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ABSTRACT Themechanical properties of cytoskeletal actin bundlesplay anessential role in numerousphysiological processes,
including hearing, fertilization, cell migration, and growth. Cells employ a multitude of actin-binding proteins to actively regulate
bundle dimensions and cross-linking properties to suit biological function. The mechanical properties of actin bundles vary by
orders of magnitude depending on diameter and length, cross-linking protein type and concentration, and constituent filament
properties. Despite their importance to cell function, the molecular design principles responsible for this mechanical behavior
remain unknown. Here, we examine the mechanics of cytoskeletal bundles using a molecular-based model that accounts for the
discrete nature of constituent actin filaments and their distinct cross-linking proteins. A generic competition between filament
stretching and cross-link shearing determines threemarkedly different regimes of mechanical response that are delineated by the
relative values of two simple design parameters, revealing the universal nature of bundle-bending mechanics. In each regime,
bundle-bending stiffness displays distinct scaling behavior with respect to bundle dimensions and molecular composition, as
observed in reconstituted actin bundles in vitro. This mechanical behavior has direct implications on the physiological bending,
buckling, and entropic stretching behavior of cytoskeletal processes, as well as reconstituted actin systems. Results are used to
predict the bending regimes of various in vivo cytoskeletal bundles that are not easily accessible to experiment and to generate
hypotheses regarding implications of the isolated behavior on in vivo bundle function.

INTRODUCTION

Cytoskeletal actin bundles comprise numerous vital cellular

processes including stereocilia, cytoskeletal stress fibers, the

sperm acrosome, microvilli, and filopodia (Fig. 1) (1–3). The

mechanical properties of these processes play essential roles

in cell function—the bending stiffness of stereocilia mediates

the senses of hearing and equilibrium (4,5), the elasticity of

cytoskeletal stress fibers enhance cellular resistance to me-

chanical deformation (6–13), the buckling resistance of the

sperm acrosome facilitates egg cell penetration during fer-

tilization (14,15), and filopodial buckling resistance facili-

tates filopodial protrusion (16–20) and mediates actin

turnover during neuronal growth and wound healing (21,22).

In addition to the preceding actin-based cytoskeletal bundles,

cells also align microtubules (MTs) to actively regulate nu-

clear positioning during mitosis (23,24) and stabilize cell

shape in the neuronal axon process (21) and outer pillar

cells in the mammalian ear (25). Thus, a quantitative un-

derstanding of the molecular design principles responsible

for the mechanical behavior of these ubiquitous cytoskeletal

modules is important for gaining a mechanistic understand-

ing of cell function (21,26,86).

Bundle dimensions and internal constitution vary consid-

erably depending on physiological function. Bundle length

varies from several microns in microvilli and stress fibers to

tens of microns in the sperm acrosome and hundreds of mi-

crons in neurosensory bristles (2,3). Similarly, bundle di-

ameters range from tens of filaments in filopodia to hundreds

of filaments in stereocilia. Interestingly, actin bundle di-

mensions and the predominant cross-linking protein associ-

ated with various cytoskeletal processes are highly conserved

across otherwise widely divergent species (27), suggesting

specific and possibly mechanically related functional con-

straints imposed during evolution (26,28). Fascin is the

predominant actin-binding protein (ABP) in filopodia and

neurosensory bristles, fimbrin is prevalent in microvilli and

stereocilia, scruin is present exclusively in the limulus sperm

acrosome, and a-actinin predominates in cytoskeletal stress

fibers. Despite the fundamental importance of actin bundle

mechanical properties to cell function, the effects of bundle

dimensions and cross-link composition on bundle mechanics

remain poorly understood. Direct measurement of in vivo

bundle mechanical response is limited by a number of com-

plicating factors, rendering a systematic investigation of the

effects of bundle dimensions and cross-linking protein com-

position on bundle mechanics impracticable.

As an alternative, the bending stiffness of reconstituted

actin bundles was recently measured in a controlled in vitro

assay (29). This enabled the systematic and broad exploration

of the effects of bundle dimensions and ABP type and con-

centration on the bending stiffness of actin bundles. Bundle-

bending stiffness is the fundamental mechanical property of

interest for inextensible bundles because once it is known,

other physiologically relevant mechanical properties such as

the critical buckling load or entropic stretching stiffness may

be derived. In Claessens et al. (29), the bending stiffness was

found to depend in a complex manner on bundle composi-
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tion, varying by orders of magnitude depending on cross-

linking protein type and concentration and bundle dimen-

sions.

In this article, we employ a molecular-based model of

cross-linked fiber bundles to explore the range of mechanical

behavior of cytoskeletal actin bundles. The bending stiffness,

kB; is found to depend on only two simple design parameters:

the number of constituent filaments in the bundle, N, and a

measure of the effectiveness of cross-links in mechanically

coupling neighboring filaments, denoted a. The values of

N and a are shown to delineate three distinct mechanical

regimes that differ markedly in their dependence on bundle

dimensions and internal constitution, highlighting the im-

portance of the former on cytoskeletal bundle mechanics. The

isolated mechanical behavior has direct implications on a

number of disparate fields of biophysical research involving

the physiological bending, buckling, and entropic stretching

response of cytoskeletal processes involved in mechano-

sensation, fertilization, cell motility, and neuronal growth,

and may be used to predict the bending regime of in vivo

cytoskeletal bundles that are not easily amenable to experi-

mental measurement.

