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A topological group is said to be ambitable if every uniformly bounded uniformly
equicontinuous set of functions on the group with its right uniformity is contained in an
ambit. For n = 0,1,2, . . . , every locally ℵn-bounded topological group is either precompact
or ambitable. In the familiar semigroups constructed over ambitable groups, topological
centres have an effective characterization.

© 2009 Elsevier B.V. All rights reserved.

1. Overview

A topological group G may be naturally embedded in larger spaces, algebraically and topologically. Two such spaces of
particular interest in abstract harmonic analysis are

• the norm dual of the space of bounded right uniformly continuous functions on G , denoted here Ub(rG)∗ (also known
as LUC(G)∗); and

• the uniform compactification of G with its right uniformity, denoted here rG (also known as the greatest ambit S(G),
alternatively denoted GLUC or G LC ).

It is customary to study these “right” versions of the two spaces; the properties of the corresponding “left” versions are
obtained by symmetry.

Both Ub(rG)∗ and rG are right topological semigroups. In investigating their structure it is very helpful to have a tractable
characterization of their topological centres. Feasible candidates for such characterizations are the space of uniform measures
Mu(rG) and the completion r̂G of the right uniformity on G .

When G is locally compact, Mu(rG) is the space of finite Radon measures on G [2,6,16], and r̂G is G itself. In this
case, Lau [11] and Lau and Pym [12] proved that Mu(rG) and r̂G = G are the topological centres of Ub(rG)∗ and rG. These
characterizations generalized a number of previous results for special classes of locally compact groups.
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More recently, Neufang [14] applied his factorization method to simplify the proof of Lau’s result. Then Ferri and Neu-
fang [7] used a variant of the factorization method to prove that Mu(rG) and r̂G are the topological centres of Ub(rG)∗ and
rG for ℵ0-bounded (not necessarily locally compact) topological groups.

This paper deals with another variant of the factorization method, similar to that used by Ferri and Neufang. By defini-
tion, ambitable topological groups are those in which a certain factorization theorem holds; equivalently, in the language
of topological dynamics, those in which every uniformly bounded uniformly equicontinuous set of functions is contained in
an ambit. In such groups Mu(rG) and r̂G are the topological centres of Ub(rG)∗ and rG. Several classes of topological groups
are shown to be ambitable. In particular, if n is a positive integer then every locally ℵn-bounded group is either precompact
or ambitable, which yields a common generalization of the aforementioned results by Lau, Lau and Pym, and Ferri and
Neufang.

2. Basic definitions

All topological groups considered in this paper are assumed to be Hausdorff, and all linear spaces to be over the field R

of reals.
Let G be a group, f a real-valued function on G and x ∈ G . The right translation of f by x, denoted ρx( f ), is the function

z �→ f (zx). The set orb( f ) = {ρx( f ) | x ∈ G} is the (right) orbit of f . Denote by orb( f ) the closure of orb( f ) in the product
space R

G (the set of real-valued functions on G with the topology of pointwise convergence).
When � is a pseudometric on G , define

BLip+(�) = {
f : G → R

∣∣ 0 � f (x) � 1 and
∣∣ f (x) − f (y)

∣∣ � �(x, y) for all x, y ∈ G
}
.

Then BLip+(�) is a compact subset of the product space R
G ; it will be always considered with this compact topology.

When G is a topological group, denote by RP (G) the set of all continuous right-invariant pseudometrics on G . The right
uniformity on G is the uniform structure generated by RP (G). The uniform space rG is the set G with the right uniformity,
and the space of all bounded uniformly continuous real-valued functions on rG is denoted Ub(rG). The group G is said to
be precompact if the uniform space rG is precompact.

The following lemma summarizes several properties of ρx( f ) needed in this paper. De Vries [5, IV.5] provides a compre-
hensive treatment of the role of ρx( f ) in topological dynamics.

Lemma 1. Let G be any topological group and � ∈ RP (G).

