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a b s t r a c t

Given a graphGwith two distinguished nodes s and t , a cost on each edge ofG and two fixed
integers k ≥ 2, L ≥ 2, the k edge-disjoint L-hop-constrained paths problem is to find amin-
imum cost subgraph of G such that between s and t there are at least k edge-disjoint paths
of length at most L. In this paper we consider this problem from a polyhedral point of view.
We give an integer programming formulation for the problem and discuss the associated
polytope. In particular, we show that when L = 3 and k ≥ 2, the linear relaxation of the
associated polytope, given by the trivial, the st-cut and the so-called L-path-cut inequali-
ties, is integral. As a consequence, we obtain a polynomial time cutting plane algorithm for
the problemwhen L = 2, 3 and k ≥ 1. This generalizes the results of Huygens et al. (2004)
[1] for k = 2 and L = 2, 3 and those of Dahl et al. (2006) [2] for L = 2 and k ≥ 2. This also
proves a conjecture in [1].

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Given a graph G = (V , E) with two distinguished nodes s, t ∈ V and a positive integer L ≥ 2, an L-st-path in G is a
path between s and t of length at most L, where the length is the number of its edges. Given a function c : E → R which
associates a cost c(e) to each edge e ∈ E and an integer k ≥ 2, the k edge-disjoint L-hop-constrained paths problem (kHPP) is
to find a minimum cost subgraph such that between s and t there exist at least k edge-disjoint L-st-paths.
Given an edge subset F ⊆ E, the 0–1 vector xF ∈ RE , such that xF (e) = 1 if e ∈ F and xF (e) = 0 otherwise, is called the

incidence vector of F . The kHPP polytope, denoted by kHPP(G), is the convex hull of the incidence vectors of the solutions of
the kHPP on G, i.e.,

kHPP(G) = conv{xF ∈ RE | F ⊆ E and (V , F) contains k edge-disjoint st-paths of length at most L}.

In [1] Huygens et al. conjectured that when L = 2, 3 and k ≥ 3, the kHPP polytope is given by the so-called st-cut and
L-path-cut inequalities together with the trivial inequalities. This has been proved by Dahl et al. [2] for L = 2 and k ≥ 2. In
this paper, we show the conjecture for L = 3 and k ≥ 2. This has been an open question for a few years. We give an integer
programming formulation for the problem.We also describe necessary and sufficient conditions for these inequalities to be
facet defining. Using this, we give a complete description of the kHPP polytope. These results can be seen as a generalization
of those obtained by Huygens et al. [1] for k = 2 and L = 2, 3 and by Dahl et al. [2] for k ≥ 2 and L = 2. We also show that
the kHPP reduces to a minimum cost flow problem in an appropriate graph.

∗ Corresponding author. Tel.: +33 0 1 44 05 48 96; fax: +33 0 1 44 05 40 91.
E-mail addresses: bendali@isima.fr (F. Bendali), diarrass@isima.fr (I. Diarrassouba), ridha.mahjoub@math.univ-bpclermont.fr,

mahjoub@lamsade.dauphine.fr (A.R. Mahjoub), mailfert@isima.fr (J. Mailfert).

1572-5286/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.disopt.2010.05.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82636171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/disopt
http://www.elsevier.com/locate/disopt
mailto:bendali@isima.fr
mailto:diarrass@isima.fr
mailto:ridha.mahjoub@math.univ-bpclermont.fr
mailto:mahjoub@lamsade.dauphine.fr
mailto:mailfert@isima.fr
http://dx.doi.org/10.1016/j.disopt.2010.05.001


F. Bendali et al. / Discrete Optimization 7 (2010) 222–233 223

One of the main concerns when designing telecommunication networks is to compute network topologies that provide
a sufficient degree of survivability. Survivable networks – networks that are still functional after the failures of certain
links – must satisfy some connectivity requirements. As pointed out in [3] (see also [4]), the topology that seems to be
very efficient (and needed in practice) is the uniform topology, that is to say that corresponding to networks that survive
after the failure of k − 1 or fewer edges, for some k ≥ 2. The 2-connected topology (k = 2) provides an adequate level of
survivability since most failure usually can be repaired relatively quickly. However, for some types of networks (like ATM
and IP networks), it may be necessary to provide a higher level of connectivity.
However, this requirement is often insufficient regarding the reliability of a telecommunication network. In fact, the

alternative paths could be too long to guarantee an effective routing. In data networks, such as Internet, the elongation of
the route of the information could cause a strong loss in the transfer speed. For other networks, the signal itself could be
degraded by a longer routing. In such cases, the L-path requirement guarantees exactly the needed quality of the alternative
routes.
The kHPP can be seen as a special case of themore general problemwhenmore than one pair of terminals are considered.

This is the case, for instance, when several commodities have to be routed in the network. Thus, an efficient algorithm for
solving the kHPP would be useful to solve (or produce upper bounds for) this more general problem.
The kHPP has been studied in some special cases. Huygens et al. [1] have investigated the case where k = 2 and L = 2, 3.

They give an integer programming formulation for the problem and show that the linear relaxation of this formulation
completely describes the kHPP polytope in this case. They also show that this formulation is no longer valid when L ≥ 4. In
[2], Dahl et al. study the kHPP for L = 2 and k ≥ 2. They give a complete description of the associated polytope. There has
been however a considerable amount of research on many related problems. In [5], Dahl considers the kHPP for k = 1 and
L ≥ 3. He gives a complete description of the dominant of the associated polytopewhen L ≤ 3. Dahl andGouveia [6] consider
the directed hop-constrained path problem. They describe valid inequalities and characterize the associated polytope when
L ≤ 3.
In [7], Coullard et al. investigate the structure of the polyhedron associatedwith the st-walks of lengthK of a graph,where

a walk is a path that may go through the same node more than once. They present an extended formulation of the problem,
and, using projection, they give a linear description of the associated polyhedron. They also discuss classes of facets of that
polyhedron. Dahl et al. [8] also consider the hop-constrained walk polytope in directed graphs when L = 4. By introducing
extended variables in addition to the design variables the authors characterize the associated polytope. They also introduce
a large class of facet defining inequality for the dominant of that polytope. This is the first work that addresses a polyhedral
analysis for a hop-constrained network design problem with L = 4. Huygens and Mahjoub [9] study the kHPP when L ≥ 4.
They also study the variant of the kHPPwhere k node-disjoint paths of length at most L are required between two terminals.
They give integer programming formulations for these two problems in the case k = 2 and L = 4.
The more general version of the problem where several pairs (s, t) of terminals have to be linked by L-hop-constrained

paths has also been studied in the literature. In [10], Dahl and Johannessen consider the 2-path network design problem
which consists in finding a minimum cost subgraph connecting each pair of terminal nodes by at least one path of length at
most 2. Huygens et al. [11] consider the problem of finding aminimum cost subgraph with at least two edge-disjoint L-hop-
constrained paths between each pair of terminal nodes. They give an integer programming formulation of that problem
for L = 2, 3 and present several classes of valid inequalities. They also devise a Branch-and-Cut algorithm, and discuss
some computational results. In [12–14], Gouveia et al. consider the node case of that general problem within the context
of an MPLS (Multi-Protocol Label Switching) network design model. In [12], the authors study a network design problem
involving hop-constraints for MPLS over optical networks. They discuss a hop-indexed formulation and devise a heuristic
which shows to be very efficient for large instances. In [13,14], they consider a hop-constrained node survivable network
design problem.Here survivability requires that between every pair of demandnodes, there are at least knode-disjoint paths
with at most L edges, where k and L are two given integers. In [13], they discuss the problem of designing one layer of the
network (the MPLS layer) with k = 2. They propose two compact formulations for the problem, a hop-indexed formulation
and amulticommodity flow formulation. They show, in particular, that the LP bound of the former is as good as the LP bound
given by the latter. They also present computational results for L = 4, 5, 6. In [14], they consider the problem in multilayer
MPLS over WDM networks. They give an integer linear programming model based on the results in [12,13], and discuss
computational results for k = 2, 3, 4 and L = 4.
The problem of finding a minimum cost spanning tree with hop-constraints is also considered in [15–17]. Here, the hop-