MATERIALS AND METHODS

Model

We consider the linear bending response of fiber bundles of length L that

consist of N cubically or hexagonally packed fibers, as is typical of highly

cross-linked filamentous actin (F-actin) (15,31,32) (Fig. 2 A). Each fiber is

characterized geometrically at a coarse-grained molecular scale by its cross-

sectional dimension, df ½m2�; and contour length, Lf ½m�: Fibers run the full

length of the bundle ðLf ¼ LÞ and are modeled mechanically as extensible

Euler-Bernoulli beams (or extensible wormlike polymers) with stretching

stiffness kf :¼ EfAf=d ½N=m� and isotropic transverse bending stiffness

kf :¼ Ef If ½Nm2�: Ef ½N=m2� is the effective Young’s modulus of the fiber,

Af ½m2� is its cross-sectional area, If ½m4� is the moment of inertia of its cross-

sectional area with respect to its neutral axis, and d ½m� is the mean spacing

between discrete cross-links with effective shear stiffness k3½N=m�; and
length, t ½m�: (For molecular-scale objects, kf and kf are fundamental inde-

pendent observables that may be measured experimentally, whereas, Af and

If are macroscopic geometric properties that are ill defined at the molecular

scale and thus only effective in their nature). Cross-links are assumed to be

transversely inextensible, thereby constraining transverse fiber deflections to

be equal but allowing interfiber relative slip. Bundle torsional stiffness is

assumed to be of the same order as the bundle-bending stiffness so the effects

of twist are of higher order and may safely be ignored in analyzing the linear

bending response of stiff bundles for which the apparent bundle persistence

length lp :¼ kB=kBT � L (33–36). In-plane bending of 2M :¼ ffiffiffiffi
N

p
fiber

layers cross-linked to their nearest neighbors in- and out-of-plane may then be

considered, where the corresponding three-dimensional (3D) bundle-bending

stiffness is related to its 2D counterpart by kB :¼ 2MkBð2DÞ (Fig. 2A). (Effects
of out-of-plane shear deformations present in hexagonally packed bundles

during planar bending, as well as finite-size geometric boundary effects, are

ignored to leading order.) Various types of biological fiber bundles have been

modeled previously along similar lines (25,32,37,38).

Bundle deformations are characterized by r?ðxÞ; the transverse deflection
of the bundle neutral surface at axial position x along its backbone and in-

ternal axial extensions of the constituent fibers. Let uðkÞðx; ỹÞ be the axial

displacement field in the kth fiber ðk ¼ �M; . . . ;M � 1Þ at a distance ỹ from
the fiber neutral axis. The associated local strain field eðkÞ :¼ u

ðkÞ
;x then con-

sists of a linear superposition of fiber bending and stretching contribu-

tions, eðkÞ ¼ �r?;xxỹ1�u
ðkÞ
;x ; where, �uðkÞðxÞ ¼ 1

Af

R
Af
uðkÞðx; ỹÞdAf ; a subscript

comma is used to denote differentiation, and the standard small displacement

approximation, r � ðr?;xxÞ�1; is used for the neutral surface radius of cur-

vature, r (Fig. 2 B).

Cross-link shear displacements, n, result from stretching and plane

cross-section rotations of neighboring fibers, n
ðkÞ
j ¼ �uðkÞðxjÞ � �uðk�1ÞðxjÞ1

ðdf1tÞr?;xðxjÞ; where j labels the cross-link at axial position xj ¼
jd ðj ¼ 1; 2; . . . ;L=dÞ and ðk ¼ �M11; . . . ;M � 1Þ: The shear displace-

ment may be written equivalently in terms of the local fiber mean axial strain

and inverse radius of curvature, n
ðkÞ
j ¼ R xj

0
½e�ðkÞ � e�ðk�1Þ1ðdf1tÞr?;xx�dx:

Although the enthalpic stretching and bending stiffnesses of F-actin

(39–41) and MTs (40,42) are experimentally known, the shear stiffness of a

given cross-link is often unknown. One exception is provided by the recent

measurements of Claessens et al. (29), in which an apparent k3 was inferred

for the ABPs fimbrin, fascin, and a-actinin in thermodynamic equilibrium.

In other cases, k3 in principle may be calculated directly using atomistic-

based simulation methods or measured using micromanipulation techniques.

The effective length of the cross-linker, t, may be approximated using crystal

structures (15,43,44), and dmay be estimated from chemical equilibrium and

fiber packing considerations (31).

Biological cross-links such as the ABPs fascin and fimbrin have finite

off-rates, koff;0:1� 1 s�1 (45,46,87) and are therefore irreversibly bound

only on loading or deformation timescales that are shorter than k�1
off : On

longer timescales cross-links may dissociate and rebind, thereby relaxing

their shear deformation energy, such as in the coiled packing of the actin

FIGURE 1 Fiber bundles consisting of F-actin.

(A) Ciliary bundle from the sensory epithelium of a

bullfrog saccule consisting of;60 stereocilia (cour-

tesy of David P. Corey and John A. Assad). (B)

Filopodium protruding from the lamellipodium of a

mouse melanoma cell (reproduced from Svitkina

et al. (81) by copyright permission of The Rocke-

feller University Press). (C) Epithelial microvilli.

(D) Drosophila neurosensory micro- and macro-

chaete bristles (reproduced from Tilney et al. (82)

with the permission of The American Society for

Cell Biology).
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bundle of the sperm acrosome in which kinking via cross-link unbinding and

subsequent interfilament slip occur (47). Although the effects of cross-link

unbinding/rebinding are of interest for understanding the viscoelastic re-

sponse of cytoskeletal bundles, this work is limited to conditions in which the

loading timescale is shorter than the cross-link off-rate, which may be me-

diated by force. The model may also be applied to conditions in which ther-

mal fluctuations excite bundle-bending modes provided that the relaxation

time of the slowest (longest) wavelength mode is shorter than the cross-link

off-rate and the appropriate mean number of bound cross-links is employed

(29). Extension of this model to include dynamic cross-links, molecular

motors that mediate filament sliding, and filament (de)polymerization pro-

vide important model extensions that will be pursued as suitable experi-

mental data become available to validate such developments (48,49).

In addition to their finite shear stiffness, cross-links have a finite exten-

sibility k? ½N=m� that in principle could allow peristaltic (out-of-phase) fiber-

bending modes. Typical cross-linking proteins have an extensional stiffness,

k?;1N=m (50), however, that restricts the wavelength of these peristaltic

modes to lengths at or below the typical cross-link distance, d, and ensuing

transverse fluctuations are negligibly small. (Cross-links suppress fiber peri-

staltic modes to wavelengths, l#lmax :¼ ðkfd=k?Þ1=4; where lmax � 10 nm

for F-actin with kf � 7310�26 Nm2 (39,40). The minimum axial distance

between coplanar cross-links in hexagonally packed actin bundles is 37.5 nm

(31). The associated transverse fluctuations are r?;0:1� 1 nm; which is

much less than the interaxial spacing between fibers, ðdf1tÞ$10 nm (31).)

Thus, actin bundles are tightly packed and ordered, as demonstrated by

electron microscopy (31,51), and the assumption of inextensible cross-links

is justified in analyzing their mechanical response.

