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Abstract

Let E/Q be an elliptic curve and letp be an odd supersingular prime forE. In this
article, we study the simplest case of Iwasawa theory for elliptic curves, namely whenE(Q)

is finite, X(E/Q) has nop-torsion and the Tamagawa factors forE are all prime top. Under
these hypotheses, we prove thatE(Qn) is finite and make precise statements about the size
and structure of thep-power part ofX(E/Qn). Here Qn is the n-th step in the cyclotomic
Zp-extension ofQ.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let E/Q be an elliptic curve with good supersingular reduction at an odd primep.
Let Q∞ be the cyclotomicZp-extension ofQ with subfieldsQn of degreepn. In [8],
Kurihara proved precise statements about the size and the structure of thep-part of the
Tate–Shafarevich groupX(E/Qn) when ordp(L(E,1)/�E) = 0 and when the Galois
representation on thep-torsion is surjective. His proof made deep use of Kato’s Euler
system for the Tate module ofE (and hence the need for an assumption on the Galois
representation).

E-mail address:rpollack@math.bu.edu.
1 The author was supported by an NSF Postdoctoral Fellowship.

0022-314X/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jnt.2003.10.008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82636368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


R. Pollack / Journal of Number Theory 110 (2005) 164–177 165

In this paper, we offer a completely algebraic proof of a variant of a theorem
of Kurihara (see [8, Theorem 0.1]) where his analytic assumptions are converted to
algebraic ones (equivalent under the Birch and Swinnerton-Dyer conjecture). Before
stating the result, we fix some notation. Set� = Gal(Q∞/Q), �n = Gal(Q∞/Qn) and
Gn = Gal(Qn/Q). Let �n = Zp[Gn] be the group algebra at leveln and� = Zp[[�]]
be the Iwasawa algebra. For aZp-moduleM, denote byM∧ its Pontrjagin dual.

Theorem 1.1. LetE/Q be an elliptic curve with p an odd prime of good supersingular
reduction. Assume that

(1) E(Q) is finite.
(2) p � Tam(E/Q).
(3) X(E/Q)[p] = 0.

Then

(1) E(Qn) is finite for all n�0.
(2) ordp(#X(E/Qn)) = en wheree0 = e1 = 0 and

en =
{
pn−1 + pn−3 + · · · + p − n

2 for evenn�2,
pn−1 + pn−3 + · · · + p2 − n−1

2 for odd n�3.

(3) Whenap = 0, we have

X(E/Qn)[p∞]∧ ∼= �n/(J
+
n + J−

n )

as Zp[Gn]-modules where

J±
n := {f ∈ �n : �(f ) = 0 for � a char. of Gn of even(resp. odd) order}.

Remark 1.2. The above theorem is false forp = 2. If E = X0(19) then E(Q) is
finite, Tam(E/Q) is odd andX(E/Q)[2] = 0. However,E(Q(

√
2)) is infinite and

Q(
√

2) is the first step in the cyclotomicZ2-extension.

Remark 1.3. The conclusion of Theorem 1.1 is identical to Kurihara’s theorem; it is
only the hypotheses that have changed. For supersingularp, the Birch and Swinnerton-
Dyer conjecture predicts that ordp (L(E,1)/�E) = 0 if and only if E(Q) is finite,
p � Tam(E/Q) and X(E/Q)[p] = 0. The “if part” is still unknown, but the “only if”
part is known via Kato’s Euler system when the Galois representation on thep-torsion
is surjective. Hence the above hypotheses are logically weaker than Kurihara’s since
we make no assumptions on the Galois representation. In particular, our results apply
to CM curves.

The analogue of Theorem 1.1 in the ordinary case follows from Mazur’s control
theorem. However, in the supersingular case the control theorem fails (due to the
triviality of the universal norms of the formal group̂E/Qp along the local cyclotomic
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Zp-extension). We will make a careful study of the how the control theorem fails in
terms ofÊ and combining this with a precise enough description of this formal group,
we will be able to prove Theorem 1.1.

These techniques are not new as they form the basis of Perrin–Riou’s construction
of an algebraicp-adic L-function in [12]. Also, many of the calculations in this paper
were inspired by the beautiful ideas of Kurihara in [8]. It should also be mentioned
that similar results were announced by Nasybullin [11] over 25 years ago, but in his
short paper no proofs were given.

