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Abstract. In this paper we consider the first-order temporal logic with linear and discrete time. 
We prove that the set of tautologies of this logic is not arithmetical (i.e., it is neither ,yo n o r / / o  
for any natural number n). Thus we show that there is no finitistic and complete axiomatization 
of the considered logic. 
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1. Introduction and preliminaries 

For the last few years temporal logic has been considered a powerful tool for 
specifying and verifying properties of programs (see, e.g., [2, 3, 4, 5]). When writing 
a program that computes over some data structure, one needs, at least, a first-order 
language to describe properties of operations and individuals. In the context of 
temporal logic such a language is presented, e.g., in [3, 4]. The proof system for the 
first-order temporal logic is studied in [2, 3]. Up to now, however, it was an open 
question whether the logic is complete or not (cf, e.g., [3, p. 69]). In our paper we 
shall show that the semantic consequence relation of the first-order temporal logic 
with operators [] (always), O (sometimes) and O (next) has no sound axiomatization 
which is complete and finitistic (i.e., with decidable set of axioms) provided the 
language is sufficiently rich. As a corollary, we shall prove that Krtger's proof 
system given in [2, 3] is not complete. 

Now let us briefly recall those notions of first-order temporal logic which are 
important for our presentation. For more precise definitions see [3, 4]. 

Let L be a first-order language with equality =, usual boolean connectives v, A, 
-% --,, ~ ,  universal quantifier V, and the additional syntactic rule that if A is a 
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formula, then ©A and OA are also formulas. We define 3xA to be: 7Vx~A,  and 
E2A to be -~>~AL 

A signature of the language consists of  the set of predicate and functor symbols, 
and two sets of variable symbols, the so-called global and local variables. All 
predicates, functors, and global variables have a uniform interpretation which does 
not depend on states. The local variables may change their values from state to 
state. In the sequel, x and y will always denote global variables and z will denote 
a local variable. 

Definition 1.1. A Kripke structure (1, S) for our language consists of 
(1) a global interpretation I which specifies a domain (denoted by dora(I)) and 

assigns concrete functions and relations to the functor and predicate symbols; 
(2) an infinite sequence of states S = So, s ~ , . . . ,  where each state s~ assigns a 

value si(z) e dom(I)  to each local variable z. For a sequence S and a natural number 
k, S /k  stands for the suffix Sk, Sk+~,... of S. 

Definition 1.2. Let v be a valuation of global variables. The semantic consequence 
operation for formulas without temporal modalities is defined exactly as in classical 
logic. For formulas containing temporal operators we define 

(1) 

(2) 
(3) 

(I, S), v ~ A  iff there exists a natural number k 
such that (/, S/k),  v~A ,  

(1, S), v ~ © A  iff (1, S / l ) ,  v ~ A ,  
(1, S), v ~ V x A  iff for every d e dora(I) ,  (1, S), v '~A  where v' is 

the valuation obtained from v by assigning d to x. 

If  (1, S~ k), v ~ A for every global valuation v and every natural number k, we say 
that (/, S) is a model for A and denote this by (1, S)~  A. We say that (1, S) is a 
model for a set F of formulas, and denote this by (1, S)~  F, iff (I, S ) ~ A  for each 
formula A ~ F. A formula B is a semantic consequence of a set F of formulas (F  ~ B) 
iff every model (I, S) for F is also a model for B. B is a tautology (~ B) iff B is a 
semantic consequence of the empty set of formulas. If  A is a classical first-order 
formula (without temporal modalities and local variables), then we sometimes write 
I ~ A instead of (1, S) ~ A. 

As usually, ~- stands for the syntactic consequence operation given by a set of 
axioms and inference rules. An axiomatization is complete iff, for every formula A, 

A implies ~-,4. 

2. Main result 

In the sequel, we shall assume that the first-order language contains a zero- 
argument functor 0, a unary functor s, and two-argument functors + and *. The 
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following set of formulas will play an important role in the rest of the paper: 

(N1) Vx 0 # s ( x ) ,  
(N2) Vx, y s(x) = s(y) ~ x = y, 
(N3) Vx x + 0 = x ,  
(N4) Vx, y x + s ( y ) = s ( x + y ) ,  
(N5) Vx x * 0 = 0 ,  
(N6) Vx, y x * s ( y ) = x * y + x ,  
(N7) Vx R O x = z ,  
(N8) Vx N(z=x- '>O(z=Ovz=s(x ) ) ) .  

We denote this set by FN, and a subset consisting of (N1) to (N6) by FC. 