The three-dimensional bundle-bending stiffness can in general be ex-

pressed as a function of all the independent parameters of the model,

kBðN;L; kf ;kf ; k3; d; tÞ; which in dimensionless form may be written,

k�B ¼ k�BðN; k3L3=kf ; kfL3=kf ;L=dÞ; in the limit of small cross-links, where

k�B :¼ kB=kf : We will demonstrate, however, that k�B depends only on the

two independent dimensionless parameters, N, and the fiber coupling pa-

rameter,

a :¼ k3L
2

kfd
2 ; (1)

which is evidently a measure of the competition between cross-link shearing

and fiber stretching.

Finite element modeling

Fibers are discretized identically in two dimensions (2D) using two-node

Hermitian beam elements with nodal degrees of freedom, fui;wi; uig; where

ui is axial displacement,wi is transverse deflection, and ui is in-plane rotation

(30). Nodes on adjacent fibers are constrained to have equal transverse de-

flection. Cross-link shear stiffness is modeled using a general two-node finite

element (FE) that couples nearest-neighborfibers k and (k�1) via the cross-link

shear energy function, E ¼ ðk3=2Þ½ðuðkÞ � uðk�1ÞÞ1ðdf=2ÞðuðkÞ1uðk�1ÞÞ�2;
where k3 is normalized properly to account for discretization. Three-point

bending is simulated by applying pinned or clamped boundary conditions to

the bundle ends and applying a transverse unit point load at the bundle

midpoint, yielding the apparent wormlike chain bending stiffness, kB :¼
PL3=awL=2; where a ¼ 48 and a ¼ 192 for pinned and clamped ends, re-

spectively. Simulations are performed using the commercial FE software

ADINA (version 8.2.0; Adina R&D, Watertown, MA). Experimental

methods are as described in Claessens et al. (29).

Numerical analysis

To elucidate the mechanics of bundle bending, we begin by examining the

bending response of model fiber bundles subject to simple three-point

bending computationally using the FE method. Analogous with experiment,

kB is evaluated as a function of increasing fiber number, N, for bundles of
fixed a, which is akin to fixing the fiber and cross-link properties (Fig. 3 A).

Decoupled bending characterized by linear scaling is observed for small a

and fully coupled bending for large a. Interestingly, between these two limits

we also observe an intermediate range of a that displays a smooth crossover

from quadratic to linear scaling in N. This is in contrast to a bending stiffness

that is characterized simply by an a-dependent exponent, a, kB;Nakf ½1#
aðaÞ#2� (16,37). Replotting k�B as a function of a for a series of values of N
indicates that this range is in fact part of a distinct intermediate regime where

k�B increases with increasing a (Fig. 3 B). Moreover, any bundle that exhibits

fully coupled bending behavior at any given a necessarily transitions into

this regime with increasing bundle diameter. In what follows, we perform a

scaling analysis that considers the energetic competition between fiber

stretching and cross-link shearing to elucidate the physical origin of the

crossovers between each regime and to delineate their boundaries in (N, a)-
space.

Scaling analysis

Consider a generic fiber bundle with a fixed characteristic radius of

curvature, r � ðr?;xxÞ�1: In the decoupled limit, individual fibers bend

equally without stretching, whereas in the fully coupled limit cross-

links resist shear deformation so fibers are forced to stretch and com-

press in addition to bend (Fig. 2 B). Differences in fiber deformations

in the decoupled, fully coupled, and intermediate regimes are thus

FIGURE 2 Theoretical bundle model.

(A) Cross-linked fiber bundle with N ¼ 16

fibers. Discrete cross-links couple nearest-

neighbor fibers mechanically in stretching

and bending. (B) (left) Deformed backbone

of a fiber bundle subject to in-plane bending;

(middle) close-up view of three typical fi-

bers showing fiber and cross-link deforma-

tions in (faded gray lines) decoupled and

(solid black lines) fully coupled bending;

(right) transverse distributions of fiber axial

displacement, uðkÞðx; yÞ; and (arrows) mean

axial displacement, �uðkÞðxÞ in (faded gray

lines) decoupled and (solid black lines) fully
coupled bending.
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manifest at a fixed radius of curvature solely in differences in mean fiber

stretching.

Accordingly, to isolate the crossover from the fully coupled to the inter-

mediate regime,we impose an infinitesimal stretching deformation, de�ðkÞ; that
extensionally relaxes the fibers and thereby reduces the total fiber-stretching

energy, Wstretch; at the expense of an increase in cross-link shearing energy,

Wshear: de�ðkÞ is a characteristic deformation that is constant along the bundle

axis but may differ between fiber layers, k. The crossover between the fully

coupled and intermediate regimes is then determined by the point at which

cross-link shearing becomes favorable to fiber stretching, dWstretch½de�ðkÞ� ¼
dWshear½de�ðkÞ�; where dWstretch½de�ðkÞ� ¼ M+M�1

k¼�M

R L
0
dx�FðkÞde�ðkÞ is the var-

iation in stretching energy and dWshear½de�ðkÞ� ¼ M+M�1

k¼�M11
+L=d

j¼1
F
ðkÞ
3j dn

ðkÞ
j

is the variation in cross-link shearing energy associated with the imposed

relaxation de�ðkÞ that results in the cross-link displacement, dn
ðkÞ
j ¼ ðde�ðkÞ�

de�ðk�1ÞÞxj: The calculation of these energy variations requires that the mean

fiber stretching, �FðkÞ; and cross-link force,FðkÞ
3j ; conjugate to the deformations

de�ðkÞ and dnðkÞj be evaluated, which we turn to next.

The mean axial force in the kth fiber is related linearly to its mean axial

strain by �FðkÞ ¼ EfAfe�ðkÞ; which in the fully coupled regime increases line-

arly with distance, y, from the bundle neutral axis, e�ðkÞ ¼ �yðkÞr?;xx ¼
�ðk11

2
Þdfr?;xx; so �FðkÞ ¼ �EfAfðk11

2
Þdfr?;xx; as in a homogeneous Euler-

Bernoulli beam (Fig. 2 B). The limit of small cross-links ðt � dfÞ is

assumed here for simplicity without loss of generality. It is precisely this

fiber-stretching force that gives rise to the additional bundle-bending mo-

ment and higher associated bundle-bending stiffness in the fully coupled

regime. The cross-link force, F
ðkÞ
3j ; is linearly related to its shear displacement

via F
ðkÞ
3j ¼ k3n

ðkÞ
j ; which is given by n

ðkÞ
j ;dfr?;xxxj; so F

ðkÞ
3j;k3dfr?;xxxj;

where a constant characteristic radius of curvature is assumed in evaluating

n, consistent with the scaling picture here. Note the differences between the

expressions for the fiber axial force and the cross-link shear force: The former

increases through the bundle cross section, whereas the latter increases along

the bundle axis.

