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RECLINICAL STUDIES

ndothelial Progenitor Cells Participate
n Nicotine-Mediated Angiogenesis
hristopher Heeschen, MD,*† Edwin Chang, PHD,* Alexandra Aicher, PHD,† John P. Cooke, MD, PHD*

tanford, California; and Frankfurt, Germany

OBJECTIVES We aimed to determine the role of endothelial progenitor cells (EPCs) in cholinergic
angiogenesis.

BACKGROUND Recently, we provided evidence for a new angiogenic pathway mediated by endothelial
nicotinic acetylcholine receptors (nAChR). Increasing evidence suggests that circulating
EPCs also contribute to postnatal neovascularization by homing to sites of neovascularization,
a process termed postnatal vasculogenesis. Therefore, we investigated whether nAChR
activation increases mobilization and/or recruitment of EPCs to a site of angiogenesis.

METHODS To identify EPCs from reservoirs both inside and outside of the bone marrow and to avoid
the adverse effects of total body irradiation, we employed a murine parabiosis model with
tie-2-LacZ FvB/N mice connected to wild-type FvB/N mice and induced unilateral hind
limb ischemia in the wild-type animal.

RESULTS Administration of nicotine increased capillary density in the ischemic hind limb, and
increased soluble Kit ligand plasma levels. The effect of systemic administration was greater
than that of local delivery of nicotine (45% vs. 76% increase in capillary density by comparison
to vehicle control, intramuscular vs. oral administration of nicotine; p � 0.05). Ischemia-
induced incorporation of EPC in the control group was rare, but was increased 5-fold by
systemic administration of nicotine. Exposure to nicotine in vitro increased EPC count and
EPC transmigration. Finally, systemic administration of nicotine increased EPC number in
the bone marrow and spleen during hind limb ischemia.

CONCLUSIONS Nicotine treatment increased the number of EPCs in the bone marrow and spleen, and
increased their incorporation into the vasculature of ischemic tissue. Administration of
nicotine increased markers of EPC mobilization. This study indicates that the known
angiogenic effect of nicotine may be mediated in part by mobilization of precursor
cells. (J Am Coll Cardiol 2006;48:2553–60) © 2006 by the American College of

ublished by Elsevier Inc. doi:10.1016/j.jacc.2006.07.066
Cardiology Foundation
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timulation of endothelial nicotinic acetylcholine receptors
nAChR) induces angiogenesis (1). The endothelial
AChRs are activated by endogenous acetylcholine, as well
s by exogenous nicotine. They may play a role in tobacco-
elated diseases such as tumors, atherosclerosis, and age-

See page 2561

elated maculopathy, because each of these disorders is
haracterized by pathological angiogenesis (2). Angiogene-
is involves the migration and proliferation of pre-existing,
ully differentiated endothelial cells (3). In addition, circu-
ating endothelial progenitor cells (EPCs) may home to sites
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ccepted July 24, 2006.
f neovascularization and differentiate into endothelial cells
n situ (4–9). Mobilization of EPCs augments neovascular-
zation of ischemic tissue (5,7,10–12) and may be clinically
elevant in the setting of tissue ischemia (2,12,13) or tumor
ngiogenesis (14–16).

In this regard, we were struck by our earlier observation
hat systemic, as opposed to local, administration of nicotine
s more effective in stimulating pathological neovasculariza-
ion. Specifically, we found that inflammatory angiogenesis
as significantly greater when mice received nicotine orally,

n comparison to local administration (1). Accordingly, we
ostulated that nicotine may enhance angiogenesis, in part
hrough, mobilization of EPCs.

