/Qw).

Proof. By Tate local duality, the vanishing (ﬁ[l(Qoo,p, E)[p*™] is equivalent to the
triviality of the universal norms of£ along Qco,p/Qp. This vanishing of universal
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norms was originally proven by Hazewinkel in [4]. See [1] for a general discussion of
this phenomenon for deeply ramified extensionsl

HenceX o := Sel,(E/Qu0)" = Sel,(E/Qx)". Dualizing (2) and applying Tate local
duality yields

EQu,p) — (Xoo)r, —> Sel,(E/Q)" — 0, (3)

where M, denotes the’,-coinvariants ofM. The above sequence can be thought of
as describing the failure of the control theorem in terms of the formal group.

We make one last alteration of the above sequence by explicitly desctihingrhe
following is well known, but we include a proof for completeness.

Proposition 2.3. Under our hypothesesX, is a free A-module of rankl.

Proof. Whenp is supersingular, it is always true that therank of X, is greater than

or equal to 1 by a result of Schneider (see [13, Corollary 5]). For a discussion of this

theorem using Galois cohomology rather than flat cohomology see [2, Proposition 2.6].
Under our hypotheses, we prove an upper bound omthank of X, and establish

that it is a freeA-module. Note that sincé (Q) is finite and III(E/Q)[p] = 0 we

have that Sel(E/Q) = 0. Hence, taking: = 0 in (3) yields

EQp)— (Xoo)r -

Furthermore,E(Q,,) = Z, and since(X)r is infinite the above map is an iso-
morphism. A compact version of Nakayama’s lemma then implies Xhatis a free
A-module of rank 1. O

Therefore, we can choose an isomorphismX,, = A which induces isomorphisms
(Xoo)r, = A, for eachn. Then (3) becomes

EQup) —5 Ay — Sel,(E/Q)" — O. (4)

One can verify the commutativity of

A F,
E(Qn,p) I An

Trn/n—ll l”n/n—l (5)

~ F,—
E(anl,p) —1> Anfl
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and

~ F,
E(an) — Ay

in—l/nT T"n—l/n (6)

A Fo_
E(Qn—l,p) —l> An—l

where Ty, is the trace mapg,,,—1 is the natural projection;,_1,, is the natural
inclusion andv,_1,, is defined by

vn—l/n(o-) = Z T

T—>0
teGy

for ¢ € G,_1. (See [6, Proposition 6.3] for a detailed explanation of why these diagrams
commute.)

3. Formal groups

We now state a result of Kobayashi that describes generatorEA(Qﬁw) as a
Galois module.

Theorem 3.1. Let p be an odd prime. For each>0 there existsc, € E(Q,,,,,) such
that

1) Trn/n—lcn =dapCp-1 — in—Z/n—l(Cn—Z) for n>2.
-1
(2) Trl/ocl = (ap — app—Z) Q.
Furthermore as a Galois modul,eE(Qn,,,) is generated by, and i,—1/,(c,—1) for
n>1and E(Q,) is generated byy.

Proof. The pointsc,, were originally constructed by Perrin-Riou in [12]. In [7], Kobayashi
gives an alternate construction of these points using Honda theory and proves that they
generate the formal group as a Galois module (see [7, Proposition 8.12]).

We point out that Kobayashi assumes thgt= 0, but with minor modifications his
arguments would work for any,, divisible by p. Namely, in the notation of [7], one
has a formal groupF := F,, whose logarithm is of Honda type® + p. We must
replaceF with a formal group whose logarithm is of Honda type— apt + p.

Consider the sequendey} defined byx_1 =0, xo =1 and

pXp — apxg—1+xx—2=0
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for k>1. Then there exists a formal group(a,) such that

1005, (X) = Y (X + P — 1)
k=0

and its logarithm is of Honda typé —apt + p (see [5, p. 221]).

A second change that needs to be made is that Kobayashi chooses an element
pZ, such that log-(¢) = p/(p+1). To make the computations of [7, Lemma 8.9] work
out for generaki,, we must choose € pZ, such that Iog(ap)(s) =p/(p+1—ap).