constraints limit to L the number of links between the root and any terminal in the network. In [15] Gouveia gives a mul-
ticommodity flow formulation for that problem and devises a Lagrangian relaxation. In [16] he proposes a hop-indexed
reformulation of a multicommodity flow formulation which is based on an extended description of the L-walk polyhedron.
In [17] Gouveia and Requejo propose a Lagrangian relaxation for the problem that dualizes the hop-indexed flow conserva-
tion constraints. Dahl [18] also studies the minimum cost spanning tree with hop-constraints problem where L = 2 from a
polyhedral point of view. He gives a complete description of the associated polytope when the graph is a wheel.
Another reliability condition used in telecommunication networks in order to limit the length of the routing, requires

that each link of the network belongs to a ring (cycle) of bounded length. In [19], Fortz et al. consider the 2-node connected
subgraph problemwith bounded rings. This problem consists in finding a minimum cost 2-node connected subgraph (V , F)
such that each edge of F belongs to a cycle of length at most L. They describe several classes of facet defining inequalities for
the associated polytope and devise a Branch-and-Cut algorithm for the problem. In [20], Fortz et al. study the edge version
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of that problem. They give an integer programming formulation for the problem in the space of the natural design variables
and describe different classes of valid inequalities. They study the separation problem of these inequalities and discuss
Branch-and-Cut algorithm.
The related k edge-connected subgraph problem and its associated polytope have also been the subject of extensive

research in the past years. Grötschel and Monma [21] and Grötschel et al. [22,23] study the k-edge connected subgraph
problem within the framework of a general survivable model. They discuss polyhedral aspects and devise cutting plane
algorithms. Didi Biha and Mahjoub [24] study that problem and give a complete description of the associated polytope
when the graph is series-parallel. In [25], Didi Biha and Mahjoub study the Steiner version of that problem and characterize
the polytope when k is even. Chopra [26] studies the dominant of that problem and introduces a class of valid inequalities
for its polyhedron. Barahona and Mahjoub [27] characterize the polytope for the class of Halin graphs. In [28], Fonlupt
and Mahjoub study the fractional extreme points of the linear relaxation of the 2-edge connected subgraph polytope. They
introduce an ordering on these extreme points and characterize the minimal extreme points with respect to that ordering.
As a consequence, they obtain a characterization of the graphs for which the linear relaxation of that problem is integral.
Didi Biha and Mahjoub [29], extend the results of Fonlupt and Mahjoub [28] to the case k ≥ 3 and introduce some graph
reduction operations. Kerivin et al. [30] study that problem in the more general case where each node of the graph has a
specific connectivity requirement. They present different classes of facets of the associated polytope when the connectivity
requirement of each node is at most 2, and devise a Branch-and-Cut algorithm for the problem in this case. In [31], Bendali
et al. study the k-edge connected subgraph problem for the case k ≥ 3. They introduce several classes of valid inequalities
and discuss the separation algorithm for these inequalities. They also devise a Branch-and-Cut algorithm and give some
computational results for k = 3, 4, 5. A complete survey of the k-edge connected subgraph problem can be found in [4].
The paper is organized as follows. In next section, we give some notations and preliminary results we will use along this

paper. In Section 3, we describe necessary and sufficient conditions for the st-cut and L-path-cut inequalities to be facet
defining. Our main result, which gives the complete description of the kHPP polytope for L = 3, is presented in Section 4,
and concluding remarks are given in Section 5.

2. Notations and preliminary results

2.1. Notations

We denote a graph by G = (V , E) where V is the node set and E the edge set. Given two node subsets W and W ′, we
denote by [W ,W ′] the set of edges having one endnode in W and the other in W ′. If W = {u}, we then write [u,W ′] for
[{u},W ′]. We also denote byW the node set V \W . If [u, v] 6= ∅ for two nodes u, v ∈ V , we let uv be an edge of [u, v]. The
set of edges having only one node inW is called a cut and denoted by δ(W ). We will write δ(u) for δ({u}). Given two nodes
s, t ∈ V , a cut δ(W ) such that s ∈ W and t ∈ W is called an st-cut.
Throughout the paper, we consider graphs without loops and which may have multiple edges.
If π = (V0, . . . , Vp), p ≥ 1, is an ordered partition of V , the graph Gπ = (Vπ , Eπ ) denotes the subgraph of G obtained by

contracting the sets Vi, i = 1, . . . , p. The edge set Eπ may be identified with the set of edges of G having their endnodes in
different elements of π .
For an edge subset F ⊆ E, we will denote by G \ F the subgraph of G obtained by removing all the edges of F .
Given a weight vectorw ∈ RE and an edge subset F ⊆ E, we letw(F) =

∑
e∈F w(e).

Given a solution x ∈ RE , an inequality aT x ≥ α is said to be tight for x if and only if aT x = α.
We will also denote by D = (V , A) a directed graph. An arc a with its tail node u and head node v will be denoted by

(u, v). Given two node subsetsW andW ′ of V , we will denote by [W ,W ′] the set of arcs whose tail nodes are inW and head
nodes are inW ′. As before, we will write [u,W ′] for [{u},W ′] andW

′
will denote the node set V \W . The set of arcs having

their tail inW and their head inW is called a cut in D and is denoted by δout(W ). Wewill also write δout(u) for δout({u})with
u ∈ V . If s and t are two nodes of H such that s ∈ W and t ∈ W , then δout(W )will be called a st-dicut in D.

2.2. Valid inequalities for the kHPP polytope

Let G = (V , E) be an undirected graph, two nodes s, t of V and a positive integer k ≥ 2. If F is a solution of the kHPP, then
clearly xF satisfies the following inequalities:

x(δ(W )) ≥ k, for all st-cut δ(W ), (2.1)
0 ≤ x(e) ≤ 1, for all e ∈ E. (2.2)

Inequalities (2.1) will be called st-cut inequalities and inequalities (2.2) trivial inequalities.
In [5], Dahl considers the problem of finding a minimum cost path between two given terminal nodes s and t of length

at most L. He describes a class of valid inequalities for the problem and gives a complete characterization of the associated
L-path polyhedron when L ≤ 3. In particular he introduces a class of valid inequalities as follows.
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Fig. 1. Support graph of a 3-path-cut inequality.

