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Endothelial progenitor cells (EPCs) were transfected with the haptoglobin (Hp) gene to investigate
the effect of Hp on cell function. Hp potentiated the gene expression of various pro-angiogenic
factors in the EPCs. The Hp-modified EPCs also increased in vitro tube formation on Matrigel
compared with control cells. In hindlimb ischaemia models, Hp–EPCs showed a greater ability for
improving blood perfusion and recovery from ischaemic injury. These results indicate that Hp
improves EPC function in neovasculogenesis, which suggests that ex vivo modification of EPCs with
the Hp gene can be applied to the treatment of vascular damage.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Ischaemic tissue damage requires new blood vessel formation
at damaged sites for tissue repair. Postnatal new vessels are
formed by the processes of angiogenesis, arteriogenesis, and vas-
culogenesis. The angiogenic process involves proliferation and
migration of the endothelial cells that sprout from pre-existing
mature endothelial cells, and arteriogenesis is a process of remod-
elling pre-existing arteriolar connections into collateral vessels
[1]. In contrast, vasculogenesis progresses via the differentiation
of endothelial progenitor cells (EPCs) into mature endothelial
cells [2]. The circulating EPCs, mobilized from bone marrow,
home to the vascular injury sites and participate in neovascular-
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ization through direct incorporation into new-forming vessels,
and/or secreting various angiogenic and trophic factors [3,4].
The EPCs, therefore, have been proposed as a potential target
for therapeutic revascularization [3]. Recent studies have focused
on ex vivo gene-modified EPCs to enhance cell functions, and vas-
cular endothelial growth factor (VEGF) and hypoxia-inducible
factor-1a have been used for improving the pro-angiogenic
capacity of EPCs [5,6].

Haptoglobin (Hp) is an acute-phase glycoprotein in the blood
circulation, and haemoglobin capture is a well-known biological
function of Hp. Hp prevents extravascular haemoglobin-stimulated
oxidative tissue damage via the formation of a stable Hp–haemo-
globin complex [7,8]. The Hp can be expressed in arteries [9],
and acts as an angiogenic factor that induces proliferation and dif-
ferentiation of endothelial cells, as well as a cell migration factor
involved in arterial restructuring [10–12]. These findings suggest
that Hp participates in the formation of new blood vessels and vas-
cular remodelling. However, to date, the effect of Hp on EPC-
promoted neovascularization has not been studied.

In the present study, EPCs were isolated from human umbilical
cord blood and modified by the human Hp gene. Improved
potential of Hp-modified EPCs for angiogenesis and recovery of
blood perfusion in a mouse hindlimb ischaemia model were
demonstrated.
lsevier B.V. All rights reserved.
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2. Materials and methods

2.1. Cell culture

Cord blood and umbilical cords were obtained from donors who
signed a written consent form at Kangnam St. Mary’s Hospital in
Seoul, Korea. Mononuclear cells were isolated from human cord
blood by density gradient centrifugation over Histopaque-10771
(Sigma, St. Louis, MO), according to the manufacturer’s protocol.
The cells were plated into six-well plates coated with 0.1 mg/ml
human fibronectin (Sigma) and incubated in EGM-2 BulletKit med-
ium (Clonetics, San Diego, CA) supplemented with 5% foetal bovine
serum (FBS; Gibco Life Technology, Gaithersburg, MD). After
3 days, non-adherent cells were removed and the medium was re-
placed. To obtain late EPCs, the adherent cells were cultured for
25–45 days by changing to fresh medium every 3 days.

Human umbilical vein endothelial cells (HUVECs) were isolated
from cord vein and cultured as previously described [13].

2.2. Acetylated low-density lipoprotein uptake and Ulex europaeus
lectin binding

After 14 days of culture, the cells were incubated with 2.5 lg/ml
1,10-dioctadecyl-3,3,30,30-tetramethylindocarbocyanine-perchlorate-
labelled acetylated low-density lipoprotein (DiI-acLDL; Molecular
Probes, Eugene, OR) for 1 h at 37 �C, and fixed with 1% paraformalde-
hyde for 10 min. The cells were incubated again with 10 lg/ml fluo-
rescein-isothiocyanate-conjugated Ulex europaeus agglutinin lectin
(UEA lectin; Sigma) for 1 h. Thereafter, the double-labelled cells were
observed with a fluorescence microscope and photographed.