1. If f is a real-valued function on G and x, y ∈ G then ρxy( f ) = ρx(ρ y( f )).
2. If f ∈ BLip+(�) and x ∈ G then ρx( f ) ∈ BLip+(�).
3. The mapping (x, f ) �→ ρx( f ) is continuous from G × BLip+(�) to BLip+(�).

Proof. 1. ρxy( f )(z) = f (zxy) = ρ y( f )(zx) = ρx(ρ y( f ))(z).
2. If f ∈ BLip+(�) then |ρx( f )(z) − ρx( f )(z′)| = | f (zx) − f (z′x)| � �(zx, z′x) = �(z, z′).
3. To prove that the mapping (x, f ) �→ ρx( f ) to BLip+(�) is continuous, it is sufficient to prove that the mapping

(x, f ) �→ ρx( f )(z) to R is continuous for each z ∈ G .
Take any z ∈ G , (x0, f0) ∈ G × BLip+(�) and ε > 0. The set

U = {
(x, f ) ∈ G × BLip+(�)

∣∣ �(zx, zx0) < ε and
∣∣ f (zx0) − f0(zx0)

∣∣ < ε
}

is a neighbourhood of (x0, f0) in G × BLip+(�). If (x, f ) ∈ U then∣∣ρx( f )(z) − ρx0( f0)(z)
∣∣ = ∣∣ f (zx) − f0(zx0)

∣∣
�

∣∣ f (zx) − f (zx0)
∣∣ + ∣∣ f (zx0) − f0(zx0)

∣∣ < 2ε.

Thus the mapping (x, f ) �→ ρx( f )(z) is continuous at (x0, f0). �
When G and � are as in the lemma, BLip+(�) with the action (x, f ) �→ ρx( f ) is a compact G-flow, in the terminology

of topological dynamics [5]. If f ∈ Ub(rG) then there exist � ∈ RP (G) and s, t ∈ R such that f + t ∈ sBLip+(�). Thus
orb( f ) + t = orb( f + t) ⊆ sBLip+(�) and therefore the set orb( f ) is compact in the topology of pointwise convergence, and
orb( f ) with the action (x, f ) �→ ρx( f ) is also a compact G-flow.

Recall that a compact G-flow is an ambit if it contains an element with dense orbit [5, IV.4.1]. For a fixed G , all ambits
can be constructed from those of the form orb( f ), where f ∈ Ub(rG) [5, IV.5.8]. For example, the greatest ambit (i.e. the
uniform compactification rG) is the closure of the canonical image of G in the product space

∏{orb( f ) | f ∈ Ub(rG)}.
Say that a topological group G is ambitable if every BLip+(�), where � ∈ RP (G), is contained in an ambit within Ub(rG).

In other words, G is ambitable if for each � ∈ RP (G) there exists f ∈ Ub(rG) such that BLip+(�) ⊆ orb( f ).

Theorem 2. No precompact topological group is ambitable.
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Proof. Let G be a precompact group, and fix any f ∈ Ub(rG). There are � ∈ RP (G) and θ > 0 such that if x, x′ ∈ G ,
�(x, x′) < θ then | f (x)− f (x′)| < 1/3. If x, x′, y ∈ G , �(x, x′) < θ then �(xy, x′ y) < θ and therefore |ρ y( f )(x)−ρ y( f )(x′)| <
1/3. Since G is precompact, there is a finite set F ⊆ G such that for every x ∈ G there is z ∈ F with �(x, z) < θ , and thus
|ρ y( f )(x) − ρ y( f )(z)| < 1/3 for every y ∈ G .

Consider the constant functions 0 and 1. If 0 ∈ orb( f ) then there is y ∈ G such that ρ y( f )(z) < 1/3 for every z ∈ F , hence
ρ y( f )(x) < 2/3 for every x ∈ G . Thus f (x) < 2/3 for every x ∈ G , and 1 /∈ orb( f ). This proves that there is no f ∈ Ub(rG) for
which 0,1 ∈ orb( f ). �
Question 1. Is every topological group either precompact or ambitable?

This question is motivated by investigations of topological centres in certain semigroups arising in functional analysis.
The connection is explained in Section 5 below.

