
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 13, 100--118 (1976)  

Complexity-Class-Encoding Sets 

N A N C Y  L Y N C H  

University of Southern California, Los Angeles, California 90007 

Received August 20, 1974; revised March 19, 1976 

Properties of sets which are complex because they encode complexity classes are 
explored. It is shown that not all sets with inherent complexity are of this type, although 
this is the only type of set for which well-developed techniques exist for proving 
inherent complexity. 

Possibilities for the complexity of encoding sets are discussed, first with reference 
to an "almost everywhere" vs. "infinitely many arguments" classification, and later with 
reference to the density of the set of arguments on which the problem is complex. 

It is shown that relative complexity relationships among sets of this type are highly 
structured, in contrast to the wide variation possible among arbitrary recursive sets. 

1. INTRODUCTION 

In proving decision procedures for logical theories, as well as other types of problems, 
to be inherently complex [3; 13; and others] the general method used has been to 
show that the problems are sufficiently expressive to encode a complexity class of sets 
(i.e., all problems which are computable within a certain time or space bound). 
Because that complexity class must  contain diagonalizing sets which are known to be 
complex, the decision problem itself is shown to be complex. 

I t  is not difficult to show that there are complex problems which do not owe their 
complexity to the fact that they encode complexity classes; thus, most work on proving 
the complexity of problems has focused on a proper subclass of all complex problems. 
We call members  of this subclass, informally, "complexity-class-encoding sets" or 
simply "encoding sets." In  this paper, interesting properties of this type of set are 
explored, with particular attention paid to differences between encoding sets and 
arbitrary complex sets. 

In  Section 2, we define our notions of encoding. A definition of encoding for a 
complexity class of problems must arise from a definition of efficient reducibil i ty 
between problems; we restrict ourselves to encoding by polynomial- t ime-bounded 
reducibilities as studied in [9]. 

In  Section 3, elementary results are presented. To summarize the basic important  
property of encoding sets, we state lower and upper bounds on the complexity which 

100 
Copyright �9 1976 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



COMPLEXITY-CLASS-ENCODING SETS 101 

may be inferred from the fact that a set is an encoding set. We then show that some 
provably complex sets cannot be proved to be complex by an encoding argument, 
indicating the need for new proof techniques for inherent complexity. 

In  Section 4, we examine complexity possibilities for encoding sets, as far as an 
"almost everywhere" vs. "infinitely often" classification. Results in Section 3 show 
that encoding sets have a certain minimal complexity, at least on an infinite set of 
arguments. Also, encoding sets need not exceed that minimal complexity by very 
much. Here we show that encoding sets may be very simple on infinitely many 
arguments, or arbitrarily complex on infinitely many arguments. In addition, for some 
definitions of encoding, encoding sets may be arbitrarily complex a.e., but for others 
this is not the case. 

In Section 5, we again examine complexity possibilities for encoding sets, this time 
by a finer classification that before; we see what possibilities may exist for the density 
of the sets of arguments on which encoding sets are complex. Unlike before, there is 
not a wide variation in results among different definitions of encoding. In fact, for all 
our definitions, sets which encode nontrivial complexity classes have a recursive bound 
on their sparsity. 

In  Section 6, relative complexity relationships among encoding sets are discussed. 
In  [10] several results are presented showing the existence of arbitrarily complex sets 
having an independence property: even with the aid of one of the sets as an oracle, 
the other is still approximately as difficult to compute as without the oracle. We 
wonder whether this independence property is possessed by any pairs of "natural" 
problems. So far, all examples of natural problems known to have inherent complexity 
i.o. have been shown to be encoding sets. For encoding sets, as we show in this section, 
the independence property cannot hold, since helping relationships among encoding 
sets are very strictly limited. Thus,  the existence of pairs of natural, independent sets 
apparently cannot be shown until further techniques for proving lower bounds are 
developed. 

Finally, in Section 7, we make explicit the distinctness of the encoding relations 
arising from different efficient reducibilities. 

Additional details for some proofs, related results and examples may be found in 
a longer version of the current paper [7]. 