ETHODS

nimal experiments. MOUSE PARABIOSIS. Parabiotic
ouse pairs were created to investigate the mobilization

nd incorporation into vessels of circulating precursors.
arabiotic partners shared all major histocompatibility
ntigens and, thus, were free of an immunologic barrier
o cell migration and angiogenesis. Unambiguous cell
racking between the mice is possible by assaying for
enetic markers unique to one animal in the pair. In brief,

e surgically joined 10-week-old male mice carrying a

https://core.ac.uk/display/82636116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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-galactosidase reporter gene under the control of the
urine Tek (Tie2) promoter (LacZ�; FVB/N-
gN(Tie2LacZ)182Sato; Jackson Laboratory, Bar Har-
or, Maine) with female age- and strain-matched FvB/N
ild-type mice (LacZ�) (17). Mice were anesthetized
ith xylazine and ketamine HCl (1.67 mg per 10 g of
ody weight intraperitoneally). A lateral surface of each
ouse was shaved, the skin was incised from the olecra-

on to the knee joint of each mouse, and the subcutane-
us fascia was bluntly dissected to create about 1/2 cm of
ree skin. The mice were joined at the olecranon and knee
oints by a single 2-0 silk suture and tie, and the dorsal
nd ventral skin flaps were approximated by staples
17–20). Peripheral blood chimerism of parabiotic mice
as determined by CD45 allotype analysis (21). Parabi-
tic mice, in which partners differed at the CD45 locus
CD45.1 and CD45.2), showed cross circulation as early
s 3 days after surgical joining, and blood chimerism
eached 50% by days 7 to 10. Thus, we estimate that
bout 50% of circulating EPCs theoretically would be
erived from the transgenic animal.

URINE MODEL OF HIND LIMB ISCHEMIA. Hind limb
schemia was surgically induced (22). Briefly, the proxi-

al portion of the femoral artery including the superficial
nd the deep branch as well as the distal portion of the
aphenous artery were occluded. For parabiotic pairs, the
rocedure was performed on day 30, well after the
nastomosis had healed and cross circulation had been
tably attained, in the female LacZ� mouse only. Subse-
uently, animals were randomized to local intramuscular
njections (of vehicle or nicotine 0.03 �g/kg body weight,
irectly into the ischemic hind limb; Sigma-Aldrich, St.
ouis, Missouri), or to systemic oral administration (of
ehicle or nicotine 100 �g/ml drinking water with 2%
accharine) (1). As reported earlier, the maximum angio-
enic effect for induced by local intramuscular adminis-
ration of nicotine is observed at 0.03 �g/kg body weight
1). The dose of nicotine administered by the oral route
as calculated to deliver a similar average tissue level of
icotine. Of note, each parabiotic pair of animals was
dministered the same treatment (e.g., oral nicotine
olution or vehicle). Serum cotinine levels were measured
y enzyme-linked immunoadsorbent assay (STC Tech-

Abbreviations and Acronyms
DMXB � 3-(2,4)-dimethoxybenzylidene anabaseine
EPC � endothelial progenitor cell
FITC � fluorescein isothiocyanate
HUVEC � human umbilical vein endothelial cell
nAChR � nicotinic acetylcholine receptor
SDF � stem cell-derived factor
VEGF � vascular endothelial growth factor
ologies, Tucson, Arizona). All animal experiments were 2
pproved by the Administrative Panel on Laboratory
nimal Care (A-PLAC) at Stanford University School of
edicine.

ISTOLOGIC ANALYSIS. Three weeks after induction of
ind limb ischemia, limb muscles were harvested and
ectioned. Cells in the ischemic and nonischemic hind
imbs of the female LacZ� mice that derived from their

ale partners were identified by monoclonal antibodies
gainst �-galactosidase (Sigma). Sections were double-
tained with fluorescent antibodies against �-galactosidase
nd antibodies against the endothelium-associated antigens
D31 (BD Bioscience, San Jose, California). Progenitor

ell frequency was defined as the number of vessels contain-
ng transgenic endothelial cells divided by the total vessels
xamined in representative sections.