Partial answers to Question 1 are given in Section 4. They show that the topological groups that are neither precompact
nor ambitable, if they exist at all, are quite rare.

3. Cardinal functions

The reader is referred to Jech [10] for definitions regarding cardinals. The cardinality of a set X is |X |. The cardinal
successor of a cardinal κ is κ+ . The least infinite cardinal is ℵ0, and ℵn+1 = ℵ+

n . The least cardinal larger than ℵn for
n = 0,1,2, . . . is ℵω .

Let G be a group and � a pseudometric on G . Sufficient conditions in the next section are expressed in terms of three
cardinal functions:

• d(�), the �-density of G (the least cardinality of a �-dense subset of G);
• η	(�), the least cardinality of a set P ⊆ G such that

G =
⋃
p∈P

{
x ∈ G

∣∣ �(p, x) � 1
};

• η(�), the least cardinality of a set P ⊆ G for which there exists a finite set Q ⊆ G such that

G =
⋃
q∈Q

⋃
p∈P

{
x ∈ G

∣∣ �(p,qx) � 1
}
.

The following lemma collects basic facts about these three functions. Proofs follow directly from the definition.

Lemma 3. Let � be a pseudometric on a group G. Let B = {x ∈ G | �(e, x) � 1}, where e is the identity element of G.

1. η(�) � η	(�) � d(�).
2. d(�) = limk→∞ η	(k�).
3. If �′ is another pseudometric on G such that � � �′ then η(�) � η(�′), η	(�) � η	(�′) and d(�) � d(�′).
4. If � is left-invariant and η(�) � ℵ0 then η(�) = η	(�).
5. If � is right-invariant then η	(�) is the least cardinality of a set P ⊆ G such that G = B P and η(�) is the least cardinality of a

set P ⊆ G for which there exists a finite set Q such that G = Q B P .

Clearly a topological group G is precompact if and only if η	(�) is finite for each � ∈ RP (G). Part 1 in Theorem 5
below yields a stronger statement: G is precompact if and only if η(�) is finite for each � ∈ RP (G). This is equivalent to
the theorem of Uspenskij [18, p. 338], [19, p. 1581], for which a simple proof was given by Bouziad and Troallic [4]. Ferri
and Neufang [7] gave another proof using a result of Protasov [17, Theorem 11.5.1].

The case of finite P in the next lemma is due to Bouziad and Troallic [4, Lemma 4.1]. The proof below is a straightforward
generalization of their approach, which in turn was adapted from Neumann [15].

Lemma 4. Let G be a group, P ⊆ G, and Ak ⊆ G for 1 � k � n. If G = ⋃n
k=1 Ak P then there are a set P ′ ⊆ G and j, 1 � j � n, such

that G = A−1
j A j P ′ and

(a) if P is finite then so is P ′; and
(b) if P is infinite then |P ′| � |P |.

Proof. Proceed by induction in n. When n = 1, the statement is true with j = 1 and P ′ = P .
For the induction step, let m � 1 and assume that the statement in the lemma is true for n = m. Let P ⊆ G and

A1, A2, . . . , Am+1 ⊆ G be such that G = ⋃m+1 Ak P .
k=1
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If G = A−1
m+1 Am+1 P then set j = m + 1 and P ′ = P .

On the other hand, if G 
= A−1
m+1 Am+1 P then take any x ∈ G \ A−1

m+1 Am+1 P . Then Am+1x ∩ Am+1 P = ∅, and Am+1 ⊆⋃m
k=1 Ak P x−1. Thus

G =
m⋃

k=1

Ak
(

P ∪ P x−1 P
)
.

By the induction hypothesis, there are P ′ ⊆ G and j, 1 � j � m, such that G = A−1
j A j P ′ , P ′ is finite if P is, and |P ′| � |P | if

P is infinite.
Thus in either case the statement holds for n = m + 1. �

Theorem 5. Let G be a topological group, and � ∈ RP (G).