2. NOTATION AND DEFINITIONS 

All sets involved in encodings in this paper will be sets of finite strings over 
X = {0, 1 }. If  x E Z'*, j x [ will represent the length of string x. At times, we will wish 
to interpret a string as an integer. For a string x e Z'*, we will write ~ for the integer 
whose binary representation is the concatenation lx. This association induces a 
natural ordering on strings. 



102 NANCY LYNCH 

For a set A C Z*, we will write [ A [ for the cardinality of set A, and Ca for the 
characteristic function. 

h is the empty string. (h will also be used as in Church's  lambda-notation.) 
We write 3~~ or i.o. (x) to denote "for infinitely many x," and V~x or a.e. (x) to 

denote "for all except possibly finitely many x."  When no confusion is likely, we write 
simply i.o. or a.e. 

I f  A is a set, t: Z* --~ N,  we write Comp A ~< t if there is a multitape Turing 
machine with separate input and output tapes, computing CA, which uses not more 
than t(x) steps on any input string x. Similarly, we write Comp A ~< t a.e. if such a 
Turing machine exists, using not more than t(x) steps a.e. (x). And finally, we write 
Comp A ~< t i.o. if such a machine exists, using not more than t(x) steps i.o. (x). 
Comp A > t a.e. will denote =Comp A ~< t i.o., and Comp A > t i.e. will denote 
-~Comp A ~< t a.e. 

Analogously, Comp ~B) A ~< t for t, A as above, and set B means there is a multitape 
oracle Turing machine Ca (when used with a B-oracle), using not more that t(x) steps 
on any x. Again, the other definitions are extended analogously. 

Definitions of encoding arise from definitions of efficient reducibility. In this paper 
we use two definitions of encoding arising from Cook's [2] and Karp's  [6] reduc- 
ibilities. 

DEFINITION. A ~ r  ~ B (A is polynomial-time Tur ing reducible to B) if there exists 
an oracle Turing machine M and a polynomial p such that: 

x e A *> M with input x and oracle B accepts within P(F x [) steps. A ~<~ B (A is 
polynomial-time many-one reducible toB) if there exists a polynomial-time computable 
function f :  Z* -+ 27* such that: 

x ~ A  ~ f (x )  e B .  

We will say A ~ B via f i n  this case. 
These two reducibilities are t ime-bounded analogs to Turing and many-one 

reducibilities in recursive function theory [14], and are explored and compared in [9]. 

DEFINITION. A T-encodes t for a recursive set A and recursive function t: 27* --+ N, 
provided: 

(VB)[Comp B ~< t => B ~<r ~ A]. 

A m-encodes t for A and t as above, if: 

(YB)[Comp B ~< t =~ B ~<mA]. 

Note. (a) For any A, t, A m-encodes t :~ A T-encodes t. (b ) I f  for some polynomial 
p, and for all x, t(x) <~ p([ x [), then: 

(YA)[A T-encodes t], 



COMPLEXITY-CLASS-ENCODING SETS 103 

and 
(VA :/: ~ ,  Z*)[A m-encodes t]. 

The following definition will be useful. 

DEFINITION. For any recursive t: 27* --~ N, t is honest if there is a multitape Turing 
machine M with separate input and output tapes and a polynomial p such that M 
computes t, giving the answer in binary, and on every input string x, M requires not 
more than p(t(x)) steps. 

In particular, if t is a total function, and for some Turing machine (of any type), t(x) 
is the number of steps used on input x, then t is honest. 

We will also require pairing and projection functions, both for binary strings and 
for integers: for 2 binary strings x and y. We let (x, y )  denote the string x ' l  l y '  where 
x' is the string formed by inserting a 0 after each bit of x, and y '  is similarly formed 
from y. Also, 

tx if z = ( x , y ) ,  
~rl(z) --  tundefined otherwise, 

and 

ty if z = ( x , y ) ,  
%(z) = ~undefined otherwise, 

define partial recursive projection functions: 27* --+ 27*. We also use the same notation 
( ) ,  % and % for functions on positive integers. When we do so, they will represent 
the usual integer pairing and projection functions in [14], modified to exclude O. 

