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Abstract

We use operational identities to introduce multivariable Laguerre polynomials. We explore the wealth of di�erential
equations they satisfy. We analyze their properties and the link with Legendre-type polynomials. c© 1999 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The use of operational methods of the Lie type in the theory of ordinary [8] and generalized [5]
special functions, o�ers a powerful tool to treat the relevant generating functions and the di�erential
equations they satisfy.
In the case of multivariable generalized special functions, the use of operational techniques, com-

bined with the principle of monomiality [4,5] has provided new means of analysis for the deriva-
tion of the solution of large classes of partial di�erential equations often encountered in physical
problems [3].
The two variable Laguerre polynomials [6]

Ln(x; y) = n!
n∑
k=0

(−1)kyn−kx k
(n− k)!(k!)2 (1)

o�er an e�cient example to illustrate the above concepts.
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They are indeed quasi-monomials (q.m.) under the action of the operators 1

M̂ = y − D̂−1
x ; P̂ =−D̂xxD̂x; (2a)

in fact,

M̂Ln(x; y) = Ln+1(x; y); P̂Ln(x; y) = nLn−1(x; y): (2b)

In addition, since

@
@y
Ln(x; y) = nLn−1(x; y); (2c)

it follows that the Ln(x; y) are the natural solution of

@
@y
Ln(x; y) =−D̂xxD̂xLn(x; y) (3)

which is a kind of heat di�usion equation. By setting indeed x= �2, the di�erential operator on the
r.h.s. of Eq. (3) becomes the transverse Laplacian in cylindrical coordinates. The identities given in
Eq. (2) can be further handled to get the new relations[

yx
@2

@x2
− (x − y) @

@x
+ n

]
Ln(x; y) = 0;

[
y
@2

@x@y
−
(
@
@y
+ n

@
@x

)]
Ln(x; y) = 0:

(4)

The considerations, just developed for Laguerre-type polynomials, have also been exploited to
deal with other classes of polynomials, like Hermite and relevant generalizations, and have provided
new and unsuspected possibilities to deal with, seemingly unrelated problems from a uni�ed point
of view.
In this paper we will extend the method to a new class of Legendre polynomials. The results we

will obtain and discuss are a further contribution along the line developed in [3–6]. We will see
that this new class of polynomials yield new and interesting possibilities for dealing with a wide
class of partial di�erential equations.
The layout of the paper is as follows. In Section 2 we introduce a new class of polynomials

associated with the two-variable Laguerre polynomials and discuss their properties. In Section 3
we discuss the link between Laguerre-type and Legendre polynomials. We devote Section 4 to
concluding remarks, with particular reference to the wealth of di�erential equations satis�ed by the
various introduced polynomials.

2. A useful generalizations of the two variable Laguerre polynomials

It is well known that, along with Laguerre polynomials one can introduce the associated Laguerre
polynomials whose two variable extension has been proposed in Ref. [7] and reads

L(m)n (x; y) = (1− yD̂x)m(y − D̂−1
x )

n: (5)

1 Where D̂x is the derivative and D̂−1
x its inverse.



G. Dattoli et al. / Journal of Computational and Applied Mathematics 108 (1999) 209–218 211

The properties of this class of polynomials have been discussed in the reference already quoted
but for the purposes of the present note is more convenient to introduce the following new set,
which will be de�ned as associated of second kind,

1Ln;r(x; y) =
n∑
k=0

n!yn−kxr+k

(n− k)!k!(r + k)! : (6)

The reason for the index “1” will be clari�ed in the following section.
It is not di�cult to infer that they satisfy the q.m. properties

xrD̂xx−r+1D̂x 1Ln; r(x; y) = n 1Ln−1; r(x; y);
(y + D̂−1

x ) 1Ln; r(x; y) = 1Ln+1; r(x; y)
(7)

which can be combined to prove that they satisfy the following di�erential equation:

{yxD̂rx + [x + (1− r)y]D̂x} 1Ln; r(x; y) = (n+ r) 1Ln; r(x; y): (8)

Furthermore, since

@
@y 1Ln; r(x; y) = n 1Ln−1; r(x; y); (9)

it is also proved that this new set of polynomials satisfy the p.d.e.

@
@y 1Ln; r(x; y) = xrD̂xx−r+1D̂x 1Ln; r(x; y);

1Ln; r(x; 0) =
xn+r

(n+ r)!
:

(10)

The generating function can also be derived quite straightforwardly. From the second expression
of Eqs. (7) we get indeed

(y + D̂−1
x )

n x
r

r!
= 1Ln; r(x; y): (11)

By multiplying both sides of (11) by tn=n! and then by summing up, we �nd 2

∞∑
n=0

tn

n! 1
Ln; r(x; y) = etyetD̂

−1
x
x r

r!
= etyxrCr(−xt); (12)

where

Cr(x) =
∞∑
s=0

(−1) sx s
s!(r + s)!

(13)

is the Tricomi function of the rth order [5]. A similar procedure yields
∞∑
n=0

tn 1Ln; r(x; y) =
1

(1− yt)
1

1− (t=(1− yt))D̂−1
x

xr

r!