SSESSMENT OF EPC MOBILIZATION BY FLOW CYTOMETRY.

one marrow cells were harvested by flushing tibias and
emurs of donor mice and filtered (70 �m). Spleens were
echanically minced using syringe plungers and laid over
icoll to isolate mononuclear cells (splenocytes). C57BL/6J
ice were randomized to vehicle, nicotine (100 �g/ml

rinking water), granulocyte-macrophage colony-stimulating
actor (GM-CSF) (25 �g/kg for 3 consecutive days each;
eproTech, Rocky Hill, New Jersey) in the presence or
bsence of ischemia. At each time point (baseline, 3, 7, 14
ays), peripheral blood was obtained from the inferior vena
ava and the right ventricle. Cells were stained with fluo-
escein isothiocyanate (FITC)-conjugated antibodies
gainst mouse CD34 and phycoerythrin (PE)-conjugated
ntibodies against Flk-1 (BD Bioscience) and analyzed by
ACS-Vantage flow cytometer (Becton Dickinson, Frank-

in Lakes, New Jersey). We analyzed the lymphocyte gate
nstead of using a third surface marker such as CD45.
herefore, we cannot exclude that a subset of the “EPCs”

re CD45�. Staining was performed in the presence of
aturating concentrations of rat monoclonal unconjugated
ntibodies against Fc receptors (anti-CD16/32, BD Bio-
cience) to reduce nonspecific binding. Isotype-identical
ntibodies served as controls (IgG1-PE and IgG2a-FITC;
D Bioscience). Each analysis included 100,000 events.
ata were analyzed using FloJo software (Becton
ickinson).

LASMA MEASUREMENT OF S-KIT LIGAND. We used a com-
ercially available ELISA kit (R&D Systems, Minneapolis,
innesota) to measure plasma levels of soluble kit ligand

fter 6 weeks of administration of vehicle or nicotine (ad
ibitum at a concentration of 100 ug/ml with 0.4% saccharine).
n vitro cell culture experiments. EPC CULTURE ASSAY.

ononuclear cells were isolated from 10-week-old
57BL/6J mice by density-gradient centrifugation with
iocoll from peripheral blood and spleen homogenates

these animals were not treated with nicotine). Immediately
fter isolation, 5 � 106 mononuclear cells were plated on

4-well culture dishes coated with human fibronectin
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Sigma) and maintained in endothelial basal medium
EBM, Clonetics Corp., San Diego, California) supple-
ented with 20% fetal calf serum. Treatment with increas-

ng concentrations of nicotine ranging from 0.01 �mol/l
10�8 mol/l) to 10.0 �mol/l (10�5 mol/l) was initiated after
8 h of culturing the mononuclear cells. As a marker of
ndothelial phenotype, we assessed cellular uptake of 1,1=-
ioctadecyl-3,3,3=,3=-tetramethylindocarbocyanine-labeled
cetylated low-density lipoprotein (DilacLDL; 2.4 �g/ml)
fter incubation at 37°C for 1 h. Cells were then fixed with
% paraformaldehyde for 10 min, and lectin staining was
erformed by incubation with fluorescein isothiocyanate
ITC-labeled Ulex europaeus agglutinin I (lectin, 10 �g/
l; Sigma) for 1 h. Dual-stained cells were judged to be

erived from EPCs and were counted in 5 randomly
elected fields.

RANSMIGRATION ASSAY. Human umbilical vein endothe-
ial cells (HUVEC) (1 � 105 cells/well; up to second
assage; BioWhittaker, Walkersville, Maryland) were
lated on polycarbonate membrane (3-�m pore filters;
orning Costar, Acton, Massachusetts) coated with colla-

en I (10 �g/ml; Becton Dickinson) (8) to obtain confluent
ndothelial monolayers. Confluency was confirmed by mea-
uring permeability for FITC-dextran 3,000 (Molecular
robes, Eugene, Oregon). Monolayers of endothelial cells
ere pre-treated for 4 h with nicotine (0.1 �mol/l) or
ehicle. In parallel, EPCs had been cultured using the
ethods described in the previous text. Immediately before

he transmigration assay, cultured EPCs were detached
sing 1 mmol/l ethylenediaminetetraacetic acid in
hosphate-buffered saline, resuspended in 500 �l of endo-
helial basal medium, labeled with CellTracker (Molecular
robes), counted, and 105 cells were placed in the upper
hamber on top of the HUVEC monolayer. The chamber
as placed in a 24-well culture dish containing nicotine (1.0
mol/l to 1.0 �mol/l) or human recombinant stem cell-
erived factor (SDF)-1 (100 ng/ml), respectively. After 24 h
f incubation at 37°C, the lower side of the filter was washed
ith phosphate-buffered saline and fixed with 2% parafor-
aldehyde. Fluorescently labeled EPCs migrating into the

ower chamber were counted manually in 5 random micro-
copic fields.