3. BASIC RESULTS 

In this section, we note some basic facts about encoding sets. 
The key fact about encoding sets used in the literature is that they are necessarily 

complex, at least on an infinite set of arguments, with a lower bound on their com- 
plexity related to the function whose class they encode. More specifically, 

PROPOSITION ]. There exists a recursive operator ~ such that: 

(Vt: X* => N,  honest)(V,4, recursive) 

[A T-encodes o~ o t :~ Comp _/1 > t i.o.]. 

Proof. By direct simulation of the .//-oracle and diagonalization techniques of 
I-Iartmanis and Stearns [5]. | 



104 NANCY LYNCH 

Of course, versions used in applications are very sharp. This is possible because 
more restrictive coding definitions are generally used, and because only well-behaved 
functions t (such as nested exponentials) are generally used. 

On the other hand, an upper limit on the inferred complexity of encoding sets 
follows from the following result, which gives the existence of m-encoding sets of 
fairly small complexity relative to an honest name for the complexity class encoded: 

THEOREM 2. I f  t: ~* ~ N is honest, t(x) ~ ] x ] for all x, t is monotone non- 
decreasing in the length of its input, then there exists a recursive set A and a polynomial p, 
such that: 

A m-encodes t and Comp A ~ Ax[p(t(x))]. 

Proof. We let {Mi} be an enumeration of all multitape Turing machine transducers, 
{~i} the corresponding enumeration of partial functions computed, and {Ti} the 
corresponding enumeration of step-counting functions. We assume that these 
enumerations have the property that simulation is efficient: we assume that it is 
possible, when given the binary representation of any integer i, to generate a binary 
description of M~ in a natural form, in at most p(log 2 i) steps, for some polynomial p. 
We also assume, for example, the existence of a Turing machine which takes as inputs 
the binary representation of an integer i, and a string x, and outputs r we assume 
that this can be done in t ime p(log 2 i, Ti(x)) for some polynomial p of three variables. 

Now define A by: 

x c A iff x = (i, y )  and T~(y) ~ t(y)  and r = 1. 

I t  is clear that A m-encodes t. 
The  efficiency of the simulation, together with the monotonicity, honesty, and 

lower bound for t, gives: 

Comp A ~ Ax[p(t(x))], 

for some polynomial p, as required. | 

A result that shows that some provably complex sets cannot be shown to be complex 
by an encoding argument is the following. 

THEOREM 3. I f  t: ~*  ~ N is honest, and for all polynomials p, t(x) ~ p([ x 1) a.e., 
then: 

( 3p, a polynomial)(Vs: S*  --+ N,  recursive)(3A, recursive) 

[Comp A > s a.e. and ~A T-encodes Ax[p(t(x))]]. 

Proof. We use two lemmas: 



COMPLEXITY-CLASS-ENCODING SETS 105 

LEMMA 4, I f  t: Z *  ~ N is recursive, and for aU polynomials p, t(x) > p([ x I) a.e., 
then there exists t': Z* -+ N, recursive, suck that: 

(i) for all polynomials p, t'(x) > p(] x I) a.e., and 

(ii) for all polynomials p, t(x) > p(t'(x)) a.e. 

Proof of Lemma 4. Assume t is given. Define t '  by 

t'(x) -: ~1 if fx I ~ t(x), 
i[ x l , where k~ is the largest integer such that 

Ix I (~)2 < t(x), otherwise. 

The hypothesis on t shows that for any integer k, k x > k a.e. (x). But then if k x > k 
a n d [ x ]  ) 2 ,  wehave 

t '(x) = Ix  I ~ > Ix  11'. 

This shows (i). Also, if k~ > k and I x I /> 2, we have 

( t ' ( x ) )  k = (I x I~'~) ~ < (I ~ ? ~ ) ~  = I x  I ~ < t (x ) .  