1. If η(�) is finite then η	( 1
2 �) is finite.

2. If η(�) is infinite then η	( 1
2 �) � η(�).

Proof. Let B = {x∈G |�(e, x)�1}, where e is the identity element of G . For any y, z ∈ B we have y−1z∈{x ∈ G | 1
2 �(e, x)�1},

because

�
(
e, y−1z

) = �
(
z−1, y−1) � �

(
z−1, e

) + �
(

y−1, e
) = �(e, z) + �(e, y) � 2.

By part 5 of Lemma 3, there are sets P , Q ⊆ G such that Q is finite, |P | = η(�) and G = Q B P . By Lemma 4, there are
q ∈ Q and P ′ ⊆ G such that P ′ is finite if P is, |P ′| � |P | if P is infinite, and

G = (qB)−1qB P ′ = B−1 B P ′ ⊆
{

x ∈ G
∣∣∣ 1

2
�(e, x) � 1

}
P ′

which shows that η	( 1
2 �) � |P ′|. If η(�) is finite then |P | and |P ′| are finite and therefore η	( 1

2 �) is finite. If η(�) is
infinite then η	( 1

2 �) � |P ′| � |P | = η(�). �
Corollary 6. Let G be a topological group, and � ∈ RP (G). If d(�) > ℵ0 then

d(�) = lim
k→∞

η(k�).

Proof. Combine parts 1 and 2 of Lemma 3 with Theorem 5. �
Let κ be an infinite cardinal. Following Guran [9], say that a topological group G is κ-bounded if for every neighbourhood

U of the identity element in G there exists a set P ⊆ G such that |P | � κ and U P = G . See also Section 9 in [1].

Lemma 7. Let κ be an infinite cardinal. The following conditions for a topological group G are equivalent:

(i) G is κ-bounded;
(ii) d(�) � κ for every � ∈ RP (G);
(iii) η	(�) � κ for every � ∈ RP (G);
(iv) η(�) � κ for every � ∈ RP (G).

Proof. The family of all sets {x ∈ G | �(e, x) � 1}, where � ∈ RP (G), is a basis of neighbourhoods of the identity element e
in G . Therefore (i) ⇔ (iii), by part 5 in Lemma 3.

(ii) ⇒ (iii) ⇒ (iv) by part 1 in Lemma 3, and (iv) ⇒ (ii) by Corollary 6. �
Let κ be an infinite cardinal. Say that a topological group G is locally κ-bounded if its identity element has a neigh-

bourhood U such that for each � ∈ RP (G) there is a �-dense subset H of U , |H| � κ . Every κ-bounded group is locally
κ-bounded. Every locally compact group is locally ℵ0-bounded, and therefore also locally κ-bounded for κ � ℵ0.

4. Sufficient conditions

This section contains several sufficient conditions for a topological group to be ambitable. For each such condition a
slightly stronger property than ambitability is proved; namely, that for every � ∈ RP (G) there is �′ ∈ RP (G), �′ � � such
that BLip+(�′) is an ambit. The key result is Lemma 10, which is another form of the factorization theorems of Neufang [14]
and Ferri and Neufang [7].

When � is a pseudometric on a set X and Y , Z ⊆ X , define �(Y , Z) = inf{�(y, z) | y ∈ Y , z ∈ Z}.
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Lemma 8. Let � be a pseudometric on a group G such that η(�) � ℵ0 . Let A be a set of cardinality η(�), and for each α ∈ A let Fα be
a non-empty finite subset of G. Then there exist elements xα ∈ G for α ∈ A such that �(Fαxα, Fβ xβ) > 1 whenever α,β ∈ A, α 
= β .

Proof. Without loss of generality, assume that A is the set of ordinals smaller than the first ordinal of cardinality η(�). The
construction of xα proceeds by transfinite induction. For γ ∈ A, let S(γ ) be the statement “there exist elements xα ∈ G for
all α � γ such that �(Fαxα, Fβ xβ) > 1 whenever α < β � γ .”

Any choice of x0 ∈ G makes S(0) true. Now assume that γ ∈ A, γ > 0, and S(γ ′) is true for all γ ′ < γ . We want to
prove S(γ ).