With these two modifications, Kobayashi's arguments apply to this more general setting.
|

4. p and A-invariants

The proof of Theorem 1.1 will boil down to understanding the size of certain explicit
quotients of 4,. In this section, we introduce the notion @f and A-invariants of
elements of4,, to help in determining the size of such quotients.

Definition 4.1. For non-zerof € A, the p-invariant of f is the unique integep(f)
such thatf € ptH) A, — ptH+1y,.

_Let I, be the augmentation ideal of, and Iet1~,, be the augmentation ideal of
Ay = F,[Gal.

Definition 4.2. For non-zerof € A, the /-invariant of f is the unique integei(f)
such that the reduction mgdof p~#() f lands in /") — JA+1,

Remark 4.3. Theseu and A-invariants of elements off,, are related to the standard
Iwasawa invariants of elements df Namely, if f € A and f, is its image in4,, then

u(f) = p(fn) and A(f) = A(fa)
if A(f) < p".

Since the ring4, is not a domain, these invariants do not share all of the basic
properties of standard and J-invariants. For instance, singed,, is not a prime ideal,
there existf, g € A, such thatu(f) = u(g) = 0 but u(f - g) > 0. The following
simple lemma states some weaker properties that are true of these invariants.

Lemma 4.4. For f, g € A, we have

1) u(f - )= ulf) + ucg).
(2) If u(f-g) =0theni(f-g) =i(f)+ Ag).
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These invariants can be used to describe the valuations of elemeris efaluated
at finite order characters as demonstrated in the following lemma.

Lemma 4.5. Let f € A, and let y be a character ofG, of order p". If A(f) <
p"(p —1) then

;L’(f)
or p()(( )) ,Ll(f) n—l( 1)

Proof. Let y be a generator of;,,. Theny —1 is a generator of the augmentation ideal
I,. From the definitions ot and A-invariants, we have that

£ = phth ((y — Dyt p g)
foru € A andg € 4,. Hence

ord, (2(f)) = u(f) 4+ min {A(f) - ord, (x(y) — 1), 1+ ord, (x(2))}

~ )
AT TP

sinceA(f) < p" Yp-1. O

We will need to understand how these invariants are affected by the maps,
andm,,,—1. We first give a lemma that describes the relations between these two maps.
Lemma 4.6. For f € A,_1 and g € A, we have

(1) nn/n—l("n—l/n(f)) =p- f
(2) anl/n(ﬂ:n/nfl(g)) = én -8
3 im(anl/n) =, A,

whereé, =3, 10 € Z,[G,l.

Proof. This lemma follows directly from the definitions.[]

We now compute the: and Z-invariant of the element, defined in the previous
lemma.

Lemma 4.7. We have thap(¢,) = 0 and A(¢,) = p" — p" L.
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Proof. Let y be a generator of5,,. Then bothl, and I, are principal generated by
y—1. So

n
mP

p—1

n—1 /[ — l n_ on—1

Go=y o= ¥ =W,T15(V—l)p P~ (modp)
oP=1 a=0 -

and henceu(¢,) =0 andi(¢,) = p" — p"~ L. O

Remark 4.8. If we fix a generator ofG,, and thus an isomorphism
An ZZ,ITN/(A+ T = 1),

the elementé, € A, is identified with ®,(1+ T) where @, is the p"'th cyclotomic
polynomial. Note that the computations of the previous lemma agree with the compu-
tations of the standarg and A-invariants of®,(1+ T) as predicted by Remark 4.3.

The following proposition summarizes how the Iwasawa invariants interact with the
mapsv,_1/, and m,/,_1.

Proposition 4.9. For f € A,_1 and g, h € A, we have

1) Wy /n—1(8)) 2 u(g) and thus ifﬂ(nn/nfl(g)) = 0 then u(g) = 0.
(2 If .“(nn/n—l(g)) = u(g) then /l(nn/n—l(g)) = (g).

(3) uvn—1/n(f)) = p(f).

@) AOn—1/a(f) = p" = p" T+ ().

Proof. Part 1 follows directly from the definitions. For part 2, we have that 7,? if
and only if m,/,—1(g) € I¢_; since these augmentation ideals are principal. (Hgre
represents the reduction gfmodp.) Thus, A(m,/,-1(g)) = A(g) since thep-invariant
of both of these elements are the same.