Variations in fiber stretching and cross-link shearing energy associated

with the imposed relaxation de�ðkÞ may now be calculated using the above

results to yield dWstretch;�MEfAfdfr?;xxL+
M�1

k¼�M
ðk11

2
Þde�ðkÞ and dWshear;

Mk3dfr?;xx+
M�1

k¼�M11
ðde�ðkÞ � de�ðk�1ÞÞ+L=d

j¼1
x2j ; which may be rewritten

dWshear;Mk3dfr?;xxðL3=dÞ+M�1

k¼�M11
ðde�ðkÞ � de�ðk�1ÞÞ; after evaluation of

the summation over cross-links. Equating the resultant increase in cross-link

shear energy with the decrease in fiber-stretching energy and imposing ar-

bitrary de�ðkÞ determines the location of the crossover,NEfAf;k3L
2=d;which

may be rewritten, a;N: Thus, the crossover from the fully coupled regime to

the intermediate regime occurs at higher a for larger diameter bundles. This

result is because in the fully coupled regime the fiber-stretching energy scales

with bundle diameter whereas the cross-link shearing energy scales with

bundle length.

A similar analysis applies to the decoupled limit except that fibers are

initially unstressed axially in the ground state. FE results indicate that axial

stretching is first induced in fibers at the outer boundary of the bundle to

minimize the associated increase in dWstretch because inner fibers then remain

in their relaxed state. This leads directly to a crossover that is bundle diameter

independent and thus N independent, which is given by the condition a;1:

Comparison of the crossovers between the decoupled-intermediate ða;1Þ
and fully coupled-intermediate ða;NÞ regimes computed with the FEmodel

confirms the validity of the foregoing scaling arguments (Fig. 3 B), with
some deviations for small N. Introduction of the finite size, t, of the cross-

links increases the absolute value of the fully coupled bending stiffness, but it

does not affect this scaling behavior.

Closed form bundle-bending
stiffness expression

The fiber bundle model admits an analytical solution employing a continuum

energetic approach (Appendix). As in the FE model, the total elastic energy

of the bundle, H½r?ðxÞ; �uðkÞðxÞ�; is given by fiber bending, Hbend; fiber

stretching, Hstretch; and cross-link shearing, Hshear; contributions. The bend-

ing contribution is given by a linear superposition of the standard wormlike

chain bending energy for each independent fiber, Hbend ¼ 1
2
Nkf

R L
0
r2?;xxdx

because transverse fiber displacements are equal. The fiber-stretching energy

is given by the axial strain energy, Hstretch ¼ MEfAf+
M�1

k¼�M

R L
0
ð�uðkÞ;x Þ2dx:

Finally, cross-link shear energy is associated with cross-link deformation

that results from neighboring fiber bending and stretching, Hshear ¼
Mk3
d +M�1

k¼�M11

R L
0
nðkÞðxÞ� �2

dx:

The theoretical model contains 2M internal stretching degrees of

freedom �uðkÞ in addition to the transverse bundle deflection, r?; which is

the principal observable of interest in measuring bundle response. Accord-

ingly, the fiber-stretching degrees of freedom are integrated over to obtain

an effective bundle-bending energy that depends solely on r?; from

which the mode number dependent effective bundle-bending stiffness is

(Appendix)

FIGURE 3 Theoretical bundle-bending stiffness. (A) Dependence of normalized bending stiffness, k�B :¼ kB=kf ; on filament number, N, for various

constant values of the fiber coupling parameter, a ¼ f10�1; 100; 101; 102; 103; 104g (bottom to top). Thick lines denote (bottom) decoupled and (top) fully
coupled bending regimes. (B) Dependence of k�B on a at constant N ¼ f4; 9; 16; . . . ; 100g (bottom to top). Dotted lines correspond to Timoshenko theory

predictions. Inset: Dependence of the crossover values, a, of the fiber coupling parameter on bundle filament number, N, at the (bottom curves) decoupled-to-

intermediate and (top curves) fully coupled-to-intermediate regime crossovers for (squares) pinned and (circles) clamped boundary conditions. Solid lines

indicate N-independent and linear-in-N scaling. Crossover values of a are defined by the value of a at which kB is within a factor of two of its limiting

decoupled and fully coupled values.
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kBðN;a; qjÞ ¼ kfN 11
x
2ðN � 1Þ

11 cðqjÞN1
ffiffiffiffi
N

p

a

0
BB@

1
CCA; (2)

where x2 :¼ Afðdf1tÞ2=ð12 IfÞ accounts for the finite thickness of the

cross-links. The mode number dependent bending stiffness depends on

the wave numbers qj ¼ jp=L through the nondimensional factor cðqjÞ ¼
ðqjLÞ2=12 and on the design parameters N and a isolated previously using

scaling analysis. In three-point bending at zero temperature, the analytical

solution for the bundle-bending stiffness is well approximated by Eq. 2 with

a constant factor c ¼ 1 for pinned ends and c ¼ 4 for clamped ends, in

quantitative agreement with the FE results. In the limits of ða � 1Þ and

ða � NÞ; Eq. 2 reduces to decoupled and fully coupled bending, respec-

tively, and in the intermediate regime ð1 � a � NÞ it exhibits the scaling
kB}NkxL2; which is independent of the mechanical properties of the un-

derlying fibers. This demonstrates that the intermediate regime is dominated

by shear deformation of the cross-links so intermediate and shear dominated

may be used interchangeably. This is in contrast to the decoupled and fully

coupled regimes in which the cross-link shear stiffness is effectively equal

to zero and infinity, respectively.