This shows (ii). | 

The next lemma says that there exist some sets B which are not very complex, and 
some sets A which are very complex, such that B is not Turing reducible to ~/ is 
polynomial time: 

LEMMA 5. I f  t: X* --~ N is konest, and for all polynomials p, t(x) > P(I x [) a.e., 
then: 

(3B)(3p, a polynomial)(Vs: X* --~ N, recursive)(3A, recursive) 

[Comp B ~ Ax[p(t(x))] and Comp A > s a.e. and B ~ A]. 

Proof of Lemma 5. Given t, we apply Lemma 4 to obtain t'. Since t is honest, we 
may apply Hartmanis and Stearns diagonalization techniques to obtain a reeursive 
set B with: 

Comp B ~ Ax[pl(t(x)) ] for some polynomial Pa, and: (Vp, a polynomial) 

[Comp B > Ax[p(t'(x))] i.o.]. 

We than apply the construction in Theorem 5.3 of [10] to set B and lower bound 
Ax[p2(t'(x)) ] for a sufficiently large polynomialpe.  We obtain a set A, with Comp A > s 
a.e., for which any oracle Turing machine with one worktape, using oracle A and 
computing C B , requires at least t'(x) steps i.o. (x). Thus, by polynomial invariance of 
different Turing machine models, B ~ A. II 



106 NANCY LYNCH 

Proof of Theorem 3 (continued). Immediate from Lemma 5. 

Thus, we see that some sets have inherent a.e. complexity, but with none of their 
complexity due to encoding of a complexity class. Whether there are natural problems 
(i.e., problems not defined by diagonalization constructions) with this property 
remains open. If so, additional proof techniques for i.o. complexity will be needed. 
This need will be discussed again later in the paper when we examine helping relations 
among encoding sets. 

4. COMPLEXITY POSSIBILITIES FOR ENCODING SETS 

Proposition 1 allows us to conclude that encoding sets have a certain minimum 
complexity, at least on an infinite set of arguments. Also, by Theorem 2, encoding 
sets need not exceed that minimum complexity by very much. In this section, we 
analyze the remaining possibities for the complexity of encoding sets, as far as an "a.e." 
and "i.o." classification. First, it is easy to show that the complexity of encoding sets 
may be very small or very large on an infinite set of arguments. 

THEOREM 6. (a) There exists a polynomial p such that for any t: Z* -~ N,  recursive: 

(3A, recursive)[A m-encodes t and Comp A ~ Ax[p(] x 1)] i.o.]. 

(b) For any s, t: 2 "  -~ N,  recursive: 

(3A, recursive)[A m-encodes t and Comp A > s i.o.]. 

Proof. Not all arguments are needed to effect the encoding. For (b), diagonalization 
techniques as in [4], for example, may be used to build the desired i.o. complexity 
into A. | 

All results so far have been the same for %~ and ~<r~; thus, we have stated the 
stronger result in every case. Theorem 7 and Corollary 12 will now distinguish between 
the two reducibilities by showing that T-encoding sets may be arbitrarily complex a.e., 
but the same is not true for m-encoding sets. 

THEOREM 7. For any s, t: 2 "  ~ N recursive, 

(3A, recursive)[A T-encodes t and Comp A > s a.e.]. 

Proof. In [10], the following is shown. 

LEMMA 8. For any recursive set B, any s: 27* ~ N,  recursive, 

(3A, recursive)[B ~ r  A and Comp A > s a.e.]. 

The theorem then follows from Lemma 8, Theorem 2 and transitivity of ~<~. 



COMPLEXITY-CLASS-ENCODING SETS 107 

The  situation is somewhat different for - ~  First, it is obvious that polynomial- 
computable sets are ~ - r e d u c i b l e  to all nontrivial sets. The  next theorem is a partial 
converse to this fact, stating that any set ~ - r e d u c i b l e  to arbitrarily complex sets is 
polynomial-computable, at least i.o. 

(We note that, in the lengthy interval between the initial writing of this paper and 
its appearance, a stronger version of this theorem has been proved [8]. However, 
since the proof of the stronger version requires a lemma from the present proof, we 
retain the proof of this weaker version.) 