One advantage to the algebraic approach of this paper is that it can be generalized
more easily toZp-extensions of a number field that are not necessarily cyclotomic.
To successfully carry out such a generalization, the key local input that is needed is
a good understanding of the Galois module structure ofÊ along theZp-extensions
of some finite extension ofQp. In a forthcoming paper with Adrian Iovita (see [6])
a strong enough local result is obtained to generalize the results of this paper to any
Zp-extension of a number field in whichp splits completely.

The format of the paper will be as follows: in the following section we will implement
the needed Iwasawa theory to precisely describe the failure of the control theorem in
terms ofÊ. The third section will state results of Kobayashi on the structure ofÊ as a
Galois module. In the fourth section, we will define� and �-invariants of elements of
�n and discuss their basic properties. In the final section, we will perform the needed
computations to complete the proof of Theorem 1.1.

2. Iwasawa theory

Let E/Q be an elliptic curve,p some prime of good reduction andK some finite
extension ofQ. We define thep-Selmer group ofE over K by

Selp(E/K) = ker

(
H 1(K,E[p∞]) −→

∏
v

H 1(Kv,E)

)
,

where v runs over the places ofK. Also, define a looser Selmer group by dropping
the condition atp, i.e.

Sel′p(E/K) = ker

H 1(K,E[p∞]) −→
∏
v �p

H 1(Kv,E)

 .

We then have the following exact sequence relating these two Selmer groups:

0 −→ Selp(E/K) −→ Sel′p(E/K) −→
∏
v|p

H 1(Kv,E)[p∞]. (1)
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For the infinite extensionQ∞ we define Selp(E/Q∞) = lim−→ Selp(E/Qn) and

Sel′p(E/Q∞) = lim−→ Sel′p(E/Qn). As mentioned in the introduction, the control the-

orem for Selp(E/Q∞) fails for supersingularp. However, the control theorem for
Sel′p(E/Q∞) is always true.

Theorem 2.1. Let p be a prime of good reduction forE/Q. Then the natural map

Sel′p(E/Qn) −→ Sel′p(E/Q∞)�n

has finite kernel and cokernel that are bounded independent of n.
Moreover, if E(Q)[p] = 0, p � Tam(E/Q) and ap /≡ 1(modp) then the above map

is an isomorphism.

Proof. This theorem was originally proven by Mazur in [10]. See also [9] and [3,
Chapter 3] for an exposition of this theorem that uses Galois cohomology instead of
flat cohomology. Note that in all of these papers the ordinary hypothesis is only used
in studying the primes overp. Since we are dealing with Sel′, and not Sel these proofs
apply to our situation. �

We now work under the hypotheses of Theorem 1.1, namely thatp is supersingular
for E, E(Q) is finite, p � Tam(E/Q) and X(E/Q)[p] = 0. Sincep is supersingular,
ap �≡ 1(modp) andE(Q)[p] = 0. Hence, the map in Theorem 2.1 is an isomorphism
and (1) becomes

0 −→ Selp(E/Qn) −→ Sel′p(E/Q∞)�n −→ H 1(Qn,p, E)[p∞], (2)

whereQn,p denotes the completion ofQn at the unique prime overp.
The main reason for the failure of the control theorem in the supersingular case is

that the local condition defining the Selmer group atp disappears overQ∞.

Proposition 2.2. For p supersingular

H 1(Q∞,p, E)[p∞] = 0

and hence

Selp(E/Q∞) = Sel′p(E/Q∞).

Proof. By Tate local duality, the vanishing ofH 1(Q∞,p, E)[p∞] is equivalent to the
triviality of the universal norms ofÊ along Q∞,p/Qp. This vanishing of universal



168 R. Pollack / Journal of Number Theory 110 (2005) 164–177

norms was originally proven by Hazewinkel in [4]. See [1] for a general discussion of
this phenomenon for deeply ramified extensions.�

HenceX∞ := Selp(E/Q∞)∧ ∼= Sel′p(E/Q∞)∧. Dualizing (2) and applying Tate local
duality yields

Ê(Qn,p) −→ (X∞)�n
−→ Selp(E/Qn)

∧ −→ 0, (3)

whereM�n
denotes the�n-coinvariants ofM. The above sequence can be thought of

as describing the failure of the control theorem in terms of the formal group.
We make one last alteration of the above sequence by explicitly describingX∞. The

following is well known, but we include a proof for completeness.