The mode number dependence of kB demonstrates that in addition to

being state dependent ðN;aÞ; bundle-bending stiffness is an apparent ma-

terial property that depends on how the bundle is probed. This is in stark

contrast to a standard wormlike polymer, which is defined as having an in-

trinsic bending stiffness that is state and mode number independent (52,53).

Thus, inference of kB from ‘‘macroscopic’’ bundle observables—such as the

mean square end-to-end distance, the zero temperature force-deflection re-

lation, or the fluctuation spectrum by associating the bundle with an equiv-

alent wormlike polymer—will yield different apparent values for kB: Of

course, cytoskeletal bundles present in cellular processes are typically stiff

ðlp :¼ kB=kBT � LÞ so the lowest mode dominates their mechanical re-

sponse. Accordingly, our primary interest is in the relative values of the

isolated design parameters, N and a, which delineate the state dependence of

the bundle-bending stiffness. The consequences of the mode number de-

pendence of kB on the statistical mechanical properties of bundles of

wormlike chains are examined in a separate work (54).

Connection to Timoshenko theory

Fiber bundles consisting of MT protofilaments (42,55) and single-walled

carbon nanotubes (56,57) have recently been analyzed using Timoshenko

beam theory. (MTs have been analogized to fiber bundles by treating pro-

tofilaments as individual fibers and interprotofilament interactions as effec-

tive cross-links.) In this approach, the heterogeneous microstructure of the

bundle is ignored so the bundle can instead be treated as a single homo-

geneous medium with effective macroscopic geometric and mechanical

properties. The bundle stiffness computed from Timoshenko theory for

three-point bending with pinned boundary conditions may be written (58)

kB ¼ EBIB 1112EBIB=bGBABL
2
B

� ��1
; where GB is the effective bundle

shear modulus and b is a cross-section dependent shear-correction factor.

To make a connection with the microscopic fiber bundle theory employed

in this work, interlayer shear displacements are assumed to be constant

through the bundle cross section and related to the macroscopic bundle shear

strain by gB ¼ n=df ; where the limit of small cross-links is assumed

ðt � dfÞ: Setting the macroscopic bundle shear stress equal to the effective

interlayer shear stress, tmacro ¼ GBgB :¼ tmicro ¼ k3n=dfd; then yields

kB ¼ N2kf 11N=að Þ�1; which is identical to the fiber-based model result

when the limit ðN � 1;a � 1Þ is applied. Thus, Timoshenko theory con-

verges to the same fully coupled bundle-bending stiffness as the micro-

scopic-based theory when ða � NÞ and crosses over to the shear-dominated

regime when ða;NÞ (Fig. 3 B). Unlike the microscopic theory, however,

Timoshenko theory is asymptotically correct only in the intermediate regime

for large bundles ðN � 1Þ and it fails drastically when ða;1Þ because it does
not account explicitly for the heterogeneous underlying fiber structure of the

bundle (Fig. 3 B). Moreover, consideration of the underlying molecular

structure of cytoskeletal bundles facilitates a connection to atomistic mod-

eling to investigate the source of mesoscopically observed parameters such

as the cross-linker shear stiffness as well as to examine the effects of un-

derlying structural properties of the bundle such as fiber fracture, which we

consider next.

Effect of fiber fracture

In certain cases, such as Drosophila bristles in their developmental phase

(59) and cytoskeletal stress fibers (10,11), actin bundles are formed from

short overlapping segments of fractured fibers that do not run the full length

of the bundle. We tested the effect of fiber fracture on kB numerically by

dividing each original mother fiber in the FE model into m daughter fibers of

equal length, Lf,L; where nearest neighbor mother fibers were randomly

aligned with respect to one another (Supplementary Material). The primary

mechanical consequence of fracture is that the fiber tension/compression

propagation that is present in the fully coupled regime is eliminated. Instead,

the preexisting axial load carried by a fractured fiber is transferred to its

nearest neighbors via cross-link shear coupling. Intuitively, this transfer is

most effective for high cross-link shear stiffnesses, low fracture densities,

and large diameter bundles.

Quantitatively, for any bundle size ðM; LÞ we find two distinct regimes

delineated by the critical ratio, f� � M; where f :¼ L=Lf is the fracture

number density per fiber. As expected, for f � f� the bending response of
the bundle is unaffected by fiber fracture. For f � f�; however, the bundle
response is strongly affected by fiber fracture and characterized by a re-

normalized coupling parameter a9 :¼ aðf�=fÞ2: In this regime, the bundle

behaves likem smaller subbundles of length Lf :Although the critical density

f� is derived from a planar 2Dmodel, the fact that parallel planar fiber layers

are assumed to bend independently implies that the same critical density

applies to 3D bundles. This scaling behavior is also expected to apply to

situations in which fractured segments are not monodisperse in length, as

assumed here, as long as fractures are not aligned transversely but instead

exhibit significant transverse disorder.

Application to in vitro actin bundles

The bending stiffness of actin bundles cross-linked by fascin, fimbrin, and

nonspecific polyethylene glycol-induced depletion forces was recently

measured experimentally using an in vitro droplet assay in which actin

bundles form compact stable rings (29). In that work, bundle-bending stiff-

ness was analyzed using an existing analytical theory that depends in a com-

plex manner on the numerous bundle parameters, kBðN;L; kf ;kf ; k3; d; tÞ
(25,29). Using the analytical bending stiffness (Eq. 2) to fit each bending

stiffness data point, ðNi;Li; rÞ; at a given fascin/actin concentration ratio

r :¼ cfascin=cactin yields a concentration-dependent effective interlayer shear

modulus, k3=d ¼ 10976360; 352649; 148654; and 2767 Pa for r ¼ 0.5,

0.2, 0.05, and 0.02, respectively, over the range of bundle diameters

ð2#N# 40Þ and lengths ð14310�6 m#L# 90310�6 mÞ examined. The

preceding dependence of k3=d on r is consistent with a constant apparent

cross-linker shear stiffness of k3 � 10�5 N=m and a mean spacing between

cross-links that depends on cross-linker concentration as d;1=cfascin; as
expected from equilibrium binding considerations (29), where a minimum