THEOREM 9. Assume B is such that for all s: 2:* --~ N,  recursive: 

(3A, recursive)[B ~ ~,,, A and Comp A > s a.e.]. 

Then: (3p, a polynomial)[Comp B ~ Ax[p(I x 1)] i.o.]. 

Proof. We use 2 lemmas: 

LEMlVIA 10. Assume B is such that for all s: 2:* --+ N,  recursive: 

(3A, recursive)[B ~ d and Comp A > s a.e.]. 

Then for any r: Z*  --~ N ,  recursive, 

(3A, recursive)(3f : Z*  --+ Z*, recursive)[B ~'<~m A via f and I x I ~> r ( f  (x)) a.e.]. 

Proof of Lemma 10. Assume the hypothesis is true for B and the conclusion false. 
Let  r: Z'* ~-  N, recursive, be such that 

(VA, recursive)(Vf: L'* --~ L'*, recursive) 

[B ~ A v i a f  ~ (3~x)[I x I ~ r( f(x))]] .  

We assume without loss of generality that r(x) ~ j x ] for all x. But this easily implies 

(VA, recursive)(Vf: X* -+  2:*, recursive) 

[B -~,,, ..~ v i a f  ~ (3~y)(3x)[y  = f ( x )  and ] x I ~ r(y)]].  

Consider the following Algorithm 0/. With r as above, and A, f such that B "~m ~ ' ~  d 
via f ,  Algorithm 6~ may be used to compute C a .  

ALCORITHM ~.  Given input y, compute in order f(A), f(0) ,  f (1) ,  f (00) , . . . .  I f  for 
any x with ] x I ~ r(y),  we discover that f ( x )  = y, we compute and output CB(x). 
Otherwise, we use some alternative procedure to compute Ca(y). 

E N D  

5 7 I / I 3 / I - 8  



108 NANCY LYNCH 

But then for any such A, f ,  we have the following: an a.e. upper bound of Ax[2 Ixl] 
on f ' s  complexity, together with the function r and any fixed upper bound on B's 
complexity, combine to provide an upper bound on A's complexity i.o. (namely, on 
sufficiently long members of the infinite set of strings y such that 

(3x)[y = f (x)  and I x ] ~< r(y)]). 

This upper bound depends on the bounds mentioned above, but is independent of A 
and f ,  contradicting the hypothesized existence of arbitrary complex A such that 

B~<~A. I 

LEMMA 1 1. Assume B is such that for all s: X* --+ N, recursive: 

(qA, recursive)[B ~#m A and Comp A > s a.e.]. 

Then for any r: Z* -+ N, recursive, 

(3M, recursive)(3f : ~* --* Z*, recursive) 

[B ~ A via f and (q~x)(3y)[r(y) ~ J x I and f (x)  = f (y) ] ] .  

Proof of Lemma 1 I. We may assume without loss of generality that r is monotone 
increasing in the length of its argument. We assume B satisfies the hypothesis, and 
assume that r is given. In terms of r, we define a recursive function r 1 : N - +  N as 
follows: 

rl(1 ) = 1 

rl(n + l) = r(O rl~")) for all n > 1. 

We then transform q into a recursive function r 2 : 2~* --+ N by: 

r2(y ) = r1(2r for all strings y. 

We then apply Lemma 10 to B and r2, and obtain A , f w i t h  A recursive, B ~ A 
via f ,  and I x l > r=(f(x)) a.e. (x). I t  follows that: 

(V~(x,y))[I x I <~ rz(y) ~ f ( , )  < ~]. (1) 

(This is because if l x [ > r2(f(x)), then i f f (x)  ~ ~, we would have r2(f(x)) >~ r2(y), 
so ] x [ > r2(y ). Also, if x is one of the finite set of exceptions to [] x ] > r~(f(x))], 
there can be only finitely many y such that (x, y )  provides an exception to [I x[  

r~(y) ~ f ( x )  < ~].) 
Now by the definition of r 2 , 

(vw ~ z* ) (3c~  _c ~ , ,  I c~  I = 2~) (2) 

[(Vx ~ Cw)[[ x ] ~ r=(w)] and (Vx, y ~ Cw)L9 < ~ ~ r(y) < ] x I]]. 