Proposition 2.3. Under our hypotheses, X∞ is a free�-module of rank1.

Proof. Whenp is supersingular, it is always true that the�-rank ofX∞ is greater than
or equal to 1 by a result of Schneider (see [13, Corollary 5]). For a discussion of this
theorem using Galois cohomology rather than flat cohomology see [2, Proposition 2.6].

Under our hypotheses, we prove an upper bound on the�-rank ofX∞ and establish
that it is a free�-module. Note that sinceE(Q) is finite andX(E/Q)[p] = 0 we
have that Selp(E/Q) = 0. Hence, takingn = 0 in (3) yields

Ê(Qp)� (X∞)� .

Furthermore,Ê(Qp) ∼= Zp and since(X∞)� is infinite the above map is an iso-
morphism. A compact version of Nakayama’s lemma then implies thatX∞ is a free
�-module of rank 1. �

Therefore, we can choose an isomorphismi : X∞ ∼= � which induces isomorphisms
(X∞)�n

∼= �n for eachn. Then (3) becomes

Ê(Qn,p)
Fn−→ �n −→ Selp(E/Qn)

∧ −→ 0. (4)

One can verify the commutativity of

Ê(Qn,p)
Fn−−−−→ �n

Trn/n−1


 
�n/n−1

Ê(Qn−1,p)
Fn−1−−−−→ �n−1

(5)
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and

Ê(Qn,p)
Fn−−−−→ �n

in−1/n

� ��n−1/n

Ê(Qn−1,p)
Fn−1−−−−→ �n−1

(6)

where Trn/n−1 is the trace map,�n/n−1 is the natural projection,in−1/n is the natural
inclusion and�n−1/n is defined by

�n−1/n(	) =
∑

→	

∈Gn




for 	 ∈ Gn−1. (See [6, Proposition 6.3] for a detailed explanation of why these diagrams
commute.)

3. Formal groups

We now state a result of Kobayashi that describes generators ofÊ(Qn,p) as a
Galois module.

Theorem 3.1. Let p be an odd prime. For eachn�0 there existscn ∈ Ê(Qn,p) such
that

(1) Trn/n−1cn = apcn−1 − in−2/n−1(cn−2) for n�2.

(2) Tr1/0c1 =
(
ap − p−1

ap−2

)
c0.

Furthermore, as a Galois module, Ê(Qn,p) is generated bycn and in−1/n(cn−1) for
n�1 and Ê(Qp) is generated byc0.

Proof. The pointscn were originally constructed by Perrin-Riou in [12]. In [7], Kobayashi
gives an alternate construction of these points using Honda theory and proves that they
generate the formal group as a Galois module (see [7, Proposition 8.12]).

We point out that Kobayashi assumes thatap = 0, but with minor modifications his
arguments would work for anyap divisible by p. Namely, in the notation of [7], one
has a formal groupF := Fss whose logarithm is of Honda typet2 + p. We must
replaceF with a formal group whose logarithm is of Honda typet2 − apt + p.

Consider the sequence{xk} defined byx−1 = 0, x0 = 1 and

pxk − apxk−1 + xk−2 = 0
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for k�1. Then there exists a formal groupF(ap) such that

logF(ap)
(X) =

∞∑
k=0

xk((X + 1)p
k − 1)

and its logarithm is of Honda typet2 − apt + p (see [5, p. 221]).
A second change that needs to be made is that Kobayashi chooses an elementε ∈

pZp such that logF (ε) = p/(p+1). To make the computations of [7, Lemma 8.9] work
out for generalap, we must chooseε ∈ pZp such that logF(ap)

(ε) = p/(p + 1− ap).
With these two modifications, Kobayashi’s arguments apply to this more general setting.

�

4. � and �-invariants

The proof of Theorem 1.1 will boil down to understanding the size of certain explicit
quotients of�n. In this section, we introduce the notion of� and �-invariants of
elements of�n to help in determining the size of such quotients.

Definition 4.1. For non-zerof ∈ �n the �-invariant of f is the unique integer�(f )
such thatf ∈ p�(f )�n − p�(f )+1�n.

Let In be the augmentation ideal of�n and let Ĩn be the augmentation ideal of
�̃n := Fp[Gn].