in-plane axial cross-link spacing of 39 nm, t ¼ 0; and c¼ 5 appropriate to the

periodic boundary conditions used to model the ring bundle examined ex-

perimentally is assumed (Appendix). Employing a cross-linker dimension of

t ¼ 10 nm results in an apparent stiffness of k3 � 10�6N=m: The uncer-

tainty in model parameters including t and d renders the estimate of k3 valid

only to within an order of magnitude. The dependence of bundle-bending

stiffness on bundle length, L, at fixed filament number N ¼ 276 6 provides

additional evidence for the validity of the proposed mechanical model in

which a :¼ ðk3=EfAfÞðL2=dÞ mediates the bending regime of cross-linked

actin bundles within the limited range of L capable of being probed exper-

imentally at fixed N ð24310�6 m#L# 553 10�6 mÞ (Fig. 4).
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In the absence of detailed information regarding the fine structure of the

actin bundles examined, the preceding analysis assumes fiber fracture to be

below the critical fracture density, f � f�; and fibers to be ordered trans-

versely. Although the former assumption is consistent with the observation

that phalloidin tends to anneal actin into stable, continuous filaments (60) and

the latter is consistent with observations of the hexagonally ordered packing

of actin bundles (3,31,61), direct examination of the fine structure of the in

vitro ring bundles are needed to fully justify these assumptions.

Unlike fascin cross-linked bundles, bundles cross-linked by fimbrin and

nonspecific depletion forces exhibit a bending stiffness that is independent of

the cross-linker concentration, where fimbrin cross-linked bundles exhibit

decoupled bending and depletion force induced bundles exhibit fully coupled

bending over the range of bundle dimensions and cross-linker concentrations

examined (29). Although nonspecific depletion forces are likely to induce

tight packing between helical actin filaments (43) that would explain the fully

coupled bending observed, the decoupled bending behavior observed for

fimbrin may be hypothesized to be due either to an enhanced F-actin shear

compliance associated with actin monomer tilting (62) mediated by fimbrin

binding or facile modes of shear deformation involving the actin-fimbrin

binding interface (43). We believe that direct bundle stiffness measurements

using optical or magnetic tweezers to actively probe the nonlinear and non-

equilibrium bending response of actin bundles are required together with

molecular modeling of cross-linked actin bundles (63) to understand the

origin of the observed behavior as well as to further validate the interpretation

of cytoskeletal bundle-bending mechanics proposed here.

Bending stiffness state diagram

The bending regime of in vivo cytoskeletal bundles may be predicted by

evaluating the design parameters N and a using the apparent values of k3
determined experimentally (29) and known bundle dimensions (2,3) (Fig. 5).

Maximal bundle compliance is achieved by decoupled bending ða � 1Þ;

whereas maximal bundle stiffness is achieved with fully coupled bending

ða � NÞ: In the shear-dominated regimeð1 � a � NÞ; bundle length or

cross-link concentration may be varied to tune bundle-bending stiffness by

orders of magnitude.

The sperm acrosomal process is required to mechanically penetrate the

outer jelly coat of the egg cell during fertilization (64,65). The limulus

(horseshoe crab) sperm acrosome consists of a tapered bundle of 15–80

hexagonally packed F-actin fibers that are tightly cross-linked by scruin and

run the full length (L � 50mm) of the bundle. Macroscopic measurements of

its bending stiffness have been made using hydrodynamic flow (64), where it

was determined that the bundle exhibits fully coupled bending. This inde-

pendent macroscopic observation is consistent with the a priori prediction of

the fiber-based model, in which the ranges in N and a are determined from

the parameters probed experimentally (Fig. 5). The shear stiffness of fascin is

used as a lower-bound estimate for the unknown shear stiffness of scruin

because the molecular structure and interfilament packing of the latter suggest

that it is considerably stiffer (15).

Vertebrate hair cell stereocilia are finger-like projections in the inner ear

that serve as mechanochemical transducers for sound and motion (Fig. 1).

Ranging 1–10 mm in length, each stereocilium consists of up to 900 hex-

agonally packed F-actin filaments cross-linked predominantly by fimbrin

(2,3,66). Together with their short length, the low apparent shear stiffness of

fimbrin places the predicted bending stiffness of stereocilia deep in the de-

coupled regime, consistent with independent experimental observations of

native stereocilia (32,37) (Fig. 5).

Brush border microvilli ðN � 20� 30;L � 1� 5mmÞ are passive cel-

lular processes that predominate in fimbrin and serve primarily to increase

the apical surface area of intestinal epithelial cells (2,3) (Fig. 1). Cytoskeletal

stress fibers ðN � 10� 40; L � 1� 10mmÞ predominant in a-actinin

(8,10,11,13) function mechanically to enhance the tensile stiffness of cells.

Each of these processes is predicted to exhibit decoupled bending due to its

relatively short length. Filopodia are active actin bundles present at the

leading edge of motile cells and neuronal growth cones that increase in length

FIGURE 4 Experimental and theoretical bending stiffness of fascin cross-

linked actin bundles forN¼ 276 6. Experimental bundle stiffness (symbols)
is measured using a microemulsion droplet system for a range of fascin

concentrations with corresponding mean spacings, d: (squares) 40 nm,

(circles) 56 nm, (diamonds) 68 nm, (pointed-up-triangles) 225 nm, (pointed-

down-triangles) 412 nm, as described in Claessens et al. (29). Bundle length is

varied in an uncorrelated fashion by a factor of over two. Cross-linker axial

spacing is calculated using a simple Langmuir isotherm approximation,

d ¼ dminðKd1cfascinÞ=cfascin (83,84), where dmin ¼ 37:5 nm is the minimum

in-plane spacing between ABPs in hexagonally ordered actin bundles (31) and

Kd ¼ 0:5mM is the fascin-actin dissociation constant (83,84). Theoretical

bundle stiffness (solid line) is calculated using Eq. 2 with c ¼ 5 (Appendix)

assuming N ¼ 27, and bounding curves (dashed lines) that account for

experimental uncertainty are calculated using N ¼ 21 and N ¼ 33.