Let V0, V1, . . . , VL+1 be a partition of V such that s ∈ V0 and t ∈ VL+1, and Vi 6= ∅ for all i = 1, . . . , L. Let T be the set of
edges e = uv, where u ∈ Vi, v ∈ Vj, and |i− j| > 1. Then the inequality

x(T ) ≥ 1
is valid for the L-path polyhedron.
Using the same partition, this inequality can be generalized in a straightforward way to the kHPP polytope as

x(T ) ≥ k. (2.3)
The set T is called an L-path-cut, and a constraint of type (2.3) is called an L-path-cut inequality. See Fig. 1 for an example of a
3-path-cut inequality with V0 = {s} and V4 = {t}. Note that T intersects every 3-st-path in at least one edge and each st-cut
δ(W ) intersects every st-path. We denote by Pk(G) the polytope given by inequalities (2.1)–(2.3).
The separation problem associated with inequalities (2.1) can be solved in polynomial time by computing a maximum

flow between s and t in the graph G. Fortz et al. [20] shows that the separation of inequalities (2.3) can also be performed in
polynomial time by computing a maximum flow in an auxiliary graph.

2.3. Formulation

In this subsection, we give an integer programming formulation for the kHPP. We will show that the st-cut, 3-path-cut
and trivial inequalities, together with the integrality constraints suffice to formulate the kHPP as a 0–1 linear program. To
this end, we first give a lemma. Its proof can be found in [1].

Lemma 2.1 ([1]). Let G = (V , E) be an undirected graph and s and t two nodes of V . Suppose that there do not exist k edge-
disjoint 3- st-paths in G, with k ≥ 2. Then there exists a set of at most k− 1 edges that intersects every 3- st-path.

Theorem 2.1. Let G = (V , E) be a graph and k ≥ 2. Then the kHPP is equivalent to the integer program

Min
{
cx; x ∈ Pk(G), x ∈ {0, 1}E

}
.

Proof. To prove the theorem, it is sufficient to show that every 0–1 solution x of Pk(G) induces a solution of the kHPP. Let us
assume the contrary and suppose that x does not induce a solution of the kHPP but satisfies the st-cut and trivial inequalities.
We will show that x necessarily violates at least one 3-path-cut inequality. Let G(x) be the subgraph of G induced by x, that
is the graph obtained from G by deleting every edge e ∈ E such that x(e) = 0. As x is not a solution of the problem, G(x) does
not contain k edge-disjoint 3-st-paths. By Lemma 2.1, it follows that there exist at most k − 1 edges in G(x) that intersect
every 3-st-path. Consider the graph G′(x) obtained from G(x) by deleting these edges. Obviously, G′(x) does not contain any
3-st-path.
We claim that G′(x) contains at least one st-path of length at least 4. In fact, as x is a 0–1 solution and satisfies the st-cut

inequalities, G(x) contains at least k edge-disjoint st-paths. Since at most k− 1 edges were removed from G(x), at least one
path remains between s and t . However, since G′(x) does not contain a 3-st-path, that st-path must be of length at least 4.
Now consider the partition (V0, . . . , V4) of V with V0 = {s}, Vi the set of nodes at distance i from s in G′(x) for i = 1, 2, 3,

and V4 = V \ (
⋃3
i=0 Vi), where the distance between two nodes is the length of a shortest path between these nodes. Since

there does not exist a 3-st-path in G′(x), it is clear that t ∈ V4. Moreover, as by the claim above, G′(x) contains an st-path
of length at least 4, the sets V1, V2 and V3 are nonempty. Furthermore, no edge of G′(x) is a chord of the partition (that is an
edge between two sets Vi an Vj where |i− j| > 1). In fact, if there exists an edge e = vivj ∈ [Vi, Vj]with |i− j| > 1 and i < j,
then vj is at distance i+ 1 < j, from s, a contradiction.
Thus, the edges deleted from G′(x) are the only edges that may be chords of the partition G(x). In consequence, if T is

the set of chords of the partition in G, then x(T ) ≤ k − 1. But this implies that the corresponding 3-path-cut inequality is
violated by x. �

3. Facets of kHPP(G)

In this section, we give necessary and sufficient conditions for inequalities (2.1)–(2.3) to define facets. Thesewill be useful
in what follows.
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Let G = (V , E) be an undirected graph, s and t two nodes of G and k a positive integer ≥2. An edge e ∈ E is said to be
3-st-essential if e belongs to an st-cut or a 3-path-cut of cardinality k. Let E∗ be the set of the 3-st-essential edges. We have
the following results that can be easily seen to be true.

Theorem 3.1. dim(kHPP(G)) = |E| − |E∗|.

An immediate consequence of Theorem 3.1 is the following.

Corollary 3.1. If G = (V , E) is a complete graph such that |V | ≥ k+ 2, then kHPP(G) is full dimensional.

In the rest of the paper, we will consider that G = (V , E) is a complete graph with |V | ≥ k + 2, and which may contain
multiple edges. Thus, by Corollary 3.1, kHPP(G) is full dimensional.

Lemma 3.1. Let aT x ≥ α be an inequality which defines a facet of kHPP(G), different from (2.2). Then a(e) ≥ 0 for all e ∈ E.

The following theorems show when inequalities (2.1)–(2.3) define facets for kHPP(G).

Theorem 3.2. (1) Inequality x(e) ≤ 1 defines a facet of kHPP(G) for all e ∈ E.
(2) Inequality x(e) ≥ 0 defines a facet of kHPP(G) if and only if either |V | ≥ k+ 3 or |V | = k+ 2 and e does not belong neither
to an st-cut nor to a 3-path-cut containing exactly k+ 1 edges.

Proof. (1) As |V | ≥ k + 2 and G is complete, the edge set Ef = E \ {f } is a solution of kHPP, for all f ∈ E \ {e}. Hence, the
sets E and Ef , for all f ∈ E \ {e}, constitute a set of |E| solutions of the kHPP. Moreover, their incidence vectors satisfy
x(e) = 1 and are affinely independent.

(2) Suppose that |V | ≥ k + 3. Then G contains k + 2 node-disjoint st-paths (an edge of [s, t] and k + 1 paths of the form
(s, u, t), u ∈ V \{s, t}). Hence any edge set E\{f , g}, f , g ∈ E, contains k edge-disjoint 3-st-paths among these 3-st-paths.

Consider the |E| edge sets E \ {e} and Ef = E \ {e, f } for all f ∈ E \ {e}. Therefore, these sets induce solutions of the kHPP.
Moreover the incidence vectors of these solutions satisfy x(e) = 0 and are affinely independent.
Now suppose that |V | = k + 2. If e belongs to an st-cut δ(W ) (resp. a 3-path-cut T ) with k + 1 edges, then x(e) ≥ 0 is

redundant with respect to the inequalities

x(δ(W )) ≥ k (resp. x(T ) ≥ k),
−x(f ) ≥ −1 for all f ∈ δ(W ) \ {e}(resp. f ∈ T \ {e}),

and cannot hence be facet defining. If e does not belong neither to an st-cut nor to a 3-path-cut with k + 1 edges, then the
edge sets E \ {e} and Ef , f ∈ E \ {e}, introduced above, are still solutions of kHPP. Moreover, their incidence vectors satisfy
x(e) = 0 and are affinely independent. �

Theorem 3.3. Every st-cut inequality defines a facet of kHPP(G).