2.3. Modification of EPCs with human Hp gene

To prepare a recombinant plasmid (MSCV-Hp), the cDNA of hu-
man Hp2 gene [14] was subcloned into EcoRI and XhoI sites of
MSCVneoEB retroviral vector that contained a green fluorescence
protein (GFP) gene. 293T cells were transfected with the MSCV-
Hp plasmid using FuGene 6 reagent (Roche Applied Science, India-
napolis, IN). At 48, 60 and 72 h after transfection, the virus-con-
taining supernatants were collected and passed through a
0.45 lm syringe filter (Pall Corporation, East Hills, NY). The viral
supernatants were added to the EPC culture in the presence of
5 lg/ml protamine sulphate (Sigma). Seventy-two hours after
infection, GFP-positive cells were collected using a flow cytometric
cell sorter (FACS Vantage SE; BD Biosciences, San Diego, CA).

2.4. Reverse transcriptase-polymerase chain reaction (RT-PCR)

RT-PCR was performed using the following specific primers, as
previously described [15]: Hp (F-ATGAGTGCCCTGGGAGCTGTCATT,
R-GCATTAGTTCTCAGCTATGGTCTT), VEGF (F-AGGAGGGCAGAAT-
CATCACG, R-CAAGGCCCACAGGGATTTTCT), KDR (F-CTGGCATGGT-
CTTCTGTG, R-AATGGGATTGGTAAGGATG), Flt-1 (F-AGCAAGTGG-
GAGTTTGC, R-AGGTCCCGATGAATGC), vWF (F-GAGGCTGAGTTTGA-
AGTGC, R-CTGCTCCAGCTCATCCAC), VE-cadherin (F-AAGACAT-
CAATGACAACTTCC, R-CCTCCACAGTCAGGTTATACC), eNOS (F-AA-
GACATTTTCGGGCTCAC, R-GGCACTTTAGTAGTTCTCC), GAPDH
(F-ACCACAGTCCATGCCATCAC, R-TCCACCACCCTGTTGCTGTA). The
quantitative real-time RT-PCR was performed with FullVelocity
SYBR Green QPCR master mix (Stratagene, La Jolla, CA) using a
Real-Time PCR Machine (MX-3000P; Stratagene).

2.5. In vitro tube formation on Matrigel and EPC incorporation

Chilled Matrigel (BD Biosciences, San Jose, CA) was added to
each well in 48-well plates and polymerized by incubating at
37 �C for 30 min. The GFP-tagged vector- or Hp-DNA-transduced
EPCs (2 � 104 cells/well) were plated on the Matrigel and incu-
bated for 20 h in EGM-2 medium that contained 3% FBS. To exam-
ine the incorporation of EPCs into the vascular structure, the EPCs
(1 � 104 cells) and DiI-acLDL-labelled HUVECs (2 � 104 cells) were
co-plated on Matrigel and co-cultured for 20 h in M199 medium
that contained 3% FBS. The formation of a tubular network was ob-
served with a fluorescence microscope and photographed.

2.6. Mouse hindlimb ischaemia

All animal procedures were approved by the Ethics Committee
of the Catholic University of Korea. Male athymic nude mice of
18–22 g in weight (6 weeks old) were used. Under Zoletile 50�

(10 mg/kg; Vibac, Carros, France) anaesthesia, the right proximal
femoral artery and the distal saphenous artery were ligated with
a 6.0 silk suture (Ethicon, Somerville, NJ), and the femoral artery
and attached side branches were excised. The left hindlimb was
kept intact and used as a non-ischaemic region. Twenty-four
hours after induction of hindlimb ischaemia, the mice were di-
vided randomly into three groups (1, 2, and 3), and 5 � 105 cells
of vehicle vector–EPCs and Hp–EPCs per mouse were injected lo-
cally into the ischaemic thigh muscles at two different points in
group 1 (n = 8) and 2 (n = 8) mice, respectively. Group 3 (n = 4)
mice were injected with an equal volume of PBS. At 4 weeks after
EPC transplantation, thigh blood flow was measured using a laser
Doppler blood perfusion imager (LDPI; Perimed PeriScan PIM III,
Järfälla, Sweden). After scanning three times, the LDPI index
was determined as the ratio of ischaemic to non-ischaemic hind-
limb blood perfusion values.

2.7. Capillary density determination

After 4 weeks of ischaemia, the ischaemic and non-ischaemic
leg muscles were removed from the mice, embedded in Tissue-
Tek (Sakura Finetek Europe, Zoeterwoude, The Netherlands). Fro-
zen 5 lm-thick tissue sections were prepared by cutting with a
cryostat (Leica CM1800; Wetzlar, Germany), and then stained for
alkaline phosphatase using the fast BCIP/NBT solution (Sigma).
The tissue sections were also incubated with a monoclonal rat
anti-mouse CD31 antibody (Abcam, Cambridge, UK) overnight at
4 �C. After washing with PBS, the samples were incubated with
Alexa-Fluor-555-labelled secondary antibody (Invitrogen, Carls-
bad, CA) for 1 h at room temperature.

