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Bubbles in anti-de Sitter space
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Abstract

We explore the bubble spacetimes which can be obtained from double analytic continuations of static and rotating black
holes in anti-de Sitter space. In particular, we find that rotating black holes with elliptic horizon lead to bubble spacetimes only
in dimension greater than five. For dimension greater than seven, the topology of the bubble can be non-spherical. However,
a bubble spacetime is shown to arise from a rotating de Sitter black hole in four dimensions. In all cases, the evolution of the
bubble is of de Sitter type. Double analytic continuations of hyperbolic black holes and branes are also discussed.
 2002 Elsevier Science B.V.

1. Introduction

The formulation of string theory in time-dependent
backgrounds presents a particularly challenging prob-
lem, although progress can be achieved by considering
some simple time-dependent solutions. As a step in
this direction, a class of time-dependent backgrounds
has been investigated recently in [1]. The spacetimes
considered are obtained from a double analytic contin-
uation of asymptotically flat black holes, and describe
the Lorentzian evolution of a bubble. The technique of
double analytic continuation was originally developed
for the study of the stability of the Kaluza–Klein vac-
uum [2], see also [3,4]. This technique has also been
used in the formulation of a positive energy theorem
for anti-de Sitter space [5], and discussed within the
context of brane world scenarios [6,7], and M-theory
[8,9].
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In general, the evolution pattern of the bubble is de-
termined by the form of the original black hole met-
ric. The analysis of [1] focussed on a class of bub-
bles which arise from asymptotically flat Kerr black
holes. Indeed, the presence of the rotation parameters
is crucial in order to obtain interesting time depen-
dent behavior. It was found that at early times the bub-
ble undergoes a de Sitter phase of exponential expan-
sion, while at late times the evolution is governed by a
milder Milne phase.

It is of interest to explore the possible time-
dependent spacetimes which can arise from double
analytic continuation of more general black holes.
Our aim here is to investigate the bubble spacetimes
which can be obtained from the analytic continuation
of black holes in de Sitter and anti-de Sitter space. In
the latter case, there is wide class of topological black
hole spacetimes available, due to the possibility of
non-trivial horizon topology [10–17]. In particular, the
topology of the horizon can be elliptic (which includes
the standard spherical case), toroidal, or hyperbolic.
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The rotating counterparts of these solutions have also
been constructed [18–21]. We find that the static
and rotating black holes with elliptic horizon lead
to bubbles which have only a de Sitter phase of
evolution. Furthermore, the rotating black holes lead
to acceptable bubble spacetimes only in dimension
d � 6. Moreover, it is possible to have a bubble with
non-spherical (elliptic) topology in dimension d � 8.
For the case of hyperbolic horizon, one can indeed
perform the double analytic continuation. However, in
all cases, one finds that the evolution of the bubble
is determined by the embedding of an anti-de Sitter
space, and thus does not lead to an evolving bubble
situation. Finally, we show that a bubble spacetime
does arise from the rotating de Sitter black hole in four
dimensions.

2. Static anti-de Sitter black holes

It is useful to begin with the static black hole in d

dimensions, with line element given by

ds2 = −f (r) dt2 + f−1(r) dr2 + r2hij (x) dx
i dxj ,

(1)

with

(2)f = k + r2

l2
− 2M

rd−3 .

The topology of the black hole horizon is labelled
by the parameter k, which can be normalized to take
the values ±1,0. The above metric is a solution
of Einstein’s equations with negative cosmological
constant, Rµν = −(d − 1)/ l2gµν . We consider the
class of locally asymptotically anti-de Sitter black
holes, for which the topology of the horizon is either
elliptic (k = 1), toroidal (k = 0), or hyperbolic (k =
−1). The possibility of anti-de Sitter black hole
solutions with non-trivial topology k = 0,−1 was first
discussed in four dimensions [10–16], and generalized
to arbitrary dimensions in [17].

For the case of k = 1, the line element of the
horizon space is given by hij (x) dx

i dxj = dΩ2
d−2.

For definiteness, we consider the spherical case where
dΩ2

d−2 = dθ2 + sin2 θ dΩ2
d−3. The associated bubble

spacetime is obtained in the standard manner [2] by
performing the double analytic continuation t = iχ ,

θ = π
2 + iτ . This leads to the bubble spacetime

ds2 = f dχ2 + f−1 dr2

(3)+ r2(−dτ 2 + cosh2 τ dΩ2
d−3

)
.

The radial variable is now restricted to the range
r � r+, where r+ is the largest real zero of f .
Regularity of the metric at r+ then requires that χ

be identified as a periodic variable with period given
by [17]

(4)β = 4πl2r+
(d − 1)r2+ + (d − 3)kl2

.

In the usual way [2], this spacetime now describes a
bubble at r = r+ evolving in an asymptotically anti-
de Sitter spacetime. We see that the bubble grows
exponentially in time and the geometry traced out by
the r = r+ surface is a (d − 2)-dimensional de Sitter
spacetime.