Since η(�) � ℵ0 and the cardinality of γ is less than η(�), from the definition of η(�) we get

G 
=
⋃

q∈Fγ

⋃
α<γ

⋃
p∈Fαxα

{
x ∈ G

∣∣ �(p,qx) � 1
}
.

Thus there exists xγ ∈ G such that �(p,qxγ )>1 for all q ∈ Fγ and all p ∈ Fαxα where α<γ . That means �(Fαxα, Fγ xγ )>1
for all α < γ . �
Lemma 9. Let G be a topological group, � ∈ RP (G) and η(�) � ℵ0 . If O is a collection of non-empty open subsets of BLip+(�) and
|O| � η(�), then there exists f ∈ BLip+(�) such that orb( f ) intersects every set in O.

Proof. Without loss of generality, assume that every set in O is a basic neighbourhood. Thus each U ∈ O is of the form

U = {
f ∈ BLip+(�)

∣∣ ∣∣ f (x) − hU (x)
∣∣ < εU for x ∈ FU

}
,

where FU ⊆ G is a finite set, hU ∈ BLip+(�), and εU > 0.
By Lemma 8 with O in place of A, there are elements xU ∈ G for U ∈ O such that �(FU xU , F V xV ) > 1 whenever

U , V ∈ O, U 
= V . Define the function f : G → R by

f (x) = sup
V ∈O

max
y∈F V

(
hV (y) − �(x, yxV )

)+
for x ∈ G.

Each function x �→ (hV (y)−�(x, yxV ))+ belongs to BLip+(�), and thus f ∈ BLip+(�). It remains to be proved that f (xxU ) =
hU (x) for every U ∈ O and x ∈ FU . Once that is established, it will follow that ρxU ( f ) ∈ U for every U ∈ O.

Take any U ∈ O and x ∈ FU . From the definition of f we get f (xxU ) � hU (x). To prove the opposite inequality, consider
any V ∈ O and any y ∈ F V .

Case I: V = U . From hU (y) − hU (x) � |hU (y) − hU (x)| � �(x, y) = �(xxU , yxU ) and hU = hV , xU = xV , we get
(hV (y) − �(xxU , yxV ))+ � hU (x).

Case II: V 
= U . From �(xxU , yxV ) > 1 we get (hV (y) − �(xxU , yxV ))+ = 0 � hU (x).
Thus (hV (y) − �(xxU , yxV ))+ � hU (x) in both cases, and now f (xxU ) � hU (x) follows from the definition of f . �

Lemma 10. Let G be a topological group and � ∈ RP (G). If d(�) = η(�) � ℵ0 then there exists f ∈ BLip+(�) such that BLip+(�) =
orb( f ).

Proof. Let H be a �-dense subset of G such that |H| = d(�) = η(�). On BLip+(�), the topology of pointwise convergence
on G coincides with the topology of pointwise convergence on H . Thus BLip+(�) is homeomorphic to a subset of the
product space R

H , its topology has a base of cardinality at most η(�), and by Lemma 9 there is f ∈ BLip+(�) whose orbit
intersects every non-empty open set in BLip+(�). �

In this paper, Lemma 10 is the key for finding sufficient conditions for ambitability. The group G is ambitable whenever
for every � ∈ RP (G) there is �′ ∈ RP (G) such that �′ � � and d(�′) = η(�′) � ℵ0.

Theorem 11. Let κ be an infinite cardinal, and G a locally κ-bounded topological group. If there exists �0 ∈ RP (G) such that
η	(�0) � κ then G is ambitable.

Proof. Take any � ∈ RP (G). Let B = {x ∈ G | �(e, x) � 1}, where e is the identity element of G . Without loss of generality,
assume that η	(�) � κ and B has a �-dense subset H such that |H| � κ . (If � does not have these properties then replace
� by a larger pseudometric in RP (G) that does.)