Proof. LetW ⊆ V such that s ∈ W and t ∈ W . Observe that [s, t] ⊆ δ(W ). Let us denote by aT x ≥ α the st-cut inequality
induced byW and let Fa = {x ∈ kHPP(G) | aT x = α}. We first show that Fa is a proper face of kHPP(G). As |V | ≥ k + 2,
there existW1 ⊆ W \ {s} andW2 ⊆ W \ {t} such that |W1|+ |W2| = k. Note thatW1 andW2may be empty but not both. Let
F1 = {sv, v ∈ W2} ∪ {ut, u ∈ W1} and E1 = F1 ∪ E0 where E0 = E(W ) ∪ E(W ). It is not hard to see that E1 is a solution of
the kHPP whose incidence vector satisfies aT x ≥ α with equality. Hence, Fa 6= ∅ and, therefore, is a proper face of kHPP(G).
Now suppose that there exists a facet defining inequality bT x ≥ β such that Fa ⊆ {x ∈ kHPP(G) | bT x = β}. We will

show that there exists a scalar ρ such that b = ρa.
Consider an edge e ∈ F1. Clearly, the edge set E2 = (E1 \ {e}) ∪ {st} is a solution of the kHPP and its incidence vector

satisfies aT x ≥ αwith equality. It then follows that bT xE2 = bT xE1−b(e)+b(st). Since xE1 ∈ Fa, we obtain that b(e) = b(st).
As e is arbitrary in F1, this implies that

b(e) = b(st) = ρ for all e ∈ F1. (3.1)

Now let f = uv ∈ δ(W ) \ F1, with u ∈ W \ {s} and v ∈ W \ {t}. If u ∈ W1 and v ∈ W2, then let E3 = (E1 \ {sv, ut})∪ {f , st}.
Clearly, E3 is a solution of the kHPP and its incidence vector satisfies aT x ≥ α with equality. Hence, we have that
bT xE3 = bT xE1 . This implies that b(sv)+ b(ut) = b(f )+ b(st). From (3.1), it follows that b(f ) = ρ.
If u ∈ W1 ∪ {s} (resp. u ∈ W \ (W1 ∪ {s})) and v ∈ W \ (W2 ∪ {t}) (resp. v ∈ W2 ∪ {t}), by considering the edge set

E4 = (E1 \ {ut}) ∪ {f } (resp. E4 = (E1 \ {sv}) ∪ {f }), we similarly obtain that b(f ) = ρ.
If u 6∈ W1 and v 6∈ W2, then one can consider the solution E5 = (E1 \ {e})∪ {f }, where e is an edge of F1, and obtain along

the same lines that b(f ) = ρ.
Thus, together with (3.1), this yields

b(e) = ρ for all e ∈ δ(W ).

Now let e ∈ E0, and suppose, w.l.o.g., that e ∈ E(W ). If e does not belong to a 3-st-path of E1, then the edge set E6 = E1 \ {e}
also induces a solution of the kHPP and satisfies aT x ≥ α with equality. We then have that bT xE6 = bT xE1 implying b(e) = 0.
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If e belongs to a 3-st-path of E1, say (su, ut), then the edge set E7 = (E1 \ {su, ut}) ∪ {st} induces a solution of the kHPP
and its incidence vector satisfies aT x ≥ α with equality. It then follows that bT xE7 = bT xE1 and hence b(st) = b(su)+ b(ut).
As by (3.1), b(ut) = b(st), we get b(e) = 0.
Consequently, we have that

b(e) =
{
ρ for all e ∈ δ(W ),
0 if not.

Thus, b = ρawith ρ ∈ R, and the result follows. �

Theorem 3.4. An inequality (2.3), induced by a partition π = (V0, . . . , V4) with s ∈ V0 and t ∈ V4, defines a facet of kHPP(G),
different from a trivial inequality, if and only if

(1) |V0| = |V4| = 1;
(2) |[s, V1]| + |[V3, t]| + |[s, t]| ≥ k+ 1.

Proof. Let T be the 3-path-cut induced by π . Let aT x ≥ α denote the 3-path-cut inequality produced by T and F = {x ∈
kHPP(G) | aT x = α}.
Necessity. (1) We will show that if |V0| ≥ 2, inequality x(T ) ≥ k does not define a facet. The case where |V4| ≥ 2 follows by
symmetry. Suppose that |V0| ≥ 2 and consider the partition π ′ = (V ′0, . . . , V

′

4) given by

V ′0 = {s},
V ′1 = V1 ∪ (V0 \ {s}),
V ′i = Vi, i = 2, 3, 4.

Thepartitionπ ′ produces a 3-path-cut inequality x(T ′) ≥ k, where T ′ = T\[V0\{s}, V2]. SinceG is complete, [V0\{s}, V2] 6= ∅
and T ′ is strictly contained in T . Thus, x(T ) ≥ k is redundant with respect to the inequalities

x(T ′) ≥ k,
x(e) ≥ 0 for all e ∈ [V0 \ {s}, V2],

and hence cannot define a facet of kHPP(G).
(2) Suppose that condition (1) holds. Let A = [s, V1]∪[V3, t]∪[s, t] and let ui be a fixed node of Vi, i = 1, 2, 3. Let us suppose
that F is a facet of kHPP(G) different from a trivial inequality. Thus there exists a solution F of the kHPP such that xF ∈ F
and F ∩[V1, V3] 6= ∅. If this is not the case, thenF would be equivalent to a facet defined by any of the inequalities x(e) ≥ 0,
e ∈ [V1, V3]. Note that, since each 3-st-path of F intersects T at least once and |F ∩ T | = k, F necessarily contains exactly
k edge-disjoint 3-st-paths. Moreover, each of these paths intersects T only once. This implies that every 3-st-path of F is of
the form

(i) (su1, u1u2, u2t), (su2, u2u3, u3t), (su1, u1t), (su3, u3t), (st) or
(ii) (su1, u1u3, u3t).

If P is one of these st-paths, then |P ∩ A| = 1 (resp. |P ∩ A| = 2) if P is of type (i) (resp. (ii)). As F ∩ [V1, V3] 6= ∅, it follows
that F contains at least one path of type (ii) and therefore |F ∩ A| ≥ k+ 1.
Sufficiency. Suppose that conditions (1) and (2) hold. First we show that F 6= ∅. As |[s, V1] ∪ [V3, t] ∪ [s, t]| ≥ k+ 1, there
exist node sets U1 ⊆ V1, U3 ⊆ V3, and an edge set E0 ⊆ [s, t] \ {st} such that |U1| + |U3| + |E0| = k. We suppose, w.l.o.g.,
that u1 ∈ U1 and u3 ∈ U3. Consider the st-paths (su, ut), u ∈ U1 ∪ U3 and (e), e ∈ E0. Clearly, these st-paths form a set of k
edge-disjoint 3-st-paths. Moreover, each of these paths intersects T only once. Thus they induce a solution, say E1, of kHPP
whose incidence vector belongs to F . Therefore F 6= ∅.
Now suppose that there exists a facet defining inequality bT x ≥ β such that F ⊆ {x ∈ kHPP(G) | bT x = β}. As before,

we will show that there exists a scalar ρ 6= 0 such that b = ρa.
Let e ∈ E1 ∩ T (where E1 is the solution introduced above). Let E2 = (E1 \ {e}) ∪ {st}. Since E2 is a solution of the kHPP

whose incidence vector belongs to F , we have bT xE2 = bT xE1 = β , implying that b(e) = b(st). As e is an arbitrary edge, we
then obtain that

b(e) = ρ for all e ∈ (E1 ∩ T ) ∪ {st}, for some ρ ∈ R. (3.2)