Lemma 2.1. There is a model (Nat, Seq) for the set FN. 

Proof. Let Nat = (N, 0, s, +, *) be the standard model of natural numbers and let C 
be the concatenation of sequences Co, c l , . . ,  defined as follows: Co = 0 and, for i > 0, 
q = q_l, s~(0), where s~(0) is the composition s (s ( . . . s (0) . . . ) )  in which s is applied 
i times. 

Let Seq be a sequence of states So, s~ , . . ,  such that So(Z), s~(z),. . ,  is the sequence 
C This means that the values of z in the states So, s~ , . . ,  are 

o, o, s(O), o, s(O), s(s(O)), o , . . . ,  o, s(O), s(s(O)),. . . ,  s'(O), o, . . . .  

It is obvious that (Nat, Seq)~ FC since the formulas of FC are simply the Peano 
axioms for Nat. 

Also, (Nat, Seq)~ FN since 

(Nat, Seq)~ (N7) iff (Nat, Seq)~Vx 7q~x=z,  which is true since each 
natural number occurs in C infinitely often; 

(Nat, Seq)~ (N8) iff for every d ~ N and for every natural number k, 
(Nat, Seq/k) ~ z = d ~ C)(z = 0 v z = s(d)) which 
follows from the definition of O and Seq. [] 

Lemma 2.2. I f  (I, S )~  FN, then, for every d ~ dom(l) ,  there exists a natural number 
i such that d = si(0). 

Proof. Assume there exists a d ~ dom(I)  such that, for every/, d # si(0). Note that, 
by (N7), [-]<>z = 0. Let k be the smallest natural number for which (I, S / k ) ~  z = O. 
Thus, by (NS), (I, S / k ) ~  O(z = 0 v z = s(0)) and, by induction, it can be proved that, 
for all m f> k, there exists an i such that (I, S / m ) ~  z = si(0), i.e., (I, S /k)~Fqz  # d. 
On the other hand, by (N7), VxU]<>z=x, and so I~<>z= d. This implies that 
(I, S /  k )~  <>z = d, which contradicts the fact that (I, S/  k )~Vlz  # d. [] 

Lemma 2.3. I f  ( I, S) ~ FN, then, for every d ~ dom(l)  and every natural number i > O, 
d # si(d). 



332 A. Szalas 

Proof.  Let i > 0. Assume there  exists a d ~ d o m ( I )  such tha t  d = si(d).  F rom Lemma 
2.2 it follows that  d = sk(0) for  some /c Thus ,  sk (0 )=  si(sk(0))=sk(s~(0))  and, by 

apply ing  (N2) k times, we obta in  0 =  s~(0) which  contradicts  (N1). []  

Lemma 2A ( fundamen ta l  lemma).  If  (I, S ) ~  FN,  then I is isomorphic to the standard 
model of natural numbers, Nat  = (N, 0, s, + ,  *). 

Proof. We define f : d o m ( I ) - ~  N as fol lows:  f ( s i ( 0 ) ) = s i ( 0 ) ,  where si(0) on the 

lef t -hand side of  the equal i ty  is a term bui l t  over  I, and  si(0) on the r ight-hand side 
o f  the equali ty is the i th successor of  0 in Nat .  

Note  that,  due to L e m m a  2.2, each e lement  o f  do ra ( I )  has the form s~(0) for some 

i, and  so f is defined for  all x e dora( I ) .  

Now,  let us prove tha t  f is a funct ion,  i.e., f ( x ) ~ f ( y )  implies that  x ~ y. Let 
f ( x )  = si(0), f (y )  = sJ(0), and  i > j .  Thus, x = si(0) and y = sJ(0). Assuming x = y we 

obta in  s~(0) = sJ(0) and,  since i > j ,  there exists k > 0 such that  sJ(0) = s~(0) = sJ+k(0) = 

sk(sJ(0)). This means tha t  there  exists an x = sJ(0) for which  x = sk(x). This contra- 
dicts Lemma 2.3. 

To prove that  f is one- to-one ,  i.e., x ~ y implies f ( x ) ~ f ( y ) ,  it suffices to note 
tha t  i f  x = s'(0) and y = sJ(0) for i ~ j ,  t hen  f ( x )  = s'(0) # sJ(0) = f ( y ) .  

The fact that  f is ' on to '  immedia te ly  fol lows from the definit ion o f f  and  the fact 

that  d o m ( I )  is closed wi th  respect to s and  0. 