=
1

1− yt
∞∑
s=0

t s

(1− yt) s
xr+s

(r + s)!
=

1
(1− yt)1−r

1
tr

[
ext=(1−yt) − er−1

(
xt

1− yt
)]
; (14)

2 Recall that D̂
−k
x = xk=k!, for further comments see [6].
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where er(x) is the truncated exponential (e−1(x)= 0). Further comments will be given in the con-
cluding section.
The link between the two variable associated Laguerre polynomials of second kind and the ordinary

associated Laguerre polynomials is provided by

L(r)n (x) =
n!

(n+ r)!
x−r 1Ln; r(−x; 1): (15)

We must emphasize that the formal properties we have discussed, hold unchanged if r is any real
number �. In this case,

1Ln;�(x; y) = n!
n∑
k=0

yn−kx�+k

(n− k)!k!�(k + �+ 1) (16)

is a function whose properties will be touched on in the �nal part of the paper.

3. The Legendre generalized polynomials

In this section we will show that a proper generalization of the two-variable Laguerre polynomials
may bring to light unsuspected relations with the Legendre polynomials.
According to the point of view developed in this paper, we can write the two-variable Laguerre

polynomials as 3

1Ln(x; y) = (y + D̂
−1
x )

n = n!
n∑
k=0

yn−kD̂
−k
x

(n− k)!k! : (17)

In this operational form they are nothing but polynomials generated by binomial powers. Within
such a framework the most straightforward extension of (17) is

2Ln(x; y) = Hn(y; D̂
−1
x ) = n!

[n=2]∑
k=0

yn−2kD̂
−k
x

(n− 2k)!k! ; (18)

where Hn(y; z) denotes Kamp�e-de F�eriet polynomials [2].
According to Eq. (18), the 2Ln(x; y) polynomials are q.m. under the action of the operators

M̂ = y + 2D̂−1
x
@
@y
; P̂ =

@
@y
: (19)

Therefore, the identity

P̂M̂ 2Ln(x; y) = (n+ 1) 2Ln(x; y) (20)

in di�erential form yields[
2
@2

@y2
+ y

@2

@x@y
− n @

@x

]
2Ln(x; y) = 0: (21)

3 Note that Ln(x; y) = 1Ln(−x; y).
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It can also be easily checked that 2Ln(x; y) are the natural solutions of

@2

@y2 2
Ln(x; y) = (D̂xxD̂x) 2Ln(x; y) (22a)

which can also be rewritten in the form(
@2

@y2
− x @

2

@x2

)
2Ln(x; y) =

@
@x 2

Ln(x; y): (22b)

The generating function of the 2Ln(x; y) polynomials can be obtained as in the case of the
Kamp�e-de Feri�et polynomials [4],4 namely

∞∑
n=0

tn

n! 2
Ln(x; y) = et(y+2D̂

−1
x @=@y) = etyet

2D̂−1x = etyC0(−xt2) (23)

it is also worth noting that(
y + 2D̂−1

x
@
@y

)n
=

n∑
s=0

2s
(
n
s

)
Hn−s(y; D̂

−1
x )D̂

−s
x
@s

@y s
: (24)

As a further remark, let us note that we are able to derive from 2Ln(x; y) the Legendre polynomials
[1], in fact

2Ln(− 1
4 (1− y2); y) = Pn(y): (25)

By setting therefore y = sin’, we �nd from Eqs. (25) and (23), the well-known relation [1]
∞∑
n=0

tn

n! 2
Ln

(
−1
4
cos2 ’; sin’

)
=

∞∑
n=0

tn

n!
Pn(sin’) = et sin ’J0(t cos’): (26)

It is evident that the obvious generalization of Eq. (18)

mLn(x; y) = H (m)
n (y; D̂−1

x ) = n!
[n=m]∑
k=0

yn−mkD̂
−k
x

(n− mk)!k! ; (27)

satis�es equations of the type
@m

@ym mLn(x; y) = (D̂xxD̂x) mLn(x; y);(
m
@m

@ym
+ y

@2

@x@y
− n @

@x

)
mLn(x) = 0;

(28)

the last of which generalizes Eq. (21). The polynomials (27) are indeed q.m. under the action of
the same operator P̂ in Eq. (19) and of

M̂ = y + mD̂−1
x
@m−1

@ym−1
: (29)

4 Recall that
∞∑
n=0

tn

n!
Hn(x; y) = e

xt+yt2

and it is clear that at least with respect to the y variable the 2Ln(x; y) can be viewed as Appell polynomials.
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Fig. 1. (a) contour plot of 2L4(x; y); (b) 3-D view of 2L4(x; y).