2.8. Statistical analysis

Student’s t-test and one-way analysis of variance were used to
analyse the differences between values obtained in the various
experimental and control conditions. P < 0.05 was considered
significant.

3. Results and discussion

3.1. Enhancing effect of Hp on EPC differentiation

To identify the isolated cells with typical characteristics of EPCs,
at day 14 of culture, DiI-acLDL uptake and UEA-lectin binding were
detected. As shown in Fig. 1A, the cells were positive for DiI-acLDL
uptake and UEA-lectin binding, which suggested that the isolated
cells had characteristics of EPCs. At 25–40 days after cell plating,
the EPCs had grown to confluence and showed a cobblestone-like
shape (Fig. 1B). EPCs are a heterogeneous cell population. Hur
et al. have classified EPCs into two types according to their time-
dependent appearance: spindle-shaped early EPCs with a low pro-
liferative capacity, and cobblestone-shaped late EPCs with a high



Fig. 1. Characterization of isolated EPCs. (A) At 14 days of culture, the adherent cells were double-labelled with DiI-acLDL and FITC-UEA lectin, observed by fluorescent
microscopy, and photographed (�100). The merged images demonstrate that the isolated cells were dual positive for uptake of DiI-acLDL and binding to FITC-lectin. (B)
Representative photomicrograph of cobblestone-like EPCs grown to confluence.
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expansive capacity [16]. Here, we used the outgrowing cobble-
stone-like late EPCs, which have the potential to differentiate into
mature endothelial cells.

When the late EPCs were transfected with human Hp cDNA,
Hp protein was expressed in the cells and secreted into culture
medium (Fig. 2A). The Hp-expressing EPCs showed greater in-
creases in mRNA levels of various endothelial markers, VEGF,
KDR, Flt-1, vWF, VE-cadherin, and eNOS, compared with the vehi-
cle vector-transfected EPCs (Fig. 2B and C). Hp overexpression,
however, did not significantly affect EPC growth (Fig. 2D). These
results indicate that Hp promotes differentiation of EPCs but
not their proliferation.
Fig. 2. Effect of Hp on EPC differentiation and proliferation. (A) Hp expression in the Hp
Western blotting. Expression of endothelial-cell-specific markers was analyzed by RT-PC
modified EPCs was determined by MTT assay. *P < 0.05 compared with vector-transfected
experiments were done three times and the results from three experiments were simila
3.2. Improvement in the angiogenic property of EPCs by Hp

When EPCs were cultured on growth-factor-reduced Matrigel,
the Hp-expressing EPCs showed a higher capability of capillary-
like tube formation than did vector-transfected control EPCs
(Fig. 3A). To assess the incorporation of EPCs into the vascular
structure of endothelial cells, GFP-containing EPCs were co-cul-
tured with DiI-AcLDL-labelled HUVECs on Matrigel. Incorporation
of EPCs (green) into the network structure of HUVECs (red) was en-
hanced in the Hp–EPCs (Fig. 3B).

As shown in Fig. 3B (middle images), the tubular network struc-
ture of HUVECs was better formed in the presence of Hp–EPCs than
gene-transduced EPCs and secretion into culture medium (CM) were analyzed by
R (B) and quantitative real-time RT-PCR (C) in vector– and Hp–EPCs. (D) Growth of
EPCs. The results represent means ± S.D. of the data from triplicate experiments. The
r.



Fig. 3. Improvement of the angiogenic property of EPCs by Hp. Capillary-like tube formation on Matrigel (A) and the incorporation of EPCs into the tubular structure (B) were
examined. The cells were observed under a fluorescent microscope and photographed (�100). The red and green colours correspond to HUVECs and EPCs, respectively. The
merged images show that Hp–EPCs were more integrated into the vascular structure than control vector–EPCs were.
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that in vector–EPCs. This seems to have resulted from the angio-
genic activity of Hp, which was expressed in Hp–EPCs and secreted
into the Matrigel. The result was consistent with the previous
study of Cid et al. [10], in which Hp stimulated in vitro tube forma-
tion by HUVECs. However, the action mechanism of Hp on HUVEC
stimulation remains to be established.