Now let e ∈ E \ T . If e 6∈ E1, then let E3 = E1 ∪ {e} is a solution of kHPP. Moreover, its incidence vector belongs to F . Hence,
b(e) = bT xE3 − bT xE1 = 0. If e ∈ E1 \ T , then e is either of the form su, u ∈ U1, or vt , v ∈ V3. Suppose, w.l.o.g., that e = su,
the case where e = vt is similar. Note that, by the definition of E1, ut also belongs to E1. Let E ′3 = (E1 \ {su, ut}) ∪ {st}. We
have that E ′3 induces of the kHPP and x

E′3 ∈ F . Hence, bT xE
′
3 = bT xE1 = β and, in consequence, b(su)+ b(ut) = b(st). As, by

(3.2), b(ut) = b(st), we have that b(su) = 0. Thus, we obtain that

b(e) = 0 for all e ∈ E \ T . (3.3)

Consider now an edge e ∈ T \ E1. If e ∈ [s, t] \ {st}, then clearly, the edge set (E1 \ {g}) ∪ {e} induces a solution of the kHPP
and its incidence vector belongs to F where g is an edge of E1. Hence, as before, b(e) = b(g) = ρ.
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Now if e = sv (resp. e = vt) with v ∈ V2, then the edge set E4 = (E1 \ {su3}) ∪ {e, vu3} (resp. E4 = (E1 \ {u1t}) ∪ {u1v, e})
induces a solution of the kHPP.Moreover, its incidence vector belongs toF . Thus, bT xE4−bT xE1 = b(e)+b(vu3)−b(su3) = 0
(resp. bT xE4 − bT xE1 = b(u1v)+ b(e)− b(u1t) = 0). From (3.2) and (3.3) we get b(e) = ρ.
Let e = sv with v ∈ V3. The case where e ∈ [V1, t] is similar. If v ∈ U3, then the edge set E5 = (E1 \ {f }) ∪ {e}, where f is
the edge of E1 between s and v, induces a solution of the kHPP whose incidence vector belongs to F . Hence bT xE5 − bT xE1 =
b(e)− b(su3) = 0. By (3.2), we get b(e) = ρ. If v 6∈ U3, then we have that E ′5 = (E1 \ {f

′
}) ∪ {e, vt}, where f ′ ∈ E1 ∩ [s,U3],

also induces a solution of the kHPP and its incidence vector belongs to F . Thus, bT xE
′
5 − bT xE1 = b(e)+ b(u3t)− b(f ) = 0.

By (3.2) and (3.3), we get b(e) = ρ.
Now suppose that e = uv ∈ [V1, V3]. If u ∈ U1 and v ∈ U3, then by considering the edge set E6 = (E1 \ {ut, sv}) ∪ {e, st},
we get b(e)+ b(st) = b(sv)+ b(ut). From (3.2) and (3.3), we have that b(e) = ρ. If u 6∈ U1 and v ∈ U3, then by considering
the edge set E7 = (E1 \ {g}) ∪ {su, e}, where g is the edge of E1 between s and v, we get b(e) + b(su) = b(g). By (3.2) and
(3.3), we have b(e) = ρ. If u ∈ U1 and v 6∈ U3, then we show in a similar way that b(e) = ρ. If u 6∈ U1 and v 6∈ U3, then by
considering the edge set E8 = (E1 \ {st}) ∪ {su, e, vt}, we get b(e) = ρ. Thus, we obtain

b(e) = ρ for all e ∈ T \ (E1 ∪ {st}). (3.4)

From (3.2)–(3.4), we have

b(e) =
{
ρ for all e ∈ T ,
0 if not.

Therefore, b = ρa. Moreover ρ 6= 0 since bx ≥ β defines a facet which ends the proof of the theorem. �

As it will turn out in the next section, the conditions given for inequalities (2.1)–(2.3) to define facets will be useful for
characterizing the kHPP polytope.

4. Complete description of kHPP(G)

In this section, we will present our main result, that is the polytope Pk(G), given by the st-cut, the 3-path-cut and the
trivial inequalities, is integral, which implies that kHPP(G) is completely described by these inequalities. We will first give
some known results related to disjoint paths in directed graphs that will be useful to prove our result. Then we will show
that the kHPP can be transformed to finding k disjoint paths in an appropriate directed graph, whichwill be used for proving
our main result.

4.1. Disjoint st-paths in directed graphs

Given a directed graph D = (V , A), two nodes s, t ∈ V , an integer k ≥ 2 and a weight function c(.) on the arcs of D, the k
arc-disjoint st-paths problem (kADPP for short) consists in finding a minimumweight subgraph of Dwhich contains at least
k arc-disjoint paths from s to t . Let kADPP(D) be the convex hull of the solutions of the kADPP on D.
If B is an arc subset of A which induces a solution of the kADPP, then its incidence vector xB satisfies the following

inequalities:

x(δout(W )) ≥ k, for allW ⊆ V , s ∈ W and t ∈ W , (4.1)
0 ≤ x(a) ≤ 1, for all a ∈ A. (4.2)

Conversely, by Menger’s theorem [32], any integral solution of the system given by inequalities (4.1) and (4.2) induces a so-
lution of the kADPP. Inequalities (4.1) are called st-dicut inequalities and constraints (4.2) are called trivial inequalities. Thus,
the kADPP is equivalent to

min{cx | x satisfies (4.1), (4.2), x ∈ {0, 1}A}.

The following theorem shows that the st-dicut and the trivial inequalities suffice to describe the polytope kADPP(G).

Theorem 4.1 ([33]). The polytope kADPP(G) is completely described by inequalities (4.1) and (4.2).

The following theorem indicates that two node subsetsW1 andW2 of V that induce tight st-dicut inequalities for a solution
y ∈ kADPP(D), can be seen as embedded node sets. This comes from the fact that the sets inducing st-dicuts in a graph form
a laminar family. A family F ⊆ 2V of node sets is said to be laminar if and only if for every Vi, Vj ∈ F , either Vi ∩ Vj = ∅ or
Vi ⊂ Vj or Vj ⊂ Vi. For more details on laminar families see [34,33].

Theorem 4.2 ([33]). Let W1 andW2 be two node subsets of V that induce st-dicuts of D such that W1∩W2 6= ∅ 6= (V \W1)∩W2.
If the st-dicut inequalities, induced by W1 and W2, are tight for a solution x of kADPP(G), then there exists a node set different
from W1 and W2 contained either in W1 or in W1 ∪W2 which induces a tight st-dicut inequality for x.
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Fig. 2. Construction of G̃.

4.2. Graph transformation

One of the approaches that may be considered when studying hop-constrained network design problems is to transform
the problem into an unconstrained version in an appropriate graph. This idea has already been used by Gouveia et al. [13,14]
who transform the original undirected graph into an extended undirected graph, and introduce a hop-indexed formulation
for the problem. For our purpose, we will introduce a transformation of the initial graph into a directed layered graph.
Consider an undirected graph G = (V , E). Let N = V \ {s, t}, N ′ be a copy of N and Ṽ = N ∪N ′∪{s, t}. The copy in N ′ of a

node u ∈ N will be denoted by u′. Let G̃ = (Ṽ , Ã) be the directed graph such that Ṽ = N ∪N ′ ∪ {s, t} and Ã is obtained from
as follows. To each edge e ∈ [s, t], we associate an arc from s to t in G̃. To each edge su ∈ E (resp. vt ∈ E), we associate in G̃
the arc (s, u), u ∈ N (resp. (v′, t), v′ ∈ N ′). To each edge uv ∈ E, with u, v 6∈ {s, t}, we associate two arcs (u, v′) and (v, u′),
with u, v ∈ N and u′, v′ ∈ N ′. Finally, to each node u ∈ V \ {s, t}, we associate in G̃k arcs (u, u′) (see Fig. 2 for an illustration
for k = 3).
Note that any st-dipath in G̃ is of length no more than 3. Also note that each 3-st-path in G corresponds to an st-dipath

in G̃ and vice versa. In fact, a 3-st-path Γ = (s, u, v, t), with u 6= v, u, v 6∈ {s, t}, corresponds to an st-path in G̃ of the
form (s, u, v′, t) with u ∈ N and v′ ∈ N ′, and a 3-st-path L = (s, u, t), u 6∈ {s, t} corresponds to an st-path in G̃ of the form
(s, u, u′, t).
The main idea of the proof is to show that each solution of Pk(G) corresponds to a solution of kADPP(̃G) and vice versa.