What  remains to be sho '~n  is that  f preserves opera t ions  0, s, +,  and  *. Obviously, 

f ( 0 )  = f ( s ° (0 ) )  = s°(0) = 0. 
Let x = si(0), then  

f ( s (x ) )  = f ( s ( s  i (0)) ) = si+'(0) = s(si(0) ) = s( f (s i (0)  ) ) = s ( f (x )  ). 

Assuming (/, S ) ~  FN,  one  can easily prove that ,  for every d, e e d o m ( I ) ,  if d = s~(0) 
and  e = sJ(0), then d + e = si+J(0) and d * e = s~'J(0). Let x = s~(0) and  y = sJ(0). Thus, 

f ( x  + y) = f ( s ' ( 0 )  + sJ(0)) =f (s '+J (0) )  = s '+g(0)= s i (0)+  s J ( 0 ) = f ( x ) + f ( y ) ,  

f(x*y)=f(s'(O)*sJ(O)) =f(s '*J(0))  = s'*J(0) =s'(O).sJ(O)=f(x), f(y) .  
[] 

Theorem 2.5. I f  the language contains a zero-argument functor O, a unary functor s 
and two-argument functors + and *, then there is no sound and complete finitistic 
axiomatization (with ~o as set of axioms) of  the first-order temporal logic. 

Proof. Let C be a classical first-order formula without free variables. Denote by B 
the conjunction N1 ^ N2 a .  • • ̂  N8. We shall prove the following equivalence: 

B--> C is a tautology iff C is true in the standard model of  natural 
numbers Nat (in symbols, ~B->  C iff N a t~  C). 

(--,): Obviously, F N ~  B. Assuming ~B--> C we obtain F N ~  B-~ C, and so, from 
the definition of  semantic consequence, it follows that F N ~  C. Since C is a classical 
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formula and (Nat, Seq), defined in the proof of Lemma 2.1, is a model for FN, C 
is true in Nat. 

(*-): Let Na t~C .  From Lemma 2.4 it follows that if ( I , S ) ~ F N ,  then I is 
isomorphic to Nat. By Lemma 2.1, there exists a Kripke structure (I, S) such that 
(/, S)~ FN. Thus, C is true i n / ,  and (since C is a classical formula) (/, S)~ C. This 
means that FN ~ C, i.e., since B is the conjunction of all formulas from FN, ~[]  B -* C 
(cf. [3, p. 23]). On the other hand, since the formulas (N1) , . . . ,  (N6) are classical 
first-order formulas and (N7) and (N8) are universally dosed by the modality F], 
we have (/, S)~[[]B iff (/, S)~B.  Thus, ~ E]B-~ C implies ~B-~ C. 

Now, let us prove the main result. Assume we are given a finite (with ,~o as set 
of axioms), sound, and complete axiomatization of first-order temporal logic. Then 
the set of theorems is 2o. We have just proved that Nat~  C iff ~ B ~ C. From the 
soundness and completeness of the axiom system it follows that Nat~  C iff ~- B ~ C. 
Thus, for a given C, the problem whether C is true in Nat is 2o and a contradiction 
is reached. [] 

Since Kr6ger's axiom system for first-order temporal logic is finitistic, we have 
the following corollary. 

Corollary 2.6. I f  the language contains a zero-argument functor O, a unary functor s 
and two-argument functors + and *, then Kr6ger' s proof system for first-order temporal 
logic given in [2, 3] is not complete. 

3. Final remarks 

(1) Assume we are given a natural number n. Then the set of formulas that are 
true in the standard model of natural numbers is neither zo nor/-/o. Thus, in fact, 
we have proved that if the language is sufficiently rich, then there is no complete 
axiomatization of first-order temporal logic with a set of axioms which is £o or / /o  
for some natural number n. 

(2) A similar technique to the one used in the proof of Theorem 2.5 can be 
applied to show that if the language is sufficiently rich, then, for any finitistic 
axiomatization of the first-order temporal logic, the model existence theorem does 
not even hold for finite sets of formulas (i.e., there exists a finite set F of formulas 
such that F ~ false, but F ~ false). 

(3) A claim that first-order temporal logic is not complete appeared independently 
in [1], however, without any proof. There the authors considered the first-order 
temporal logic with until-operator U. The logic we have investigated here is essen- 
tially less expressive, and so we have obtained a stronger result. A difference between 
the satisfaction 'relation assumed in [1, 4] and in our paper (as well as in [2, 3]) 
should also be noticed. Namely, we define a formula A to be true in some Kripke 
structure iff A is true in all its states, while in [1, 4] it is sufficient that A be true in 
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the first state of the structure. Some other incompleteness results on logic with the 
operator U can be found in [6]. 
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