COMPLEXITY-CLASS-ENCODING SETS 109 

(Namely, C~, = {0, 0 ~~ 0~r176176 will suffice, where the dots indicate we continue 
until we have exactly 2~ elements. The  monotonicity of r assures that the elements 
of C~ are distinct.) 

But then by (1), there is a constant k independent of w such that: 

(Vw)[l{x ~ C~ If(w) < ~b}/ >~ 2~b --  k]. 

Thus,  by the Pigeonhole Principle, 

(Vw)[[{(x,y)[ x, y ECw,~ < ~ a n d f ( x )  = f (Y)} l  >~ ~ - - k  § 1]. 

But then (2) yields the conclusion of the lemma. | 

Proof of Theorem 9 (continued). We can now prove the theorem. Given B as in the 
hypothesis, we choose a recursive function r: 27* --~ N which satisfies: 

Comp B ~< r and r(x) >~ 21~1, for all x, 

and r is increasing in its argument. 
We then apply L e m m a  11 to B and r, to obtain A a n d f  such that: 

(3~x)(~Y)[r(Y) ~< 1 x I a n d f ( x )  = f (y ) ] .  (3) 

We use B and this func t ionf to  define the following Algorithm ~ for computing CB. 

ALGORITHM ~ .  Given input x, compute f(x). Then  compute, in order, f(~),  
f(O),f(1),f(O0),.... I f  for a n y y  with 3) < 2, we discover t h a t f ( y )  = f(x) ,  we compute 
and output CB(y). Otherwise, we compute Cn(x) by some alternative method. 

E N D  

By (3), there is an infinite set of arguments x for which the first alternative in Algorithm 
~;~ will hold, and for which the number  of steps required by Algorithm ~ may be 
bounded above by 

Pl(I x [, r(y)),  for some polynomial P l ,  

where y represents the first argument found by the search in Algorithm ~ .  The  lower 
bound on r is used here, as well as the condition [Comp B ~< r]. But by (3) and the 
monotonicity of r, the number  of steps on argument x is bounded by P(I x I) for some 
polynomial p. Thus,  

Comp B ~ Ax[p(I x J)] i.o., as needed. | 

As a corollary to Theorem 9, we obtain a result for ~ which corresponds to 
Theorem 7 Tha t  is, we interpret Theorem 9 in terms of encodings: 



110 NANCY LYNCH 

COROLLARY 12. There exist s, t: Z * - +  N,  recursive, such that (VA, recursive) 
[A m-encodes t =- Comp A ~ s s 

Proof. By an appropriate version of the Compression Theorem of Blum [1] and 
Theorem 9. II 

An interesting interpretation for Corollary 12 is that for sets which are sufficiently 
complex a.e., conventional m-encoding techniques are useless even for inferring 
moderate i.o. complexity. 

5. DENSITY PROPERTIES 

Proposition 1, given a lower bound on the complexity of encoding sets, is proved by 
a contradiction. Thus, it gives no information about the density of the infinite set of 
arguments on which the set is complex. 

For natural problems, it is clear that some classification sharper than "a.e. vs. i.o." 
is desirable. In this section, we consider conclusions about density that can be drawn 
for encoding sets in general. We see that there is a bound on the sparsity of encoding 
sets, but that this bound is too large to be of practical interest. The  implication is that 
much more information about the specific problems than simply the fact that they are 
encoding sets, is needed to obtain interesting density results. 

The first result deals with individual sets rather than complexity classes. It states 
that there exist arbitrarily complex sets ~ - r e d u c i b l e  to arbitrarily sparse sets. 

DEFINITION. If  S: Z'* -+ N is recursive, and A is recursive, we say A is s-sparse 
if there is a Turing machine M computing CA, and a polynomial p such that for any 
string x, M runs in time greater that Ay[p(] y ])] for at most ~ strings of length ~s(x).  

THEOREM ] 3. 

(i) 
(ii) 

(iii) 

Proof. 