FIGURE 5 Bundle-bending stiffness state diagram for various cytoskel-

etal bundles. Dashed lines denote crossovers between (I) decoupled, (II)

shear-dominated, and (III) fully coupled bending regimes. (a) Acrosomal

process of the horseshoe crab sperm cell (64); (b) vertebrate hair cell

stereocilia (2,3,66); (c) brush-border microvilli (2,3,85); (d) stress fibers; (e)

filopodia (16); (f) Drosophila neurosensory bristles (59); and (g) outer pillar

hair cell MT bundles (25). Spacing between ABPs is taken to be the minimal

in-plane value for hexagonally packed bundles, d ¼ 37:5 nm (31). Exten-

sional stiffnesses are EfAf ¼ 4:4310�8 N and 2:6310�7 N; for F-actin (41)

and MTs (40), respectively.
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during locomotion and growth (3) (Fig. 1). Consisting of at least 10–30 fil-

aments, they are predominantly cross-linked by fascin and typically range

1–10mm but may reach lengths of up to 30–40mm in certain cases such as in

the sea urchin embryo (16,67). As a final actin-based example, we consider

the 11 fascin cross-linked bundles constituting the Drosophila neurosensory

bristle. Each bundle is�400 microns long and contains 500–700 filaments in

macrochaetes (59,68) (Fig. 1). Using their full length, these bundles are

predicted to lie at the interface of the fully coupled and intermediate regimes,

despite their large diameter. Early in development, however, bristles consist

of short overlapping bundle modules ðLf � 3mmÞ (59). At this early stage

the fiber fracture density, f :¼ L=Lf � 100; is on the order of the critical

fracture density at which we find the fully coupled-intermediate regime

transition to be affected by fracture (Supplementary Material). Thus, direct

bending stiffness measurements are needed to verify this prediction. Finally,

noting that the bundlemodel employed in this work is generic to ordered fiber

bundles, we also include in the state diagram MT bundles from outer pillar

hair cells for which the interlayer shear modulus was measured using

micromanipulation and a fiber-based model ðN � 1000� 3000; L � 70�
120mm; k3=d � 1 kPaÞ (25).

The bending stiffness state diagram in Fig. 5 provides preliminary, ab

initio estimates for the bending regime of in vivo cytoskeletal actin bundles

based on apparent values for k3 that have been inferred from a single type of

in vitro experimental assay that probes the linear, equilibrium mechanical

response of actin bundles. As noted earlier, significant further experimen-

tation on in vitro and in vivo bundles using active measurement probes are

needed to further validate these predictions as well as to explore the nonlinear

and nonequilibrium mechanical response of actin bundles. For example, an

actin bundle that exhibits fully coupled or intermediate bending behavior on

loading timescales that are much shorter than the cross-link unbinding

timescale necessarily relaxes to the decoupled bending regime as cross-links

dissociate under far-from-equilibrium loading conditions (69). Additionally,

the rate of this relaxation will be accelerated in a manner that depends on the

rate of bundle deformation (70,71). Notwithstanding, the importance of this

work is to isolate the generic design parameters N and a that reveal the

universal nature of static cytoskeletal bundle mechanics, as well as their

strong dependence on bundle geometry and cross-linker properties. Al-

though the quantitative values of N and a corresponding to specific cyto-

skeletal processes should be refined and further validated in the future and

modified to include effects of cross-link unbinding and nonlinear mechanical

response present in situ, the importance of N and a in mediating both the

regime of cytoskeletal bundle bending and crossovers between these regimes

is expected to apply.

Implications for in situ mechanical function

The isolated mechanical behavior of cytoskeletal bundles has direct impli-

cations on the in situ bending, buckling, and entropic-stretching behavior of

cytoskeletal bundles.

Decoupled bending exhibited by stereocilia and microvilli not only maxi-

mizes the bending compliance of these cellular processes but also relieves the

actin filament stretching/compression that grows linearly with distance from

the bundle centerline in fully coupled bending, Fk}kðdf1tÞEfAf=r: Thus,

fragility of actin filaments under axial strain that leads to filament fracture (72)

may provide an alternative criterion to design cytoskeletal bundles that exhibit

decoupled bending in cellular processes such as these.

In contrast, fully coupled bendingmaximizes the mechanical resistance of

the sperm acrosome to axial compressive forces that lead to structural failure

at the critical buckling load, Fcrit;kB=L
2: The isolated crossover from fully

coupled to intermediate bending at the critical ratio a=N;1 provides a

constraint on the design of cytoskeletal bundles for maximal mechanical

stability under compressive loading. Also subject to compressive loading are

invadopodia and filopodia, fascin cross-linked actin bundles involved in

tissue invasion, cell motility, and axonal growth (16,17). The results of this

work suggest that as the length of these processes increases they transition

from decoupled to intermediate regime bending, where Fcrit becomes inde-

pendent of length because kB}L2 there. This is in stark contrast to a standard
wormlike chain for which Fcrit decreases strongly with increasing length.

Thus, dynamic cytoskeletal processes such as filopodia may potentially in-

crease their length without compromising their buckling stability in the in-

termediate regime until they finally reach fully coupled bending, where Fcrit

becomes length-dependent again.

The entropic stretching response of actin bundles is suggested to play a

role in the elasticity of reconstituted actin networks (46,73,74), biological

tissues (75), and potentially cells (76,77). Importantly, decoupled cytoskeletal

actin bundles have an entropic stretching stiffness, ke}N2kf
2=L4; that is

substantially lower than its fully coupled counterpart, ke}N4kf
2=L4; with

a markedly different dependence on filament number or bundle diameter.

Additionally, the mode number dependence of kB renders the dependence of

ke on bundle length relatively weak ðke}1=LÞ in the intermediate regime

(54,74).

Taken together, these examples illustrate the direct implications that the

state-dependent bending stiffness of cytoskeletal actin bundles isolated in

this work has on their in situ biomechanical behavior. Significant further

experimentation is clearly warranted to better understand the complex nature

of cytoskeletal bundle-bending mechanics in cells and in reconstituted actin

networks, in particular under the physiological conditions of nonlinear and

nonequilibrium loading present during active processes such as cell migra-

tion (78). Additionally, extension of the model in this article to include the

active, nonequilibrium stretching response of individual cytoskeletal stress

fibers as mediated by myosin, tropomyosin, and a-actinin provides an im-

portant, yet challenging avenue of development to facilitate the bottom-up

prediction of cellular mechanics (8,10,11,79).

CONCLUSIONS

Cytoskeletal bundles of cross-linked actin filaments form key

structural components of a broad range of cellular processes.