TATISTICAL ANALYSIS. Values are expressed as mean �
D. Comparisons between groups were analyzed by t test
2-sided) or analysis of variance for experiments with more
han 2 subgroups. Post hoc range tests and pair wise
ultiple comparisons were performed with the t test (2-

ided) with Bonferroni adjustment. Comparison of categor-
cal variables was generated by the Pearson chi-square test.
ll analyses were performed with SPSS 10.0 (SPSS Inc.,
hicago, Illinois). The p values �0.05 were considered
tatistically significant. i
ESULTS

ystemic administration of nicotine induces greater an-
iogenesis. As before, we observed that nicotine enhanced
ngiogenic response to ischemia. However, systemic was
ore effective than local administration of nicotine. Intra-
uscular administration of nicotine induced a 46% increase

n neovascularization as compared with phosphate-buffered
aline (capillary/myocyte ratio: control group 0.42 � 0.10
s. local nicotine 0.61 � 0.09; p � 0.01; n � 7 each group)
Fig. 1). Local injection of nicotine did not lead to detect-
ble cotinine levels in the peripheral blood. Systemic treat-
ent with nicotine via the drinking water (100 �g/ml

rinking water) increased cotinine levels to 246 � 61 ng/ml
nd increased capillary density to a greater degree (capillary/
yocyte ratio 0.74 � 0.14 vs. 0.61 � 0.09; p � 0.05

ystemic vs. local nicotine). On day 7 after unilateral ligation
f the femoral artery, the group exposed to systemic admin-
stration of nicotine had significantly greater plasma levels of
ascular endothelial growth factor (VEGF) (control: 33.8 �
.5 pg/ml, local nicotine: 48.5 � 9.6 pg/ml, systemic
icotine: 86.0 � 15.5 pg/ml; p � 0.01).
icotine increases the number of EPCs in vivo. We

ypothesized that the greater effect of nicotine when given
ystemically was due to recruitment of EPCs. To address
his issue, we determined if systemic administration of
icotine could increase EPCs in the setting of hind limb

schemia. Analysis of different cell compartments by flow
ytometry revealed that, in the absence of ischemia, CD34/
lk-1-positive cells comprised only 0.24 � 0.14% of the
ells in the bone marrow (Figs. 2A and 2B), 1.18 � 0.21%
f the cells in the spleen, and only 0.03 � 0.02% of the cells
n the peripheral blood. GM-CSF treatment for 3 days
ignificantly increased the number of CD34/Flk-1-positive
ells in all 3 compartments, whereas nicotine treatment
ithout hind limb ischemia did not result in a significant

igure 1. Nicotine increases capillary density in the ischemic hind limb.
urine model of hind limb ischemia: nicotine stimulates angiogenesis as

ssessed by an increase in capillary density. Systemic treatment with
icotine resulted in a significantly higher angiogenic response as compared
ith local administration of nicotine into the ischemic hind limb (n � 7

ach group). PBS � phosphate-buffered saline. *p � 0.01 versus control;
*p � 0.05 versus local nicotine.
ncrease of CD34/Flk-1-positive cells (data not shown).
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After unilateral ligation of the common femoral artery,
he number of CD34�/Flk-1� cells in the bone marrow
ncreased in control animals. The number of CD34�/
lk-1� cells in the bone marrow was further increased by
ystemic administration of nicotine, with a maximum effect
bserved at day 7, and a persistent effect up to day 14 (Figs.
A and 2B). We also observed an increase in the number of
D34�/Flk-1� cells in the spleen on day 3 (�23%; control

roup 3.65 � 0.53% CD34�/Flk-1� cells vs. nicotine 4.47
0.48%; p � 0.05; n � 5 each group) as compared with

ehicle-treated animals (p � 0.05). Results for day 7 were
22%, and for day 14 an increase of �21% was observed.
Mobilization of stem and progenitor cells is dependent on