Definition 4.2. For non-zerof ∈ �n the �-invariant of f is the unique integer�(f )
such that the reduction modp of p−�(f )f lands in Ĩ �(f )

n − Ĩ
�(f )+1
n .

Remark 4.3. These� and �-invariants of elements of�n are related to the standard
Iwasawa invariants of elements of�. Namely, if f ∈ � andfn is its image in�n then

�(f ) = �(fn) and �(f ) = �(fn)

if �(f ) < pn.

Since the ring�n is not a domain, these invariants do not share all of the basic
properties of standard� and�-invariants. For instance, sincep�n is not a prime ideal,
there existf, g ∈ �n such that�(f ) = �(g) = 0 but �(f · g) > 0. The following
simple lemma states some weaker properties that are true of these invariants.

Lemma 4.4. For f, g ∈ �n we have

(1) �(f · g)��(f ) + �(g).
(2) If �(f · g) = 0 then �(f · g) = �(f ) + �(g).
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These invariants can be used to describe the valuations of elements of�n evaluated
at finite order characters as demonstrated in the following lemma.

Lemma 4.5. Let f ∈ �n and let � be a character ofGn of order pn. If �(f ) <
pn−1(p − 1) then

ordp(�(f )) = �(f ) + �(f )
pn−1(p − 1)

.

Proof. Let � be a generator ofGn. Then�−1 is a generator of the augmentation ideal
In. From the definitions of� and �-invariants, we have that

f = p�(f )
(
(� − 1)�(f ) · u + p · g

)

for u ∈ �×
n and g ∈ �n. Hence

ordp(�(f )) = �(f ) + min
{
�(f ) · ordp(�(�) − 1),1 + ordp(�(g))

}
= �(f ) + �(f )

pn−1(p − 1)

since�(f ) < pn−1(p − 1). �

We will need to understand how these invariants are affected by the maps�n−1/n
and�n/n−1. We first give a lemma that describes the relations between these two maps.

Lemma 4.6. For f ∈ �n−1 and g ∈ �n we have

(1) �n/n−1(�n−1/n(f )) = p · f
(2) �n−1/n(�n/n−1(g)) = �n · g
(3) im(�n−1/n) = �n�n,

where�n = ∑
	p=1 	 ∈ Zp[Gn].

Proof. This lemma follows directly from the definitions.�

We now compute the� and �-invariant of the element�n defined in the previous
lemma.

Lemma 4.7.We have that�(�n) = 0 and �(�n) = pn − pn−1.
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Proof. Let � be a generator ofGn. Then bothIn and Ĩn are principal generated by
� − 1. So

�n =
∑
	p=1

	 =
p−1∑
a=0

�ap
n−1 = �p

n − 1

�pn−1 − 1
≡ (� − 1)p

n−pn−1
(modp)

and hence�(�n) = 0 and�(�n) = pn − pn−1. �

Remark 4.8. If we fix a generator ofGn and thus an isomorphism

�n
∼= Zp[[T ]]/((1 + T )p

n − 1),

the element�n ∈ �n is identified with 
n(1 + T ) where 
n is the pn-th cyclotomic
polynomial. Note that the computations of the previous lemma agree with the compu-
tations of the standard� and �-invariants of
n(1 + T ) as predicted by Remark 4.3.

The following proposition summarizes how the Iwasawa invariants interact with the
maps�n−1/n and �n/n−1.

Proposition 4.9. For f ∈ �n−1 and g, h ∈ �n we have

(1) �(�n/n−1(g))��(g) and thus if�(�n/n−1(g)) = 0 then �(g) = 0.
(2) If �(�n/n−1(g)) = �(g) then �(�n/n−1(g)) = �(g).
(3) �(�n−1/n(f )) = �(f ).
(4) �(�n−1/n(f )) = pn − pn−1 + �(f ).

Proof. Part 1 follows directly from the definitions. For part 2, we have thatg̃ ∈ Ĩ an if
and only if �n/n−1(g̃) ∈ Ĩ an−1 since these augmentation ideals are principal. (Hereg̃

represents the reduction ofgmodp.) Thus,�(�n/n−1(g)) = �(g) since the�-invariant
of both of these elements are the same.

For part 3, writef = p�(f )f ′ with �(f ′) = 0. Then�n−1/n(f ) = p�(f )�n−1/n(f
′)

and if we knew that�(�n−1/n(f
′)) = 0 then we would have�(�n−1/n(f )) = �(f ).