To date, a common conception has been that cytoskeletal

bundles display two limiting bending behaviors, namely

decoupled or fully coupled bending. Here, we demonstrate

that their bending behavior is considerably more intricate,

depending on global bundle dimensions, the shear stiffness of

intervening cross-links, and the stretching stiffness and

fracture density of constituent fibers. We isolate two generic

design parameters, N and a, that delineate the three distinct
bending regimes of cytoskeletal bundles with markedly dif-

ferent scaling properties. Experimental bending stiffness of

in vitro fascin cross-linked actin bundles, as well as existing

in vivo measurements of the bending stiffness of the limulus

sperm acrosome and of the stereocilium, validate our inter-

pretation of actin bundle mechanics. The isolated state de-

pendence of fiber bundles has important implications for the

physiological bending, buckling, and potential entropic-

stretching behavior of cytoskeletal processes, some of which

are highlighted in this work. Finally, ab initio predictions for

the bending regime of various cytoskeletal processes are

presented in the form of a bending stiffness state diagram,

which emphasizes the importance of bundle dimensions and

internal composition on bundle mechanical response, as well

as the generic nature of the proposed description.

Future experimentation using active mechanical probes

will facilitate the extension of the static molecular-based

model here to include nonequilibrium effects of force-

induced cross-link unbinding, filament dynamics including
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rupture and disassembly, and molecular motor mediated fil-

ament sliding and translocation as present in cytoskeletal

stress fibers. Although considerable additional experimen-

tation in close collaboration with multiscale modeling is

needed to fully understand the intricate nature of cytoskeletal

bundle mechanics, this challenging line of research should

eventually facilitate a mechanistic, molecular-level under-

standing of the interplay between cellular mechanics and

active cytoskeletal remodeling that has remained elusive to

date.

APPENDIX: DERIVATION OF THE MODE
NUMBER DEPENDENT BUNDLE-BENDING
STIFFNESS

The bundle Hamiltonian,

H½r?ðxÞ; �uðkÞðxÞ� ¼
Z L

0

dx
1

2
Nkfr

2

?;xx 1MEfAf +
M�1

k¼�M

ð�uðkÞ
;x Þ2

�

1
Mk3
d

+
M�1

k¼�M11

n
ðkÞðxÞ

h i2�
;

(A1)

may be simplified to depend only on r? and the relative degree-of-stretching

between fibers, D�u; by employing the approximation that fiber stretching

varies linearly through the bundle cross section (25), �uðkÞ ¼ ðk11
2
ÞD�u;

H½r?ðxÞ;D�uðxÞ� ¼
Z L

0

dx
1

2
Nkfr

2

?;xx

�

1
1

6
M

2ð4M2 � 1ÞEfAfD�u
2

;x 1

1
k3
d
Mð2M � 1Þ½D�u1 ðdf 1 tÞr?;x�2

�
:

(A2)

Fourier transformation of the Hamiltonian in Eq. A2 then results in the

decomposition H ¼ +
j
HjL=2; where the contribution of mode j to H is

Hj ¼ 1

2
Nkfq

4

j r
2

j 1
1

6
M2ð4M2 � 1ÞEfAfq

2

jD�u
2

j

1
k3
d
Mð2M � 1Þ½D�uj 1 ðdf 1 tÞqjrj�2 (A3)

and rj, D�uj, and qj denote the Fourier coefficients and wavenumber

associated with mode j. Minimization of Eq. A3 with respect to D�uj yields
the minimum value,

D�u
�
j ¼

�ðdf 1 tÞqjrj

11
ðqjLÞ2
12

2Mð2M1 1Þ
a

; (A4)

and the corresponding reduced Hamiltonian,

Hj½rj;D�u¼D�u
�� ¼ q

4

j r
2

j

1

2
Nkf1

M
2
EfAfðdf1 tÞ2ð4M2�1Þ
61

ðqjLÞ2Mð2M11Þ
a

2
664

3
775;

(A5)

which yields the mode number dependent effective bundle-bending stiffness,

kBðN;a;qjÞ ¼ kfN 11
x
2ðN�1Þ

11cðqjÞðN1
ffiffiffiffi
N

p Þ
a

2
664

3
775; (A6)

where a ¼ k3L
2=EfAfd; kf ¼ EfAfd

2
f =12; N ¼ ð2MÞ2; cðqjÞ ¼ ðqjLÞ2=12;

and x2 :¼ Afðdf1tÞ2=ð12 IfÞ have been defined, where x2 accounts for the

finite thickness of the cross-links.

kBðN;a; qjÞ may subsequently be employed to calculate the transverse

deflection r?ðxÞ corresponding to transverse loading FðxÞ via back-trans-

formation to real space of

kBðN;a;qjÞq4

j rj ¼�Fj; (A7)

where Fj is the jth Fourier component of the applied force. The transverse

deflection is given by

r?ðxÞ ¼R0�+
N

j¼1

FjfðqjxÞ
q
4

j kBðN;a;qjÞ
; (A8)

where the eigenfunction fðxÞ is given by sine and cosine for hinged and

clamped boundary conditions, respectively, and R0 is chosen such that the

transverse deflection vanishes at the bundle ends.

Although an exact evaluation of the sum in Eq. A8 in general yields a

complex analytical expression, performing the sum without the ‘‘1’’ in the

denominator of Eq. A6 and adding it back to the final result yields an

approximate solution that is nearly identical to the exact result. The deflection

of the bundle midpoint r?ðx ¼ L=2Þ may then be recast into the standard

result from Euler–Bernoulli beam theory,

r?ðL=2Þ ¼�FL=2L
3

bkB;eff

; (A9)

where b ¼ 48 and 192 for pinned and clamped ends, respectively. The

effective bending stiffness, kB;eff ; then has the same form as in Eq. A6 except

with the (mode number dependent) factor c substituted by the constant

factors 1 and 4, as verified by comparison with the FE results.

Calculation of the equilibrium mean-square transverse displacement of

the bundle backbone due to thermal fluctuations requires evaluation of

r
2

? :¼
1

L

Z L

0

Ær2?ðxÞædx¼ 2+
j

kBT=L

q
4

j kBðN;a;qjÞ
; (A10)

where qj ¼ j2p=L for periodic boundary conditions applicable to the ring-

bundle system examined experimentally. This yields, r2? ¼ kBTL
3=720kB;eff

(80), where the effective bundle-bending stiffness is again given by Eq. A6

with c ¼ 5.
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