igure 2. Quantitation of endothelial progenitor cells by flow cytometry. F
schemia, and with ischemia and nicotine treatment (A). Histogram show
ntervals after induction of ischemia and initiation of oral nicotine (B). Fo
ocal secretion of matrix metalloproteinase in the bone i
arrow, which results in the subsequent release of soluble
it ligand (also know as stem cells factor) (23,24). There-

ore, levels of soluble Kit ligand have been used as a
urrogate marker for stem cell mobilization. Plasma levels of
-kit ligand were increased 6-fold in animals receiving oral
icotine (87.9 � 27.2 pg/ml vs. 14.4 � 2.9 pg/ml; n � 5 in
ach group; p � 0.005).
icotine stimulates EPC incorporation in vivo. To con-

rm that nicotine increased the mobilization of EPCs, and
o determine the functional significance of increased EPC
obilization, the following experiment was performed. To

rack incorporated EPCs in the ischemic and nonischemic
issue, we used a murine model of parabiosis. Hind limb

ncy of CD34� and Flk-1� cells in control animals without ischemia, with
umber of endothelial progenitor cells in the bone marrow at increasing

h group, n � 5. *p � 0.01 versus control for each respective time point.
reque
ing n
schemia was induced 30 days after transgenic mice (tie2-
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acZ) were surgically connected to wild-type animals. In
ehicle-treated pairs, capillary density increased after induc-
ion of ischemia, but incorporation of EPCs in the ischemic
issue was infrequent. Only 1.6 � 1.0% of the vessels in the
schemic tissue co-localized for LacZ and CD31 (Figs. 3A
nd 3C). Similar results were obtained for co-localization
or LacZ and Flk-1 (1.4 � 0.5%). In animals systemically
reated with nicotine, capillary density was increased by
bout 6-fold (Figs. 3B and 3C). It seems likely that only
0% of the EPCs are derived from the transgenic animal.
ccordingly, one might estimate that 21.0% of the vessels in
icotine-treated animals incorporated EPC. However, in
igure 3C, we only show the percentage of vessels contain-

ng EPCs that could be observed by B-gal staining (i.e., just
hose vessels containing EPCs derived from the male
nimal).
icotine increases EPC number in colony formation

ssay. To further delineate the mechanisms underlying the
ncrease in EPC number in vivo, we evaluated the direct in
itro effect of nicotine on EPC colony formation. After
ulturing mononuclear cells as described above for 48 h,
ells were stimulated with nicotine for an additional 48 h.

igure 3. Incorporation of mobilized endothelial progenitor cells (EPCs).
ith vehicle (A) or nicotine (B), respectively. All endothelial cells stain for

re derived from the male transgenic animal also express �-galactosidase (
ouble stain that is yellow. Histogram showing mean values for capillary den
elected high-power fields in each group) (C). Nicotine administration inc
ells that had been derived from EPC. For each group, n � 5. Open bars
ersus phosphate-buffered saline (PBS).
fter washing with medium, adhering cells were stained a
ith DilacLDL. We observed a dose-dependent and bi-
odal effect on the number of DilacLDL-positive cells. A

ignificant increase in DilacLDL-positive cells was observed
or 0.1 �mol/l and 1.0 �mol/l nicotine, whereas 10.0
mol/l of nicotine resulted in a reduced number (Figs. 4A

o 4C).
icotine stimulates EPC transmigration. To further de-

ineate the mechanisms underlying the increase in EPC
obilization in vivo, we studied EPC transmigration

hrough an endothelial monolayer using a modified Boyden
hamber assay. Pre-treatment of the EPC with nicotine
ncreased the number of transmigrated EPC by 2-fold (Figs.
A to 5C). Pre-treatment of the HUVEC monolayer with
icotine appeared to have an additive effect. The potent
igragen SDF-1 increased transmigration, with an additive

ffect of nicotine.