For any s, t: Z* ~ N,  recursive, there exist A, B, recursive, such that: 

Comp B ~ t a.e., 

A is s-sparse, and 

B J ~  /l 

We assume without loss of generality that s is honest, and (Vx, y)[~ < # 
s(x) ~ s(y)]. We also assume (Vx, y)[~ ( .~ ~ t(x) ~ t(y)], and t(x) ~ 21~1 for all x. 

We define a new recursive u: Z'* --~ N, intended to be very large relative to s and t: 

~0 if x 4- 0 ~(i) for any i, 
u(x) i2tl0~(~)) i fx  = 0 *Ci), a n d j  = ~ -t- 1. 

Now in terms of s and u, we define sets A and B. First, we define CA(X) z 0 for 



COMPLEXITY-CLASS-ENCODING SETS l l l  

strings x not of the form 0 ~(i) for any i. Then on arguments of the form 0 '(i), we carry 
out a Rabin-type diagonal construction (similar to the Compression Theorem proof 
in [1]), to ensure that Comp A > u a.e. on {0s(i) r i c2J*  }. 

B is then defined by 

C~(x) iO if Ix  [ < s(A), 
i CA(0 .~(~)) if s(i) ~ Ix [ and s(j) > [x ] a n d j  = i + 1. 

We claim that A and B satisfy the theorem: 

(i) Comp B > t a.e. 

Assume Comp B ~< t i.o. Consider the following Algorithm 6~, which depends on 
B and s. We will see that it provides a contradiction to the lower bound on A's com- 
plexity arising from the Rabin diagonal construction: 

ALGORITHM ('ft. Given input x, output 0 if x @ 0 ~(i) for some i. Otherwise, 
dovetail the computations of: 

CB(0s(i~), CB(0s(i)-ll),..., CB(I s(])-l), 

using a fast algorithm for B, until one of these computations converges. When it 
does, output the answer. 

E ND 

If  Comp B <~ t i.o., as assumed, then Algorithm 6~ yields infinitely many arguments 
x = 0 '~(i) for some i, such that the number  of steps required to compute CA(x) may be 
bounded by p(t(O~tJ))), j ~ ~ + 1, for some polynomial p. (The monotonicity and 
lower bound for t are used here.) But this contradicts the lower bound on A's com- 
plexity. 

(ii) 3 is s-sparse 

The following simple algorithm suffices. 

ALGORITHM ~ .  Given input x, see if x is of the form 0 s(i) for any string i. I f  so, 
compute CA(x) by some fixed procedure. If  not, output 0. 

E N D  

This procedure requires not more than p(J x [) steps for some polynomial p, on all x 
not of the form 0 ~m, because of the monotonicity and honesty of s. (We must be 
careful to bound the length of time we spend on computing s on any argument x to 
Pl([ x [), forpl  a (monotone) polynomial arising from the definition of the honesty ofs.) 

Moreover, for any x, there are at most o9 strings of the form 0 s(i), of length s(x). 



112 NANCY LYNCH 

(iii) B ~<mA 

This is straightforward by the definition of B from A, provided we use the bound Pl 
as above. | 

Although we have just shown that there exist arbitrarily complex sets encoded by 
arbitrarily sparse sets, we will now note that no single nontrivial set is reducible to 
arbitrarily sparse sets. Thus,  no nontrivial complexity class is encoded by arbitrarily 
sparse sets. In [8] is proved: 

~ m  A and A is s-sparse] iff B is PROPOSITION 14. (VS, recursive)(3A, recursive)[B ~" 
polynomial computable. 

This easily implies 

COROLLARY 15. There exist s, t: S ,* - -*N,  recursive, such that: (VA, recursive) 
[.4 m-encodes t =~ A is not s-sparse]. 

Even more strongly, in [15] is proved: 

PROPOSITION 16. (VS, recursive)(3A, recursive)[B <~r A and .4 is s-sparse] iff B is 
polynomial computable. 

Thus, 

COROLLARY 17. There exist s, t: s  N,  recursive, such that: (VA, recursive) 
[A T-encodes t ~ A is not s-sparse]. 