Furthermore, they are speci�ed by the generating function
∞∑
n=0

tn

n! m
Ln(x; y) = eytC0(−xtm): (30)

We can also introduce associated Legendre Polynomials linked to mLn(x; y) by

mLn

(
−1
4
(1− y2); y

)
= mPn(y); (31)

obeying the generating function
∞∑
n=0

tn

n! m
Pn(sin’) = et sin ’J0(cos’tm=2): (32)

The results of these sections and the implications we have proved, con�rm the usefulness of
the researches associated to this class of “exotic” polynomials, in particular for the search of exact
solutions of various forms of p.d.e.
An idea of the behaviour of these functions is provided by Figs. 1 and 2.

4. Concluding remarks

The use of the above polynomials and of the associated operational calculus is particularly useful
to explore the properties of new generalized special functions and also to derive new identities for
already known polynomials. Let us, indeed, consider the Rainville-type generating function

∞∑
‘=0

t‘

‘! 1
Ln+‘(x; y) = 1Sn(x; y; t): (33)
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Fig. 2. Same as Fig. 1 for 7L4(x; y):

By recalling that

1Ln(x; y) = (y + D̂
−1
x )

n; (34)

we can rewrite Eq. (33) in the operator form

1Sn(x; y; t) = et(y+D̂
−1
x )

1Ln(x; y): (35)

By noting also that

D̂
−r
x 1Ln(x; y) = 1Ln; r(x; y); (36)

we eventually end up with

1Sn(x; y; t) = eyt
∞∑
r=0

tr

r! 1
Ln; r(x; y): (37)

We can interpret the summation on the r.h.s. of Eq. (37) as an exponential function de�ned as

1En(x; y; t) =
∞∑
r=0

tr 1Ln; r(x; y)
r!

: (38)

This function 1En(x; y; t) has a number of interesting properties
(a) It is solution of the partial di�erential equation

@
@y 1En(x; y; 1) + y

@2

@x@y 1En(x; y; 1) = n
@
@x 1

En(x; y; 1);

1En(x; 0; 1) = xnCn(−x):
(39)

(b) It can be formally de�ned as

1En(x; y; 1) = (y + D̂
−1
x )

neD̂
−1
x : (40)
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(c) It satis�es recurrences of the type

(y + D̂−1
x )En(x; y; 1) = 1En+1(x; y; 1);

@
@y 1En(x; y; 1) = n1En−1(x; y; 1):

(41)

A point to be stressed is that we have recognized that the Legendre polynomials are a particular
case of 2Ln(x; y) it is therefore, worth noting that, along with Eq. (23) we can recover the further
generating function

∞∑
n=0

tn 2Ln(x; y) =
1

[1 + (y2 − 4x)t2 − 2yt]1=2 (42)

which clearly reduces to that of the ordinary Legendre polynomials for x =− 1
4 (1− y2).

We have stressed that one of the main motivation of the present work is the analysis of the partial
di�erential equations, associated with the polynomials we have so far introduced. Let us therefore
go back to Eq. (10), which can also be rewritten as

1Ln; r(x; y) = ey[(1−r)D̂x+xD̂
2
x ]
xn+r

(n+ r)!
: (43)

This equation o�ers the possibility of much interesting speculation, which will be fully developed
elsewhere. Here we note that in the case of r = 1; we �nd

1Ln;1(x; y) = eyxD̂
2
x
xn+1

(n+ 1)!
: (44)

By summing up on the index n and by using the generating function (14), we get

ex=(1−y) − 1 = eyxD̂2x (ex − 1): (45)

It is therefore evident that the polynomials 1Ln;1(x; y) o�er the possibility of solving Fokker and
Planck equations of the type

@
@y
f(x; y) = xD̂

2
xf(x; y) (46)

which play an important role in the framework of phenomena related to quantum beam life time in
Storage Rings [9].
The general case (43) deserves particular interest too. Here we limit ourselves to noting that (see

Eq. (12))

ey[(1−r)D̂x+xD̂
2
x ](x)rCr(−x) = e+y(x)rCr(−x): (47)

Before closing this paper we want to add a �nal consideration we believe important. The polynomials

H̃
(m)
n (y; x) = H

(m)
n (D̂−1

y ; x) = n!
[n=m]∑
k=0

D−(n−mk)
y x k

(n− mk)!k! = n!
[n=m]∑
k=0

yn−mkx k

[(n− mk)!]2k! ; (48)

can be considered the mirror image of Eq. (27), satisfy the generating function
∞∑
n=0

tn

n!
H (m)
n (D̂−1

y ; x) = e
xtmC0(−yt) (49)
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Fig. 3. Same as Fig. 1 for H̃
(2)
4 (x; y):

Fig. 4. Same as Fig. 1 for H̃
(7)
4 (x; y):

and are solutions of the p.d.e.,

@
@x
H̃
(m)
n (y; x) = (D̂yyD̂y)

mH̃
(m)
n (y; x);

H̃
(m)
n (y; 0) =

yn

n!
:

(50)

See Figs. 3 and 4 to get an idea of the behaviour of the H̃
(m)
n polynomials.

The topics we have treated in this paper, the variety of problems we have connected, going through
the partially unexplored world of generalized polynomials, yield perhaps an idea of the capabilities
of the techniques we are developing. Many of the points just touched in the paper will provide the
basic elements of forthcoming investigations.
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