By Lemma 3, there is P ⊆ G such that |P | = η	(�) and G = B P . The set H P is �-dense in G , therefore d(2�) = d(�) �
κ · η	(�) = η	(�). Thus d(2�) � η(2�) by Theorem 5, and by Lemma 10 there is f ∈ BLip+(2�) such that BLip+(2�) =
orb( f ). �
Corollary 12. Let κ be an infinite cardinal. If a topological group is locally κ+-bounded and not κ-bounded then it is ambitable.
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Proof. Let G be locally κ+-bounded and not κ-bounded. By Lemma 7 there exists � ∈ RP (G) for which η	(�) � κ+ , and
Theorem 11 applies with κ+ in place of κ . �
Corollary 13. Let G be a topological group, and let λ be the least infinite cardinal for which G is λ-bounded. If λ is a successor cardinal
then G is ambitable.

Proof. Let λ = κ+ . Then G is κ+-bounded, therefore also locally κ+-bounded, and it is not κ-bounded. Thus G is ambitable
by Corollary 12. �
Theorem 14. When n is a positive integer, every locally ℵn-bounded topological group is either precompact or ambitable.

Proof. Let G be locally ℵn-bounded for some n. Let m � 0 be the least integer for which G is locally ℵm-bounded. If m � 1
then G is ambitable by Corollary 12 with κ = ℵm−1. If m = 0 and G is not precompact then there exists � ∈ RP (G) such
that η	(�) � ℵ0 and G is ambitable by Theorem 11. �

It is an open question whether every ℵω-bounded topological group is either precompact or ambitable.

Corollary 15. Every locally compact topological group is either compact or ambitable.

Corollary 16. Every ℵ0-bounded topological group is either precompact or ambitable.

Lemma 10 yields also other classes of ambitable groups, such as those in the next two theorems. Say that a linear space
is null if it is the one-element space {0}.

Theorem 17. The additive group of every non-null normed linear space is ambitable.

Proof. Let G be the additive group of a non-null normed space with the norm ‖ · ‖. The topology of G is defined by the
metric �0, where �0(x, y) = ‖x − y‖, x, y ∈ G . If � is any pseudometric in RP (G) then d(�0) � d(�) � η(�).

The metric �0 is left- and right-invariant, η(�0) = η(k�0) � ℵ0 for k = 1,2, . . . , and d(�0) = η(�0) by Lemma 3. If
� ∈ RP (G) then there exists �′ ∈ RP (G) such that �′ � � and η(�′) � d(�0) (for example, �′ = �0 + �). By Lemma 10
there exists f ∈ BLip+(�′) such that BLip+(�′) = orb( f ). �

Let κ be an infinite cardinal. Define cf(κ), the cofinality of κ , to be the least cardinality of a set A of sets such that
|E| < κ for every E ∈ A and |⋃ A| = κ . Jech [10, 1.3] discusses cofinality in detail. Note that cf(κ) � κ for every κ , and
cf(ℵω) = ℵ0.

Theorem 18. Let G be a topological group, and assume that for every � ∈ RP (G) there exists �′ ∈ RP (G) such that �′ � � and
cf(d(�′)) > ℵ0 . Then G is ambitable.

Proof. Let � ∈ RP (G) be such that cf(d(�)) > ℵ0. Since d(�) > ℵ0, we have d(�) = limk→∞ η(k�) by Corollary 6. From
cf(d(�)) > ℵ0 it follows that d(�) = η(k�) for some k. Thus d(k�) = η(k�) and by Lemma 10 there exists f ∈ BLip+(k�)

such that BLip+(k�) = orb( f ). �
5. Topological centres

In this section, preceding results are applied to the study of topological centres in convolution algebras. We start with a
summary of necessary definitions and notation. A more detailed treatment may be found in [16].

Let G be a topological group. The Banach-space dual of Ub(rG) is Ub(rG)∗ , and the weak∗ topology on Ub(rG)∗ is the weak
topology of the duality 〈Ub(rG)∗,Ub(rG)〉.

If X , Y and Z are sets and p is a mapping from X × Y to Z then \x p(x, y) is the mapping x �→ p(x, y) from X to Z and
\y p(x, y) is the mapping y �→ p(x, y) from Y to Z .