For part 3, write f = p#\") £ with u(f’) = 0. Thenv,_1/,(f) = p*Pvu_1/n (')
and if we knew thatu(v,—1/,(f")) = 0 then we would haveu(v,—1/,(f)) = u(f).
Hence, we have reduced to the case wherg) = 0. Now pick anyg € A, such that
Tan—1(g) = f. (Note then by part 1;(g) = 0.) So

Vn—1/n(f) = Vu—1/n (Tn/n-1(8)) = ¢n- 8

by Lemma 4.6.2 and thus

UOn—1/n(f)) = (&, - &) = u(g) = 0= u(f).
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For the last part, as in part 3, we may assume jhgt) = 0. Then pickg € 4,
lifting f and thus

j~(Vn—l/n(f)) = ;L(én : g)

= A& + Ag) (by part 3 and Lemma 4.4)
=p" — p" L+ A(mum-1(f)) (by Lemma 4.7)
=p"—p" L+ i) (by part 2) O

We introduce one more lemma which will be useful in the following section.

Lemma 4.10. Let f, g be elements off, such thatf - g € im(v,_1/,). If u(f) =0
and A(f) < p"~! theng € IM(vy_1/s).

Proof. By Lemma 4.6.3, inw,_1/,) = &, 4,. Thus, imv,_1/,) is a prime ideal in4,
since A, /&, An = Z,,[upn] which is a domain. Hencg - g € im(v,_1/,) implies that

either f € im(v,—1/,) OF g € IMVy—1/n).
If f eim(v,_1/,) then f =, h for someh € A,. Sinceu(f) =0,

M= ME) = p" = pizpnt

by Lemma 4.4. This contradicts our hypothesis and thusim(v,_1/,). O

5. Main argument

Recall the mapF, : £(Q,.,) — A, defined in (4). Forc, € E(Q,.,) defined in
Theorem 3.1, set

P, = Fy(cp) € 4,.

The trace relations between thg then yield relations between th®, by diagrams (5)
and (6). We have

Tt 1/n(Pnt1) = ap Py — Vu—1/n(Pn-1),
my0(P1) = uPo with u € Z[X,. @)
Sincec, andi,—1/,(ch—1) generateE(Qn,,,) as a Galois module, (4) yields
An/(Pu, Va—1/n(Pn-1)) = Sel,(E/Q,)" for n>1 and
Ao/(Po) = Sel,(E/Q)". (8)

Our goal is thus to compute the size 4f,/(P,, Va—1/n(Pa—1)).
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We first compute the: and A-invariants of P,. Forn>2, let

B pn—l_pn—2+...+p—1 for 2| n
qn = pn—l_pn—2+...+p2—p fOI’ZJ[n

and setgg = g1 = 0.

Lemma 5.1. For n >0,

(1) M(Pn) =0.
(2) }(Pn) =dn-

Proof. We have Ag/(Po) = Sel,(E/Q)" = 0. Hence Py is a unit and thusP; is a
unit sincemny o(P1) = uPo with u Z;. Therefore,u(Po) = u(P1) = 0. Proceeding by
induction, we assume that(P;) = 0 for k <n. We have

M(nn+l/n(Pn+l)) = ,u(aan - vn—l/n(Pn—l)) (by (7))

= p(Va—1/n(Pn-1)) (sincep | ap)
= u(Py-1) (by Proposition 4.9.8
=0.

Thus, by Proposition 4.9.1y(P,+1) = 0 which completes the proof of part 1.

As for part 2, we have already seen thf and P; are units and hencé(Pp) =
A(P1) = 0 = go = ¢g1. Again, proceeding by induction, assume thaP;,) = g for
k<n. We have

}~(7Tn+l/n(Pn+l)) = i(aan - Vn—l/n(Pn—l))
= l("n—l/n(Pn—l))
=p"— p" L+ (P (by Proposition 4.9 %
=p" =P g1
= qn+1.