We will use this correspondence together with Theorem 4.1 to obtain the proof.
Given a solution x of RE , we let y be the solution of RÃ obtained from x as follows.

y(a) =


x(su) if a = (s, u), u ∈ N,
x(vt) if a = (v′, t), v′ ∈ N ′,
x(uv) if a ∈ {(u, v′), (v′, u)}, u, v ∈ N, u′, v′ ∈ N ′, u 6= v, u′ 6= v′,
x(st) if a = (s, t),
1 if a = (u, u′), u ∈ N, u′ ∈ N ′.

We will say that the solutions x and y are associated.
In what follows we will show that any st-cut and 3-path-cut of G corresponds to an st-dicut in G̃. Indeed, let us consider

an edge set C ⊆ E and an arc set C̃ ⊆ Ã obtained from C as follows.

(i) For an edge st ∈ C , add (s, t) in C̃;
(ii) for an edge su ∈ C , add (s, u) in C̃ , u ∈ N;
(iii) for an edge vt ∈ C , add (v′, t) in C̃ , v′ ∈ N ′;
(iv) for an edge uv ∈ C , u 6= v, u, v ∈ N ,

(iv.a) if su ∈ C or vt ∈ C , then add (v, u′) in C̃ , with v ∈ N and u′ ∈ N ′;
(iv.b) if su 6∈ C and vt 6∈ C , then add (u, v′) in C̃ .

Observe that C̃ does not contain any arc of the form (u, u′)with u ∈ N and u′ ∈ N ′. Also note that C̃ does not contain at the
same time two arcs (u, v′) and (v, u′), for an edge uv ∈ E with u, v ∈ V \ {s, t}.
Conversely, an arc subset C̃ of Ã can be obtained from an edge set C ⊆ E if C̃ does not contain simultaneously two arcs

(u, v′) and (v, u′), u, v ∈ N , u′, v′ ∈ N ′, and does not contain any arc of the form (u, u′)with u ∈ N , u′ ∈ N ′.
As each arc of C corresponds to a single arc of C̃ and vice versa, both sets have the same weight, that is x(C) = y(̃C).
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Fig. 3. A 3-path-cut in Gwhich does not induce an st-cut in G̃.

Lemma 4.1. Let C ⊆ E be an edge set of G which is an st-cut or a 3-path-cut induced by a partition (V0, . . . , V4) such that
|V0| = |V4| = 1. Then the arc set obtained from C by the procedure given above is an st-dicut of G̃. Moreover, x(C) = y(̃C).

Proof. Suppose first that C is an st-cut δ(W ) for some W ⊂ V with s ∈ W and t ∈ W . Let W̃ ⊆ Ṽ such that
W̃ = W ∪ {u′ | u ∈ W \ {s}}. We will show that C̃ = δout(W̃ ). We first show that C̃ ⊆ δout(W̃ ). Observe that any arc
f of C̃ is of the form (s, t), (s, u), u 6= t , (v′, t), (u, v′) or (v, u′), u, v ∈ N , u′, v′ ∈ N ′. If f = (s, u) ∈ C̃ , with u ∈ N ∪ {t}, then
su ∈ C . Thus, u ∈ W and therefore, (s, u) ∈ δout(W̃ ).
If f = (v′, t) for v′ ∈ N ′, this implies that vt ∈ C . Thus, v ∈ W and hence (v′, t) ∈ δout(W̃ ).
If f = (v, u′) for v ∈ N , u′ ∈ N ′, then by step (iv.a) of the construction of C̃ , we should have su and vt in C . Hence, v ∈ W
and u ∈ W . Therefore, v ∈ W̃ and u′ ∈ Ṽ \ W̃ . Hence (v, u′) ∈ δout(W̃ ). If f = (u, v′), it similarly follows that f ∈ δout(W̃ ).
Consequently, we have that C̃ ⊆ δout(W̃ ).
Next, we show that δout(W̃ ) ⊆ C̃ . Let g be an arc of δout(W̃ ). If g = (s, u) for u ∈ N , then u ∈ Ṽ \ W̃ and hence

su ∈ δ(W )(= C). This implies that (s, u) ∈ C̃ .
If g = (v′, t) for v′ ∈ N ′, then v′ and hence v belong to W̃ . Thus, vt ∈ δ(W ) and therefore (v′, t) ∈ C̃ . If g = (v, u′) with
v ∈ N and u′ ∈ N ′, then v ∈ W̃ , and u, u′ ∈ Ṽ \ W̃ . This implies that v ∈ W and u ∈ W . In consequence, su ∈ δ(W ) and
vt ∈ δ(W ), and thus (v, u′) ∈ C̃ .
If g = (u, v′)with u ∈ N and v′ ∈ N ′, we similarly show that g ∈ C̃ .
We thus obtain that δout(W̃ ) ⊆ C̃ , and hence δout(W̃ ) = C̃ .
Now suppose that C is a 3-path-cut induced by a partition (V0, V1, V2, V3, V4) such that V0 = {s} and V4 = {t}. By

considering W̃ = V1 ∪ {u′ | u ∈ V1 ∪ V2}, we can show as before that C̃ = δout(W̃ ). �

Note that for an edge set C which is a 3-path-cut of G, induced by a partition (V0, . . . , V4) such that |V0| ≥ 2 or |V4| ≥ 2,
the corresponding arc set C̃ may not be an st-dicut of G̃. In fact, C̃ may simultaneously contain two arcs (s, u), (u, v′) or
(u, v′), (v′, t). In the example of Fig. 3, C̃ simultaneously contains the arcs (s, u2) and (u2, u′0). If there exists a node subset
W̃ ⊆ Ṽ such that C̃ = δout(W̃ ), we would have u2 ∈ W̃ and u2 ∈ Ṽ \ W̃ , a contradiction.
Also note that by Theorem 3.4, the L-path-cut inequalities induced by such partitions do not define facets of kHPP(G).
The following lemma shows that an st-cut in G̃whichdoes not contain any arc of the form (u, u′),u ∈ V\{s, t} corresponds

to either an st-cut or a 3-path-cut in Gwith a lower weight.

Lemma 4.2. Let C̃ be an st-dicut of G̃ such that C̃ does not contain an arc of the form (u, u′), u ∈ V \ {s, t}. Then there exists an
st-cut or a 3-path-cut C ⊆ E in G such that x(C) ≤ y(̃C).