The convolution operation � on Ub(rG)∗ is defined by μ � ν( f ) = μ(\xν(\y f (xy))) for μ,ν ∈ Ub(rG)∗ and f ∈ Ub(rG).
When x ∈ G and f ∈ Ub(rG), write δx( f ) = f (x). The mapping δ : x �→ δx is a topological embedding of G to Ub(rG)∗ with

the weak∗ topology.
The subspace Mu(rG) of Ub(rG)∗ is defined as follows: μ ∈ Mu(rG) iff μ is continuous on BLip+(�) for each � ∈ RP (G).

Here, as always, BLip+(�) is considered with the topology of pointwise convergence on G .
The uniform semigroup compactification of G , denoted rG, is the weak∗ closure of δ(G) in Ub(rG)∗ , with the weak∗ topology

and the convolution operation �. The set r̂G = rG ∩ Mu(rG) is identified with the completion of rG.
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The elements of the space Mu(rG) are called uniform measures in the literature, but one must be careful with the termi-
nology: The functionals in Mu(rG) are represented by countably additive measures on rG, but not necessarily on G .

A semigroup S with a topology on S is a right topological semigroup if the mapping x �→ xy from S to S is continuous for
each y ∈ S [3, 1.3]. For any right topological semigroup S , define its topological centre

Λ(S) = {x ∈ S | the mapping y �→ xy is continuous on S}.
The spaces studied here are also denoted by other symbols in the literature. Some of the more common notations are:

• LUC(G) or RUC∗(G) or Ur(G) or LC(G) instead of Ub(rG);
• S(G) or GLUC or G LC instead of rG;
• Z(G) or Zt(G) instead of Λ(Ub(rG)∗).

Let G be a topological group. Then Ub(rG)∗ with the � operation and the weak∗ topology is a right topological semigroup.
This semigroup and its subsemigroup rG have a prominent role in harmonic analysis on G . Significant research efforts have
been devoted to characterizing their topological centres. In the rest of this section we will see how the known results follow
from results about ambitable groups. The same approach yields a characterization of topological centres not only in Ub(rG)∗
and rG but also in any intermediate semigroup between Ub(rG)∗ and rG.

Research in abstract harmonic analysis is often concerned with linear spaces over C, the field of complex numbers,
rather than the field R used here. However, it is an easy exercise to derive the C-version of any result in this paper from
its R-version.

For every topological group G we have Mu(rG) ⊆ Λ(Ub(rG)∗); see Proposition 4.2 in [7] or Section 5 in [16]. If G is
precompact then Mu(rG) = Ub(rG)∗ and therefore Mu(rG) = Λ(Ub(rG)∗).

Question 2. Is Mu(rG) = Λ(Ub(rG)∗) for every topological group G?

As is noted in Section 1, the positive answer was proved for locally compact groups by Lau [11] and for ℵ0-bounded
groups by Ferri and Neufang [7]. By Corollary 22 below, the answer is positive for every ambitable group.

The situation is similar for Λ(rG). We have r̂G ⊆ Λ(rG) for every topological group G . If G is precompact then r̂G = rG
and therefore r̂G = Λ(rG).

Question 3. Is r̂G = Λ(rG) for every topological group G?

The positive answer was proved for locally compact groups by Lau and Pym [12] and for ℵ0-bounded groups by Ferri
and Neufang [7]. Again the answer is positive for every ambitable group, by Corollary 22.

Lemma 19. Let G be a topological group and f ∈ Ub(rG)).

1. The mapping ϕ : ν �→ \xν(\y f (xy)) is continuous from rG to the product space R
G .

2. ϕ(rG) = orb( f ).

Proof. 1. As noted above, δx ∈ Λ(rG) for each x ∈ G , and thus the mapping ν �→ δx � ν is weak∗ continuous from rG to itself.
Since δx � ν( f ) = ν(\y f (xy)), this means that the mapping ν �→ ν(\y f (xy)) from rG to R is continuous for each x ∈ G , and
therefore the mapping ν �→ \xν(\y f (xy)) is continuous from rG to R

G .
2. ϕ(δx) = ρx( f ) for all x ∈ G , and therefore ϕ(δ(G)) = orb( f ). The mapping ϕ is continuous by part 1, rG is compact,

and δ(G) is dense in rG. It follows that ϕ(rG) = orb( f ). �
Lemma 20. Let G be a topological group, μ ∈ Ub(rG)∗ and f ∈ Ub(rG). If the mapping ν �→ μ � ν from rG to Ub(rG)∗ is weak∗
continuous then μ is continuous on orb( f ).