ISCUSSION

he salient findings of our study are that systemic exposure
o nicotine augments the number of EPCs in the bone
arrow and spleen and that this increase is associated with

esentative cross sections of ischemic hind limbs of female animals treated
1 (fluorescein-isothiocyanate-labeled; green). Those endothelial cells that
uorescent phycoerythrin [PE]-labeled secondary antibody) resulting in a
nd percentage of EPC-containing vessels (from an analysis of 10 randomly

d capillary density as well as the number of vessels containing endothelial
pillary density (CD31�); solid bars � EPC-containing vessels. *p � 0.01
Repr
CD3
red fl
sity a
rease
marked increase in angiogenesis in ischemic tissue. The
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icotine-induced enhancement of angiogenesis is associated
ith greater numbers of EPCs incorporating into the

schemic hind limb. We also observed that systemic expo-
ure to nicotine increased s-kit ligand, a plasma marker of
tem and progenitor cell mobilization. Finally, in vitro
tudies indicated that nicotine could increase transmigration
f EPCs.
We have previously described an endothelial nAChR that
ediates angiogenesis (25). Like neuronal nAChRs, the

ndothelial nAChR is a pentameric protein that forms a
igand-gated calcium channel, normally activated by endog-
nous acetylcholine (26). Nicotine may also activate this
eceptor to induce angiogenesis. There are a wide variety of

igure 4. Nicotine pre-treatment increases endothelial progenitor cell (E
abeled acetylated low-density lipoprotein (DilacLDL) uptake (A and B
reatment of the cells with nicotine for 48 h increased the number of adhe

C). For each group, n � 5. *p � 0.01 versus control.

igure 5. Nicotine stimulates endothelial progenitor cell (EPC) transmigr
ndothelial cell (HUVEC) monolayer: transmigrated cells at the bottom o
rogenitor cells were labeled with CellTracker before co-incubation. Signi
ith nicotine (C). Pre-treatment of the endothelial cell monolayer with ni

n EPCs or HUVECs appeared to be additive with each other, or with stem-c
ontrol.
euronal and extraneuronal nAChRs, each composed of 5
ubunits (i.e., �1–10, �1–4, �, �, and � (26). In the endo-
helial cell, the predominant nAChR is an �7 homomer, the
xpression of which increases with hypoxia (25). The
ndothelial expression of the nAChR is rather low under
asal conditions, but is up-regulated by hypoxia (25). This
egulated expression of the endothelial nAChR may explain
hy nicotine did not mobilize EPCs in the absence of

schemia (present report), or enhance angiogenesis in nor-
al tissue (25,27). It is possible that a permissive factor

eleased from the ischemic tissue renders the bone marrow
esponsive to nicotine. Local hypoxia is known to increase
ystemic levels of angiogenic cytokines, including VEGF.

number in vitro. 1,1=-dioctadecyl-3,3,3=,3=-tetramethylindocarbocyanine-
isolated mononuclear cells was determined by fluorescence microscopy.
DilacLDL� cells per high-power (HP) field in a dose-dependent fashion

. Nicotine stimulates EPC transmigration through human umbilical vein
porous membrane in the vehicle (A) and nicotine (B) group. Endothelial
ly more transmigrated EPCs were observed when EPCs were pre-treated
also increased EPC transmigration, and the effects of nicotine treatment
PC)
) of
ation
f the
ficant
cotine
ell-derived factor (SDF)-1 (C). For each group, n � 5. *p � 0.01 versus
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npublished work from our laboratory indicates the VEGF
timulates the expression of several endothelial nAChR
ubunits. Further evidence of a role for VEGF in nicotine-
ediated angiogenesis comes from our published observa-

ions that the endothelial tube formation induced by nico-
ine or 3-(2,4)-dimethoxybenzylidene anabaseine is
ntagonized by VEGF-neutralizing antibodies (25).