Proof. Let C̃ = δout(W̃ )with W̃ ⊂ Ṽ . Since C̃ does not contain any arc of the form (u, u′), u ∈ N , C̃ may contain arcs of the
form either (u, v′) or (v, u′) or none of them but not both.
If C̃ contains an arc of the form (u, v′)with u ∈ N , v′ ∈ N ′, since C̃ is an st-dicut in G̃, the arcs (s, u) and (v′, t) are not in

C̃ . If C̃ contains an arc (v, u′), as C̃ does not contain arcs of the form (z, z ′), z ∈ N , we should have u ∈ Ṽ \ W̃ and v′ ∈ W̃ .
Hence (s, u) and (v′, t) are in C̃ . Therefore C̃ can be obtained from an edge set C ⊆ E of G. Moreover x(C) = y(̃C).
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Furthermore, C intersects all the 3-st-paths of G. In fact, if there exists a 3-st-path Γ = (su, uv, vt) which does not
intersect C , then the arcs (s, u), (u, v′), (v, u′) and (v′, t) of G̃ are not in C̃ . Thus, the st-path ((s, u), (u, v′), (v′, t)) of G̃ does
not intersect C̃ , contradicting the fact that C̃ is an st-dicut of G̃. Thus C intersects all the 3-st-paths of G.
If C is an st-cut then the result holds. If this is not the case, then we will show that there exists a 3-path-cut T such that

T ⊆ C . Consider the graph G′ obtained from G by deleting all the edges of C . G′ does not contain any 3-st-path since C
intersects all these paths. Let π = (V0, . . . , V4) be a partition of V in G′ such that V0 = {s}, Vi, for i = 1, 2, 3, is the set of
nodes of G′ at distance (in terms of edges) i from s and V4 = V \ (

⋃3
i=0 Vi). As C intersects all the 3-st-paths of G, all the

st-paths in G′ are of length at least 4 and hence, t ∈ V4. Moreover, the subgraph G′π induced by π in G
′ does not contain any

chord, that is an edge uv with u ∈ Vi, v ∈ Vj, and |i − j| > 1. In fact, if uv is a chord, then v is at distance i + 1 < j of s,
a contradiction. Therefore, if T is the 3-path-cut induced by π , we have that T ⊆ C . As x(e) ≥ 0, for all e ∈ E, this implies
x(T ) ≤ x(C) = y(̃C). �

4.3. The polytope

In what follows, we will show that Pk(G) is integral. To this end, we first give some lemmas.

Lemma 4.3. Let x ∈ Pk(G) and y its associated solution. Then y ∈ kADPP (̃G).

Proof. Clearly, y satisfies inequalities 0 ≤ y(a) ≤ 1, for all a ∈ Ã. Now suppose that there exists an st-dicut inequality, say
y(δout(W̃ )) ≥ kwith W̃ ⊆ Ṽ , such that y(δout(W̃ )) < k.
First note that δout(W̃ ) does not contain any arc of the form (u, u′), u ∈ N . In fact, if (u, u′) ∈ δout(W̃ ), for some u ∈ N , then

one would have that [u, u′] ⊆ δout(W̃ ). Since |[u, u′]| = k and y(a) = 1 for all a ∈ [u, u′], one would have y(δout(W̃ )) ≥ k, a
contradiction. Hence, from Lemma 4.2, there exists either an st-cut or a 3-path-cut C ⊆ E of G such that x(C) ≤ y(δout(W̃ ))
and therefore x(C) < k. But this is impossible since x ∈ Pk(G). �

Lemma 4.4. Let e = uv be an edge of G such that u, v ∈ V \{s, t}, and y ∈ RÃ a solution of kADPP(̃G). If there exists an st-dicut
C̃ of G̃ which does not contain any arc of the form (z, z ′), z ∈ V \ {s, t}, and such that (u, v′) ∈ C̃ and y(̃C) = k, then y(̃C ′) > k
for all st-dicut C̃ ′ of G̃ containing the arc (v, u′).

Proof. Suppose that there exists an st-dicut C̃ = δout(W̃ ) of G̃which does not contain arcs of the form (z, z ′), z ∈ V \ {s, t}
and such that (u, v′) ∈ C̃ and y(̃C) = k. Suppose also, on the contrary, that there exists an st-dicut C̃ ′ = δout(W̃ ′) containing
the arc (v, u′) and such that y(̃C ′) = k. From Theorem 4.2, W̃ and W̃ ′ can be chosen so that either W̃ ′ ⊆ W̃ or W̃ ⊆ W̃ ′.
As (u, v′) ∈ C̃ , we have that u ∈ W̃ and v′ ∈ Ṽ \ W̃ . Since (z, z ′) 6∈ C̃ , for all z ∈ V \ {s, t}, it follows that u, u′ ∈ W̃ , and
v, v′ ∈ Ṽ \ W̃ . Similarly, as (v, u′) ∈ C̃ ′, we have that v, v′ ∈ W̃ ′ and u, u′ ∈ Ṽ \ W̃ ′.
If W̃ ′ ⊆ W̃ , then one would have v ∈ W̃ . But this contradicts the fact that v ∈ Ṽ \ W̃ . If W̃ ⊆ W̃ ′, then we would obtain

that u ∈ W̃ ′. As u ∈ Ṽ \ W̃ ′, this is a contradiction. �

Now we are ready to state our main result.

Theorem 4.3. The polytope kHPP(G) is completely described by inequalities (2.1)–(2.3).

Proof. Wewill show that the polytope Pk(G) is integral. For this, let us suppose, on the contrary, that there exists a fractional
extreme point x of Pk(G). Then there exists a set of st-cuts C∗(x) and a set of 3-path-cuts T ∗(x) such that x is the unique
solution of the system

S(x)


x(e) = 0, for all e ∈ E0(x),
x(e) = 1, for all e ∈ E1(x),
x(C) = k, for all C ∈ C∗(x),
x(T ) = k, for all T ∈ T ∗(x),

where E0(x) (resp. E1(x)) is the set of edges such that x(e) = 0 (resp. x(e) = 1) and |E0(x)|+|E1(x)|+|C∗(x)|+|T ∗(x)| = |E|.
We will show that there exists a solution x′1 of Pk(G) different from x which is also a solution of S(x), yielding a

contradiction.
Clearly, the solution y, associated with x, is fractional and, by Lemma 4.3, is a solution of kADPP(̃G). Let Ã0(y) = {(u, v) ∈

Ã | x(uv) = 0} and Ã1(y) = {(u, v) ∈ Ã | x(uv) = 1} ∪ {(u, u′), u ∈ N, u′ ∈ N ′}. By Lemma 4.1, each st-cut C ∈ C∗(x) and
3-path-cut T ∈ T ∗(x) corresponds to an st-dicut C̃ of G̃ having the same weight, that is y(̃C) = k. We denote by C∗(y) the
set of the corresponding st-dicuts. It then follows that y is solution (not necessarily unique) of the system S(y) given by

S(y)

y(a) = 0, for all a ∈ Ã0(y),
y(a) = 1, for all a ∈ Ã1(y),
y(̃C) = k, for all C̃ ∈ C∗(y).