Hence, we have reduced to the case where�(f ) = 0. Now pick anyg ∈ �n such that
�n/n−1(g) = f . (Note then by part 1,�(g) = 0.) So

�n−1/n(f ) = �n−1/n(�n/n−1(g)) = �n · g

by Lemma 4.6.2 and thus

�(�n−1/n(f )) = �(�n · g) = �(g) = 0 = �(f ).
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For the last part, as in part 3, we may assume that�(f ) = 0. Then pickg ∈ �n

lifting f and thus

�(�n−1/n(f )) = �(�n · g)
= �(�n) + �(g) (by part 3 and Lemma 4.4)
= pn − pn−1 + �(�n/n−1(f )) (by Lemma 4.7)
= pn − pn−1 + �(f ) (by part 2). �

We introduce one more lemma which will be useful in the following section.

Lemma 4.10. Let f, g be elements of�n such thatf · g ∈ im(�n−1/n). If �(f ) = 0
and �(f ) < pn−1 then g ∈ im(�n−1/n).

Proof. By Lemma 4.6.3, im(�n−1/n) = �n�n. Thus, im(�n−1/n) is a prime ideal in�n

since�n/�n�n
∼= Zp[�pn ] which is a domain. Hencef · g ∈ im(�n−1/n) implies that

either f ∈ im(�n−1/n) or g ∈ im(�n−1/n).
If f ∈ im(�n−1/n) then f = �nh for someh ∈ �n. Since�(f ) = 0,

�(f )��(�n) = pn − pn−1�pn−1

by Lemma 4.4. This contradicts our hypothesis and thusg ∈ im(�n−1/n). �

5. Main argument

Recall the mapFn : Ê(Qn,p) −→ �n defined in (4). Forcn ∈ Ê(Qn,p) defined in
Theorem 3.1, set

Pn = Fn(cn) ∈ �n.

The trace relations between thecn then yield relations between thePn by diagrams (5)
and (6). We have

�n+1/n(Pn+1) = apPn − �n−1/n(Pn−1),

�1/0(P1) = uP0 with u ∈ Z×
p . (7)

Sincecn and in−1/n(cn−1) generateÊ(Qn,p) as a Galois module, (4) yields

�n/(Pn, �n−1/n(Pn−1)) ∼= Selp(E/Qn)
∧ for n�1 and

�0/(P0) ∼= Selp(E/Q)∧. (8)

Our goal is thus to compute the size of�n/(Pn, �n−1/n(Pn−1)).
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We first compute the� and �-invariants ofPn. For n�2, let

qn =
{
pn−1 − pn−2 + · · · + p − 1 for 2 | n
pn−1 − pn−2 + · · · + p2 − p for 2 � n

and setq0 = q1 = 0.

Lemma 5.1. For n�0,

(1) �(Pn) = 0.
(2) �(Pn) = qn.

Proof. We have�0/(P0) ∼= Selp(E/Q)∧ = 0. HenceP0 is a unit and thusP1 is a
unit since�1/0(P1) = uP0 with u ∈ Z×

p . Therefore,�(P0) = �(P1) = 0. Proceeding by
induction, we assume that�(Pk) = 0 for k�n. We have

�(�n+1/n(Pn+1)) = �(apPn − �n−1/n(Pn−1)) (by (7))
= �(�n−1/n(Pn−1)) (sincep | ap)
= �(Pn−1) (by Proposition 4.9.3)
= 0.

Thus, by Proposition 4.9.1,�(Pn+1) = 0 which completes the proof of part 1.
As for part 2, we have already seen thatP0 and P1 are units and hence�(P0) =

�(P1) = 0 = q0 = q1. Again, proceeding by induction, assume that�(Pk) = qk for
k�n. We have

�(�n+1/n(Pn+1)) = �(apPn − �n−1/n(Pn−1))

= �(�n−1/n(Pn−1))

= pn − pn−1 + �(Pn−1) (by Proposition 4.9.4)
= pn − pn−1 + qn−1
= qn+1.

Since we have already seen that�(�n+1/n(Pn+1)) = 0, by Proposition 4.9.2, we con-
clude that�(Pn+1) = �(�n+1/n(Pn+1)) = qn+1 completing the proof. �

The following lemma will be key in performing the necessary induction to compute
the size of�/(Pn, �n−1/n(Pn−1)).