The horizon metric for the k = −1 case can be
written in the form hij (x) dx

i dxj = dΣ2
d−2 = dθ2 +

sinh2 θ dΩ2
d−3. If we continue θ = iτ , we obtain a

metric that clearly has non-Lorentzian signature. How-
ever, we can obtain a Lorentzian bubble spacetime if
we continue an angular variable in dΩ2

d−3 = (dψ2 +
sin2 ψ dΩ2

d−4). Upon the substitution ψ = iτ + π/2,
the metric becomes

ds2 = f dχ2 + f−1 dr2

+ r2[dθ2 + sinh2 θ
(−dτ 2 + cosh2 τ dΩ2

d−4
)]
.

(5)

In this case, one notes that the term in square brackets
describes a (d − 2)-dimensional anti-de Sitter space,
which can be written in globally static coordinates.
Thus, the bubble spacetime in this case is static. This
case has also been considered in the context of a
positive energy theorem in [5].

3. Rotating anti-de Sitter black holes

In [1], a more interesting class of time-dependent
backgrounds was obtained through the analytic con-
tinuation of rotating black holes in four and higher
dimensions. In particular, the presence of the rotating
parameters allowed an easing of the exponential ex-
pansion of the bubble into a milder Milne phase. In
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order to check whether such behavior is also present
in the anti-de Sitter case, we begin with the line ele-
ment of the rotating black hole with elliptic horizon.
This takes the form [18–21]

ds2 = −∆r

ρ2

[
dt − a

Ξ
sin2 θ dφ

]2
+ ρ2

∆r

dr2

+ ρ2

∆θ

dθ2 + ∆θ

ρ2 sin2 θ

[
a dt − r2 + a2

Ξ
dφ

]2

(6)+ r2 cos2 θ dΩ2
d−4,

where a is the angular momentum. Again, for definite-
ness, we shall consider the case of spherical horizon,
for which dΩ2

d−4 describes the metric of a (d − 4)-
sphere. Of course, this (d − 4)-dimensional part of the
spacetime can be replaced by a general elliptic space,
for example, a lens space. In the above, we have

∆r = (
r2 + a2)(1 + r2

l2

)
− 2M

rd−5 ,

∆θ = 1 − a2

l2
cos2 θ,

Ξ = 1 − a2

l2
,

(7)ρ2 = r2 + a2 cos2 θ.

The standard Euclidean section of the black hole is
defined by the analytic continuation t = iχ and a =
−iα. The resulting spacetime is defined for r � r+,
where r+ is now the largest real zero of ∆r . In the
usual way, regularity of the metric at r+ then requires
the coordinate identifications

(8)(χ,φ) ≡ (χ + 2πRn1, φ + 2πRΩn1 + 2πn2),

where n1, n2 ∈ Z. We have

(9)R = 2(r2+ − α2)

∆′
r (r+)

, Ω = αΞ

(r2+ − α2)
,

where R is the inverse of the surface gravity [18]
after the continuation. Let us now apply the analytic
continuation θ = iτ + π/2 in four dimensions. The
main observation here is that the metric has a time-
dependent signature. Indeed, the induced metric on the
bubble, at r = r+, is given by

ds2
bubble = −

[
r2+ + α2 sinh2 τ

1 − α2

l2
sinh2 τ

]
dτ 2

+
[ 1 − α2

l2
sinh2 τ

r2+ + α2 sinh2 τ

](
α

Ω

)2
cosh2 τ dφ̃2,

(10)

where φ̃ = φ − Ωχ . One then sees that there exists a
value τcrit such that the induced metric has signature
(−,+) for |τ |< τcrit, and (+,−) otherwise. Thus, the
four-dimensional case does not yield a suitable bubble
spacetime. Clearly, the influence of the anti-de Sitter
radius l2 is crucial to this behavior, and the metric
reduces to the one found in [1] in the limit l2 → ∞.

Proceeding to higher dimensions, one notes that an
acceptable double analytic continuation is possible by
choosing to continue one of the coordinates in the
dΩ2

d−4 part of the metric. This leads to the bubble
spacetime

ds2 = ∆r

ρ2

[
dχ + α

Ξ
sin2 θ dφ

]2
+ ρ2

∆r

dr2 + ρ2

∆θ

dθ2

+ ∆θ

ρ2 sin2 θ

[
α dχ − (r2 − α2)

Ξ
dφ

]2

(11)+ r2 cos2 θ
[−dτ 2 + cosh2 τ dΩ2

d−5
]
,

where

∆r = (
r2 − α2)(1 + r2

l2

)
− 2M

rd−5 ,

∆θ = 1 + α2

l2
cos2 θ, Ξ = 1 + α2

l2
,

(12)ρ2 = r2 − α2 cos2 θ.

The time-dependent part of the bubble geometry is
now described by the embedding of a (d − 4)-
dimensional de Sitter space. Therefore, the bubble
spacetime is time-dependent only if d � 6. Clearly,
the (θ,φ) part of the spacetime does not take part in
this evolution. Thus, in contrast to the models obtained
in [1], the anti-de Sitter case does not yield phases of
milder evolution. Furthermore, one sees that for d � 8,
the dΩ2

d−5 part of the bubble metric can be a general
elliptic space.