Since we have already seen thatr,.1/,(P,+1)) = 0, by Proposition 4.9.2, we con-
clude thati(Py+1) = A(Mus1/n(Put1)) = gu+1 completing the proof. O

The following lemma will be key in performing the necessary induction to compute
the size ofA/(Py, vi—1/n(Pr—1)).

Lemma 5.2. We have an exact sequence

Vn—1/n

0— Ay-1/du1 —%" A/dy 5> Zp[pn)/(2(Py)) —> O
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where J, = (P, Vo—1/n(Py—1)) for n > 0, Jo = (Po) and y is a character ofG, of

order p".

Proof. We check thatv,_1/,(J,—1) € J, and that the first map is injective. The other
details are straightforward to verify.
We have that

vn—l/n(Vn—Z/n—l(Pn—Z)) = Vn-1/n (ap Pyp_1— nn/n—l(Pn)) (by (7))
= apvnfl/n(Pnfl) - én Py,

which lies in J, and thus
Vn—l/n(-]n—l) = (Vn—l/n(Pn—l)a Vn—l/n(vn—Z/n—l(Pn—Z))) C Ju.

Thus the first map is well-defined.
To check injectivity, letf e A,_, such thatv,_1/,(f) € J,. Then

anl/n(f) =o-P,+p- anl/n(Pnfl)

and we see that.- P, € im(v,—1/,). By Lemma 4.10,a = v,_1/,(¢/) for some
o € A,_1 since u(P,) =0 and A(P,) = g, < p"~ L. Hence

Vn—l/n(f) = Vn-1/n (05/) P+ ﬁ : Vn—l/n(Pn—l)
and applyingrn,/,—1 Yields

p-f=p- o - 7'l:n/n—l(Pn) +p- 7tn/n—l(ﬁ) - P
=p- o - (Clan—l - Vn—2/n—1(Pn—2)) +p- Tcn/n—l(ﬁ) - Py1

which lies in pJ,_1. Since 4,, is p-torsion free, we have that € J,_1 which estab-
lishes the injectivity of the first map.d

Recall the quantity, defined in Section 1.
Proposition 5.3. For n >0,
ord, (#A,/Jy) = ep.

Proof. For n = 0 we haveAg/Jo = Ag/(Pg) = 0= ¢g since Py is a unit. We proceed
by induction onn. By direct computation, Lemma 5.1 and Lemma 4.5, we have that

Ordp (#(Zp[up"]/X(Pn))) = Pn_l(P -1 ordp(X(Pn)) =dn,
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where y is a character orG,, of order p". Therefore, by induction and Lemma 5.2,
we have

Ordp (#An/Jn) = Ordp (#/1,,,1/]”,1) + Ol'dp (#(Zp[ﬂp"]/X(Pn)))

=ep_1+qn =ey. O

Proof of Theorem 1.1By (8), we have fom >0,
Sel,(E/Qu)" = A/ Jn.
Hence, by Proposition 5.3,
ord, (#Se},(E/Qn)) = ey
and, in particular, it is a finite group. Thug(Q,) is finite (proving part 1) and
ord, #II(E/Q,)[p™]) = e, (proving part 2).

Now, if a, =0 we have

Trn/m (cn) = Trn—l/m (_in—Z/n—l(Cn—Z))

=D Trn—Z/m(Cn—Z) == :I:prim—l/m(cm—l)
for somer whenm and n have different parities. Thus, by diagram (6),
7Tn/m(Pn) € im(vm—l/m)

and, by Lemma 4.6.3;(P,) = O for y of order p™. Therefore,P, € J: fore = (-1t
and

Jn = (Py, anl/n(Pnfl)) - J,:_ + Jn_-
Then, comparing sizes, we see that
HI(E/Qp™1 = Ap/(Pay Va—1/n(Pa=1)) = A/ (S5 + ;)

completing the proof of part 3.0J

Remark 5.4. Note that under Kurihara’'s hypotheses, [8, Proposition 1.2] implies that

I 407 = (00, va-1/n(00-1)),
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where 0, € A4, is the Mazur-Tate-Teitelbaum element defined via modular symbols.
Hence part 3 of Theorem 1.1 is consistent with the isomorphism

H—[(E/Qn)[poo]A = /1/(6”, Vn—l/n(en—l))

proven in [8].
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