We have previously shown that stimulation of the endo-
helial nAChR induces endothelial cell proliferation, migra-
ion, and tube formation in vitro (1,25). We have provided
vidence that nicotine promotes tumor angiogenesis and
umor growth (1). Second-hand tobacco smoke also pro-
otes tumor angiogenesis and tumor growth, an effect that

s abolished by the nAChR antagonist mecamylamine (28).
econd-hand tobacco smoke increased serum VEGF con-
entrations and circulating levels of EPCs (as documented
y flow cytometry analysis). These effects of second-hand
obacco smoke were inhibited by mecamylamine (28), indi-
ating that second-hand tobacco smoke-induced recruit-
ent of EPCs is mediated by the nAChR. The nicotine-

nduced mobilization of EPCs, and their contribution to
umor angiogenesis, has also been demonstrated by Natori
t al. (29). However, it must be noted that in the current
anuscript, we have not proven that the effects of nicotine

re mediated by the nAChR, nor have we shown the
xistence of the nAChR on EPCs. Nicotine could exert its
ffects through receptor-independent mechanisms or
hrough other neuroeffector, chemosensory, or inflamma-
ory mechanisms. Furthermore, we have not proven that the
PCs incorporating into the ischemic region are derived

olely from the bone marrow. Sources other than the bone
arrow have been postulated for EPCs and other progen-

tor cells (30–32). Although we have shown that systemic
xposure to nicotine recruits circulating cells of endothelial
ineage to an area of ischemia, we have not excluded a role
or nicotine acting locally to increase EPC incorporation.

ne might imagine that nicotine could act locally, in the
etting of ischemia, to augment the release or effects of other
actors that mobilize EPCs, such as VEGF. Indeed, nico-
ine increases the endothelial expression of VEGF (25,27).

Another form of pathological angiogenesis occurs during
he growth of atherosclerotic plaques. Larger atherosclerotic
laques in the coronary arteries are heavily vascularized by
xpansion of the vasa vasorum (33,34). Administration of
ntiangiogenic agents to hypercholesterolemic apolipo-
rotein-E-deficient mice suppresses plaque growth (35).

e have shown that administration of nicotine to hyper-
holesterolemic mice accelerates plaque neovascularization
nd progression (1).

The mobilization of EPCs contributes to angiogenesis.
o determine if the angiogenic effects of nicotine might be
ediated, in part, by EPC mobilization, we used a model of
ouse parabiosis (17,19). Cells arising from one partner can

e differentiated from the other by virtue of stable genetic
arkers such as gender chromosomes or the presence of a
eporter transgene such as LacZ. Our goal was to eliminate
iases inherent in models that require pre-selection of a
iven type or source of the cells, and to avoid manipulations
such as total body irradiation) required to overcome im-
unologic or physiological barriers between the putative

recursor cells and the experimental hosts. Our studies
ndicate that nicotine enhances EPC mobilization. Alter-
atively or in addition, nicotine may enhance homing,
urvival, or even the expression of EPC surface markers.

It seems counterintuitive that nicotine could stimulate
herapeutic angiogenesis as in the current model. Neverthe-
ess, we have previously observed in mouse and rabbit

odels of hind limb ischemia that both angiogenesis and
rteriogenesis are enhanced by oral or intramuscular nico-
ine (1,36). Furthermore, in the diabetic db�/db� mouse,
ound healing is accelerated, and wound vascularity in-

reased 2-fold, by topical administration of nicotine, or
nother nAChR agonist, epibatidine (37). Our observation
hat nicotine can mobilize EPCs seems to conflict with
eports that human smokers have fewer circulating EPCs
38), which also exhibit impaired function (39). Further-
ore, tobacco cessation rapidly restores the number of

irculating progenitor cells (40). A possible explanation for
he paradoxical findings in the current investigation is that
y comparison to nicotine, tobacco smoke is composed of
,000 different compounds. Some of the components of
obacco are known to be cytotoxic or mutagenic, and/or
nduce oxidative stress. Thus, the rather brief exposure to
icotine in the current study is a qualitatively different
timulus than chronic exposure to tobacco smoke. Indeed,

ang et al. (41) have performed in vitro studies showing
hat nicotine dose-dependently enhances EPC prolifera-
ion, migration, adhesion, and tubule formation.

To conclude, we find that in the setting of ischemia,
icotine mobilizes EPCs, which incorporate into the vas-
ulature of the ischemic tissue. This effect may be due to
irect actions of nicotine on EPC proliferation, migration,
nd/or mobilization, as suggested by in vitro models and
lasma markers used in this investigation. These findings
ndicate the existence of a novel pathway for therapeutic

odulation in diseases characterized by pathological or
nsufficient angiogenesis.
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