Lemma 5.2.We have an exact sequence

0 −→ �n−1/Jn−1
�n−1/n−→ �/Jn

�−→ Zp[�pn ]/(�(Pn)) −→ 0
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where Jn = (Pn, �n−1/n(Pn−1)) for n > 0, J0 = (P0) and � is a character ofGn of
order pn.

Proof. We check that�n−1/n(Jn−1) ⊆ Jn and that the first map is injective. The other
details are straightforward to verify.

We have that

�n−1/n(�n−2/n−1(Pn−2)) = �n−1/n(apPn−1 − �n/n−1(Pn)) (by (7))
= ap�n−1/n(Pn−1) − �nPn,

which lies in Jn and thus

�n−1/n(Jn−1) = (
�n−1/n(Pn−1), �n−1/n(�n−2/n−1(Pn−2))

) ⊆ Jn.

Thus the first map is well-defined.
To check injectivity, letf ∈ �n−1 such that�n−1/n(f ) ∈ Jn. Then

�n−1/n(f ) = � · Pn + � · �n−1/n(Pn−1)

and we see that� · Pn ∈ im(�n−1/n). By Lemma 4.10,� = �n−1/n(�′) for some
�′ ∈ �n−1 since�(Pn) = 0 and�(Pn) = qn < pn−1. Hence

�n−1/n(f ) = �n−1/n(�′) · Pn + � · �n−1/n(Pn−1)

and applying�n/n−1 yields

p · f = p · �′ · �n/n−1(Pn) + p · �n/n−1(�) · Pn−1
= p · �′ · (apPn−1 − �n−2/n−1(Pn−2)) + p · �n/n−1(�) · Pn−1

which lies in pJn−1. Since�n is p-torsion free, we have thatf ∈ Jn−1 which estab-
lishes the injectivity of the first map.�

Recall the quantityen defined in Section 1.

Proposition 5.3. For n�0,

ordp (#�n/Jn) = en.

Proof. For n = 0 we have�0/J0 ∼= �0/(P0) = 0 = e0 sinceP0 is a unit. We proceed
by induction onn. By direct computation, Lemma 5.1 and Lemma 4.5, we have that

ordp
(
#(Zp[�pn ]/�(Pn))

) = pn−1(p − 1) · ordp(�(Pn)) = qn,
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where � is a character onGn of order pn. Therefore, by induction and Lemma 5.2,
we have

ordp (#�n/Jn) = ordp (#�n−1/Jn−1) + ordp
(
#(Zp[�pn ]/�(Pn))

)
= en−1 + qn = en. �

Proof of Theorem 1.1.By (8), we have forn�0,

Selp(E/Qn)
∧ ∼= �n/Jn.

Hence, by Proposition 5.3,

ordp(#Selp(E/Qn)) = en

and, in particular, it is a finite group. Thus,E(Qn) is finite (proving part 1) and
ordp(#X(E/Qn)[p∞]) = en (proving part 2).

Now, if ap = 0 we have

Trn/m(cn) = Trn−1/m(−in−2/n−1(cn−2))

= −p Trn−2/m(cn−2) = · · · = ±prim−1/m(cm−1)

for somer whenm and n have different parities. Thus, by diagram (6),

�n/m(Pn) ∈ im(�m−1/m)

and, by Lemma 4.6.3,�(Pn) = 0 for � of orderpm. Therefore,Pn ∈ J εn for ε = (−1)n+1

and

Jn = (Pn, �n−1/n(Pn−1)) ⊆ J+
n + J−

n .

Then, comparing sizes, we see that

X(E/Qn)[p∞]∧ ∼= �n/(Pn, �n−1/n(Pn−1)) ∼= �n/(J
+
n + J−

n )

completing the proof of part 3.�

Remark 5.4. Note that under Kurihara’s hypotheses, [8, Proposition 1.2] implies that

J+
n + J−

n = (�n, �n−1/n(�n−1)),
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where �n ∈ �n is the Mazur-Tate-Teitelbaum element defined via modular symbols.
Hence part 3 of Theorem 1.1 is consistent with the isomorphism

X(E/Qn)[p∞]∧ ∼= �/(�n, �n−1/n(�n−1))

proven in [8].
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