The analogous rotating solution with hyperbolic
topology is given by [20]

ds2 = −∆r

ρ2

[
dt + a

Ξ
sinh2 θ dφ

]2
+ ρ2

∆r

dr2

+ ρ2

∆θ

dθ2 + ∆θ

ρ2 sinh2 θ

[
a dt − (r2 + a2)

Ξ
dφ

]2

(13)+ r2 cosh2 θ dΣ2
d−4,
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where

∆r = (
r2 + a2)(−1 + r2

l2

)
− 2M

rd−5 ,

∆θ = 1 + a2

l2
cosh2 θ, Ξ = 1 + a2

l2
,

(14)ρ2 = r2 + a2 cosh2 θ,

and dΣ2
d−4 = dψ2 + sinh2 ψ dΩ2

d−5 is the metric on
a (d − 4)-dimensional hyperbolic space. In this case,
the (θ,φ) sector of the spacetime is necessarily non-
compact [20]. Replacing t = iχ and a = −iα, and
imposing the appropriate identifications on χ and φ,
a further continuation of θ again leads to a metric with
time-dependent signature for any d � 4. However, we
can perform a continuation of an angular variable in
the spherical section embedded in dΣ2

d−4, and we find

ds2 = ∆r

ρ2

[
dχ − α

Ξ
sinh2 θ dφ

]2
+ ρ2

∆r

dr2 + ρ2

∆θ

dθ2

+ ∆θ

ρ2 sinh2 θ

[
α dχ − (r2 − α2)

Ξ
dφ

]2

+ r2 cosh2 θ

× [
dψ2 + sinh2 ψ

(−dτ 2 + cosh2 τ dΩ2
d−6

)]
(15)

with

∆r = (
r2 − α2)(−1 + r2

l2

)
− 2M

rd−5 ,

∆θ = 1 − α2

l2
cosh2 θ, Ξ = 1 − α2

l2
,

(16)ρ2 = r2 − α2 cosh2 θ.

As in the static case with hyperbolic horizon, the
bubble spacetime is again described simply by the
embedding of a (d − 4)-dimensional anti-de Sitter
space.

One can also consider the 5-dimensional anti-
de Sitter black hole with two rotational parame-
ters [18]. In this case, one finds that the only consistent
continuation involves the angular variable not related
to rotations, which again leads to a time-dependent
signature. Finally, the analysis of the double analytical
continuation of a cylindrical rotating black hole [20] is
very similar to the k = 1 case. In four dimensions, the
only possible continuation leads to a time-dependent

signature, while in higher dimensions one can con-
tinue an angular variable of the spherical section.

4. Rotating de Sitter black holes

A rotating black hole in de Sitter space with one
angular momentum can be found by replacing l2 →
−l2 in the metric (6), see, for example, [22,23]. In four
dimensions, we find behavior which contrasts the anti-
de Sitter case. Indeed, we find that the metric obtained
after the double analytic continuation has a constant
signature. To see this, we consider the metric (6) for
d = 4, and make the continuations l → il, t = iχ ,
a = −iα and θ = iτ + π/2 (the choice θ = iτ leads
to a time-dependent signature). The resulting metric
takes the form

ds2 = ∆r

ρ2

[
dχ + α

Ξ
cosh2 τ dφ

]2
+ ρ2

∆r

dr2 − ρ2

∆τ

dτ 2

(17)+ ∆τ

ρ2 cosh2 τ

[
α dχ − (r2 − α2)

Ξ
dφ

]2
,

where

∆r = (
r2 − α2)(1 − r2

l2

)
− 2Mr,

∆τ = 1 + α2

l2
sinh2 τ, Ξ = 1 − α2

l2
,

(18)ρ2 = r2 + α2 sinh2 τ.

The induced metric on the bubble for small τ is
given by

(19)ds2 
 −r2+ dτ 2 + α2

Ω2r2+
cosh2 τ dφ̃2,

where φ̃ = φ −Ωχ with Ω = αΞ/(r2+ − α2). We see
that the bubble metric behaves like a 2-dimensional
de Sitter space. For large τ , we have

(20)ds2 
 −l2 dτ 2 + α2

Ω2l2
e2τ dφ̃2,

which again looks like a de Sitter space at late times.
Thus, the evolution of the bubble is described by a
de Sitter phase only.
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5. Conclusion

We have examined the double analytic continua-
tions of static and rotating black holes in anti-de Sitter
and de Sitter spacetime. The set of coordinates which
can be continued is constrained by the requirement
that the resulting bubble spacetime be real Lorentzian
and time-dependent. The examples studied only led to
a de Sitter phase of time dependence, and do not ap-
pear to support the milder phase of Milne evolution
found in the asymptotically flat case [1]. It would be
worthwhile to consider the classical and quantum sta-
bility of these spacetimes along the lines of discussed
in [1].
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