3.3. Improving activity of Hp on EPC-induced neovascularization in the
mouse hindlimb ischaemia model

To investigate the effect of Hp on in vivo neovascularization,
Hp-modified EPCs were transplanted locally into the hindlimb
after induction of ischaemia in athymic nude mice. According
to their outcomes, we classified the experimental mice into
three groups: limb salvage, mild loss of limb, and severe loss
of limb (Fig. 4A). The rate of limb salvage was elevated in
Hp–EPCs transplantation (4/8 mice) compared with the control
EPC mice (1/8) and the PBS group (0/4). Mild loss of limb was
also high in the Hp–EPC group (3/8 mice with Hp–EPCs, 1/8
mice with control EPCs, and 1/4 mice with PBS). Consistent with
this, LDPI index was higher in the Hp–EPC group (0.68 ± 0.22)
than in the control EPC group (0.44 ± 0.19) or PBS group
(0.35 ± 0.08) (Fig. 4B and C). To assess the neovascularization
in the ischaemic hindlimb, capillary density was measured by
staining against alkaline phosphatase and CD31 in tissue sec-
tions. Histochemical staining showed that the blood vessel den-
sity was significantly increased in tissue sections obtained from
limbs treated with Hp–EPCs (Fig. 5). These findings suggest that
Hp improves the potential of EPCs for repairing ischaemic injury
by neovascularization.

In the in vivo study, the control EPCs without Hp (5 � 105cells
per mouse) showed a low activity for recovery of ischaemic tissue
(Figs. 4 and 5), despite 5 � 105–106 EPCs per mouse commonly
being used for repair of hindlimb ischaemia. It is thought that
EPC activity is reduced slightly during the processes of ex vivo
modification and cell sorting by FACS. However, the stimulating ef-
fect of Hp on EPC function, which was the focus of the present
study, was obvious.



Fig. 4. Improvement of blood flow recovery by Hp-modified EPCs in the mouse hindlimb ischaemia model. (A) and (B) Representative three different outcomes (limb salvage,
mild loss of limb, and severe loss of limb) of mice at day 28, and rate of the three outcomes in each group of mice. (C) Representative LDPI images of the ischaemic mice. (D)
LDPI index was expressed by the blood perfusion ratio of ischaemic/non-ischaemic limbs in each group. *P < 0.05 compared with vehicle vector-transfected EPCs.

Fig. 5. Capillary density determination in the ischaemic and non-ischaemic tissues. After 4 weeks of ischaemic operation, tissue sections of the muscles obtained from
ischaemic and healthy hindlimbs were stained for alkaline phosphatase (A) and CD31 (B). Four fields from each CD31 staining were selected randomly and counted. *P < 0.05
compared with vector-transfected EPCs. Normal means the results from non-ischaemic healthy hindlimbs.
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To identify the integration of transplanted GFP-containing
EPCs into the repaired vessels, we examined green fluorescence
in the tissue sections obtained from recovered muscles after
ischaemia. However, we could not find the fluorescent cells, de-
spite confirming their integration in the in vitro model (Fig. 3B).
Hp perhaps participates in neovascular formation in vivo by
enhancing pro-angiogenic factors rather than EPC integration.
The underlying mechanism of Hp action on transcriptional activa-
tion of these factors is unknown. We are continuing to study the
mechanism.
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Humans show an allelic polymorphism for Hp. According to two
major alleles, Hp1 and Hp2, Hp is expressed as three major pheno-
types: Hp 1-1 (Hp1/Hp1), Hp 2-1 (Hp1/Hp2), and Hp 2-2 (Hp2/Hp2)
[17]. Hp 2-2 has more potent angiogenic activity compared with
that of Hp 1-1 [10], therefore, in our study, human Hp2 gene was
transduced and the effects of expressed Hp 2-2 on EPC function
were investigated. More recently, Rouhl et al. have reported that
Hp 1-1 inhibits EPC cluster formation and decreases the endothe-
lial repair potential in cerebral small vessel disease with silent
ischaemic lesions [18]. Further studies to confirm phenotype-
dependent Hp functions on the angiogenic and neovasculogenic
activities of EPCs are required.

In summary, we demonstrated that Hp improves the pro-angio-
genic property of EPCs and their ability to promote recovery of
blood perfusion after ischaemic injury. These results indicate that
Hp can participate in neovascularization by accelerating the func-
tion of EPCs. It suggests that ex vivo modification of EPCs by Hp
gene transfection is a potential strategy for improving the capabil-
ity of EPCs for therapeutic revascularization.
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