Proof. As in Lemma 19, define ϕ(ν) = \xν(\y f (xy)) for ν ∈ rG.

rG orb( f )

R

�

�

�
�

�
�

�
���

ϕ

μ

ν �→ μ � ν( f )
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By the definition of convolution, μ � ν( f ) = μ(\xν(\y f (xy))) = μ(ϕ(ν)). Thus μ ◦ ϕ is continuous from rG to R.
By Lemma 19, ϕ is continuous from rG to orb( f ), and ϕ(rG) = orb( f ). Since rG is compact, it follows that μ is continuous

on orb( f ). �
Theorem 21. If G is an ambitable topological group, rG ⊆ S ⊆ Ub(rG)∗ , and S with the � operation is a semigroup, then Λ(S) =
Mu(rG) ∩ S.

Proof. As was noted above, Mu(rG) ⊆ Λ(Ub(rG)∗). Therefore Mu(rG) ∩ S ⊆ Λ(S) for every semigroup S ⊆ Ub(rG)∗ .
To prove the opposite inclusion, take any μ ∈ Λ(S) and any � ∈ RP (G). Since rG ⊆ S , the mapping ν �→ μ � ν from rG

to Ub(rG)∗ is weak∗ continuous by the definition of Λ(S). Since G is ambitable, BLip+(�) ⊆ orb( f ) for some f ∈ Ub(rG). By
Lemma 20, μ is continuous on orb( f ) and therefore also on BLip+(�). Thus μ ∈ Mu(rG). �
Corollary 22. If G is an ambitable topological group then Mu(rG) = Λ(Ub(rG)∗) and r̂G = Λ(rG).

Proof. Apply 21 with S = Ub(rG)∗ and with S = rG. �
Note that Theorem 21 applies not only to the semigroups rG and Ub(rG)∗ in Corollary 22, but also to many other

semigroups between rG and Ub(rG)∗ — for example, the semigroup of all positive elements in Ub(rG)∗ , or the semigroup of
all finite linear combinations of elements of rG with integral coefficients.

Corollary 23. If G is a locally ℵ0-bounded topological group then Mu(rG) = Λ(Ub(rG)∗) and r̂G = Λ(rG).

Proof. By Theorem 14, every locally ℵ0-bounded G is precompact or ambitable. As is noted above, if G is precompact then
Mu(rG) = Λ(Ub(rG)∗) and r̂G = Λ(rG). Thus the statement follows from Corollary 22. �

Corollary 23 generalizes the previously published results mentioned above, for locally compact and for ℵ0-bounded
groups.

It is interesting to note that Questions 1 and 2 in this paper are related to a question about uniquely amenable groups
asked by Megrelishvili, Pestov and Uspenskij [13]. By Theorem 5.2 in [16], every uniquely amenable topological group G
such that Mu(rG) = Λ(Ub(rG)∗) is precompact. Therefore, a positive answer to Question 2 would imply that every uniquely
amenable topological group is precompact, thus answering Question 3.5 in [13]. The same reasoning yields the following
corollary.

Corollary 24. No uniquely amenable topological group is ambitable.

Proof. Apply Theorem 2 and Corollary 22 in this paper, and Theorem 5.2 in [16]. �
When G is a discrete group, the uniform compactification rG is the Čech–Stone compactification βG . For any countable

discrete group G , Glasner [8] strengthened the result of Lau and Pym cited in Section 1 as follows: If μ ∈ rG = βG and
the mapping ν �→ μ � ν from βG to itself is Borel measurable then μ ∈ G . Results of this type, where the usual continuity
condition is replaced by measurability, may be also obtained from a modified version of Lemma 20 above. Details of the
required modification will be described elsewhere.
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