Since y is fractional and hence, by Theorem 4.1, cannot be an extreme point of kADPP(̃G), y can be written as a convex
combination of integral extreme points of kADPP(̃G). Let y1 be one of these extreme points. Clearly, y1 is also a solution of
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S(y). In the following, we show that there exists an integer solution y′1 of kADPP(̃G) which is a solution of S(y) and such that
y′1(u, v

′) = y′1(v, u
′) for all pair of arcs ((u, v′), (v, u′)) of G̃, corresponding to an edge uv ∈ E with u, v ∈ V \ {s, t} and

u 6= v. If such a solution exists, then y′1 can be associated with a solution x
′

1 ∈ Pk(G) satisfying S(x) and different from x.
If for all pair of arcs ((u, v′), (v, u′)) of G̃, with u, v ∈ N , u′, v′ ∈ N ′, y1(u, v′) = y1(v, u′), then we can take y

′

1 = y1. So
suppose that there exist two nodes u, v ∈ V \ {s, t}, such that uv ∈ E and y1(u, v′) 6= y1(v, u′). As y1 is integral, we can
suppose, w.l.o.g., that y1(u, v′) = 1 and y1(v, u′) = 0. It follows that y(u, v′), y(v, u′) and x(uv) are fractional. Note that
x(uv) = y(u, v′) = y(v, u′). Also note that any st-dicut of G̃ inducing a tight st-dicut inequality for y or y1 does not contain
arcs of the form (z, z ′), z ∈ V \ {s, t}. If there is an st-dicut C̃ of G̃ which contains (u, v′), and such that y1(̃C) = k, then, by
Lemma 4.4, every st-dicut containing (v, u′) is not tight for y1. Let y

′

1 be the solution given by

y′1(a) =
{
y1(a), for all a ∈ Ã \ {(v, u′)},
1, for a = (v, u′).

Clearly, y′1 is a solution of kADPP(̃G) with y
′

1(u, v
′) = y′1(v

′, u) = 1, and satisfies with equality every st-dicut inequality
which is tight for y1. In particular, the st-dicuts inequalities of C̃∗(y) are also tight for y

′

1. Hence, y
′

1 is a solution of S(y).
If there is an st-dicut C̃ which contains (v, u′) and such that y1(̃C) = k, then, by Lemma 4.4, every st-dicut R̃ ⊆ Ã

containing (u, v′) is such that y1(̃R) ≥ k+ 1. Hence, the solution y
′

1 given by

y′1(a) =
{
y1(a), for all a ∈ Ã \ {(u, v′)},
0, for a = (u, v′),

is a solution of kADPP(̃G) such that y′1(u, v
′) = y′1(v

′, u) = 0, and every st-dicut inequality which is tight for y1 is also tight
for y′1. Thus y

′

1 is also a solution of S(y).
Consequently, there exists an integer solution y′1 ∈ kADPP(̃G) which is a solution of S(y) and such that y

′

1(u, v
′) = y′1

(u′, v) for all arcs (u, v′), (v, u′) ∈ Ã corresponding to an edge uv ∈ E. Thus, y′1 can be associated with a solution x
′

1 of Pk(G).
As y′1 is integral, x

′

1 is also integral. Moreover, x
′

1 is a solution of S(x). In fact, it is not hard to see that, y
′

1 is a solution of S(y),
y′1(a) = 0 for all a ∈ Ã0(y) and y

′

1(a) = 1 for all a ∈ Ã1(y). Hence x
′

1(e) = 0 for all e ∈ E0(x) and x
′

1(e) = 1 for all e ∈ E1(x).
Suppose that there is an st-cut (resp. 3-path-cut) inequality in C∗(x) (resp. T ∗(x)) which is not tight for x′1, say x

′

1(C0) > k.
Then by Lemma 4.2, we have that x′1(C0) ≤ y1(̃C0), where C̃0 is the st-dicut of C̃

∗(y) corresponding to C0. We thus obtain
that y′1(̃C0) > k. Hence y

′

1 is not a solution of S(y), a contradiction. Thus, x
′

1 is a solution of S(x). Since x
′

1 is integral and x is
fractional, x′1 6= x. In consequence, x is not the unique solution of S(x), contradicting the fact that x is an extreme point of
Pk(G). Therefore, x cannot be fractional, which ends the proof of the theorem. �

A direct consequence of Theorems 3.2–3.4 and 4.3 is the following.

Corollary 4.1. If G = (V , E) is a complete graph and |V | ≥ k+ 2, a minimal complete linear description of kHPP(G) is given by

x(δ(W )) ≥ k, for all st-cut δ(W ),
x(T ) ≥ k, for all 3-path-cut T induced by a partition satisfyingconditions (1) and (2) of Theorem 3.4,
x(e) ≥ 0, for all e ∈ E,
x(e) ≤ 1, for all e ∈ E.

As mentioned in Section 2.2, the separation problem for the st-cut and 3-path-cut inequalities can be solved in polynomial
time. Thus, the kHPP can be solved in polynomial time using a cutting plane algorithm.
From the above results, the kHPP can also be seen as a minimum cost flow problem in the graph G̃ by associating with its

arcs unit capacities and appropriate weights. In fact, an arc of G̃which corresponds to an edge of G takes the same weight as
this edge while the arcs of the form (u, u′), u ∈ V \ {s, t} (which do not correspond to any edge in G) are given the weight 0.
By the correspondence between the 3-st-paths of G and the st-paths in G̃, a minimumweight subgraph of Gwhich contains
k edge-disjoint 3-st-paths corresponds to a subgraph of G̃ containing k arc-disjoint st-paths of the same weight. Moreover,
the weight of this subgraph is minimum. The kHPP is thus equivalent to finding a minimum cost flow from s to t of value k
in G̃. This implies that the problem can also be solved in polynomial time using any minimum cost flow algorithm.

5. Concluding remarks

In this paper we have given a complete description of the polytope associatedwith the k edge-disjoint L-hop-constrained
paths problem when L = 3 and k ≥ 2. We have presented valid inequalities for the problem and given an integer program-
ming formulation. We have also described necessary and sufficient conditions for the trivial inequalities, the st-cut and
L-path-cut inequalities to define facets of the polytope. Using these results together with a transformation of the kHPP in
G into the kADPP in a directed graph G̃, we have shown that the polytope kHPP(G) is completely described by the trivial,
st-cut and 3-path cut inequalities. As the separation problem for these inequalities can be solved in polynomial time, this
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yields a polynomial time cutting plane algorithm to solve the problem. We have also shown that the kHPP can be solved as
a minimum cost flow problem in the graph G̃.
In the light of these results, we believe that an alternative proof of the main result would consist in considering an ex-

tended flow formulation of the kHPP on the auxiliary graph G̃, showing that this formulation is integer and then projecting
the formulation on the design variables. It would be very interesting to have such a proof.
These results generalize those obtained by Huygens et al. [1] and Dahl et al. [2] for k = 2 and L = 2, 3 and for k ≥ 2 and

L = 2, respectively. Unfortunately the linear description of the kHPP is no longer valid when L ≥ 4. As shown by Huygens
and Mahjoub [9], further inequalities are even needed for an integer programming formulation of the problem when k = 2
and L = 4.
The integer programming formulation for the kHPP can be easily extended to themore general casewheremore than one

pair of terminals are considered. However, as pointed out in [11], the cut inequalities togetherwith the L-path-cut and trivial
inequalities do not suffice to completely describe the kHPP polytope even when only two pairs of terminals are considered,
L ≥ 3 and k = 2.
The results of this paper can be exploited for designing a Branch-and-Cut algorithm for that general case. Also the trans-

formation of the kHPP to the kADPP in an appropriate directed graph, introduced and exploited in this paper, can be used
to give flow-based formulations. It would also be interesting to investigate this type of approach for L ≥ 4. This is our aim
for future work.
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