Corollaries 15 and 17 yield minimum density results for the set of arguments on 
which an encoding set is complex. However, the functions s which arise via the proofs 
of Propositions 14 and 16 are probably too large to be of practical interest; this is 
especially true in the latter case. 

We may look at these results in another way. It  is not difficult to see that there exist 
sets which are both arbitrarily sparse and arbitrarily complex i.o. However, Corollaries 
15 and 17 say that, for sets which are sufficiently sparse, encoding techniques are 
useless even for inferring moderate i.o. complexity. 

At this point, an interesting related question is naturally suggested. "Sparsity" in 
the literature commonly refers to the number of elements in the set rather than the 
number of elements on which the set is complex. McCreight and Meyer [12] have 
shown that there are arbitrarily a.e. complex sets which are sparse in the usual sense. 
We ask whether encoding sets can be sparse in the same sense. 

DEFINITION. 

for any string x, 
I f  s: 27* -+ N is recursive and A is recursive, we say A is s-thin if 

IAn{y[[Y[  ~<s(x)}l ~< ~. 



COMPLEXITY-CLASS-ENCODING SETS i13 

Question. Do there exist s, t: 27*--+ N, reeursive, such that: (VA, recursive) 
[A T-encodes t ~ A is not s-thin] ? 

6. HELPING RELATIONSHIPS AMONG ENCODING SETS 

In [10] are presented several results showing the existence of arbitrarily complex 
(a.e.) sets having various types of "helping" relationships; for instance, there are 
pairs of arbitrarily complex sets with an independence property-even with the aid of 
one of the sets as an oracle, the other is still approximately as difficult to compute as 
without the oracle: 

PROPOSITION 1 8. For all tl , t 2 : 27* ~ N,  honest, with tl(x ) >~ ] x J and t2(x ) ~ [ x [ 
for  all x, there exist recursive sets A and B with: 

(i) Comp A • Ax[p(Zq(~))] f 
(ii) Comp B ~ Ax[p(2t'('~)]t for some polynomial p, 

(iii) Comp (a~ B > t 2 a.e., 

(iv) Comp tn~ ,4 > t 1 a.e. 

Proof. The arguments in [10, Sect. 4] may be redone for the Turing machine 
time measure. | 

The two sets in Proposition 18 have the property that they cannot "help" each 
other's computation on any infinite set of arguments; that is, for any Turing machine 
using an oracle for the other set, there is another Turing machine not using any oracle, 
computing the same function with at most exponential loss of efficiency. 

Intuitively, it seems very likely that there are pairs of natural problems that have 
this kind of independence property; after all, it is improbable that values of every 

interesting recursive function could be useful in computing every other interesting 
recursive function. However, known examples of natural problems having inherent 
complexity i.D. are encoding sets, and for this type of set, the independence property 
cannot hold, as shown below. Thus, the existence of pairs of natural, independent sets 
apparently cannot be shown until further techniques for proving lower bounds are 
developed. 

To show that encoding sets are not independent, we need some (reasonable) con- 
ditions on the complexity class encoded and on the complexity of the encoding sets. 
We use the following: 

DEFINITION. If r: 27* ~ 27*, s, t: ~'* --+ N are recursive, we say r spreads s to t if: 

(i) r is monotone increasing in its argument, 



114 NANCY LYNCH 

(ii) there exists a polynomial p and a 
;~x[p(] r(x)])] steps, and 

(iii) s(x) ~ t(r(x)) for all x. 

Thus,  for example, the function r defined by: 

r ( x )  = xO ""  0 

has the property that r spreads 
length = 2 21~1 

Turing machine computing r in 

[ Ix] L ] 2 I x l  
2 2 

/tx 2 to Ax 2 " 

2 2 
2 

The next theorem shows how, with compatibility requirements as in the definition 
above, an encoding set lowers a known upper bound for the complexity of other sets, 
when it is used as an oracle in their computation. Bounds of the sort actually proved 
so far do satisfy the compatibility requirements. The basic ideas in this theorem were 
noted by Meyer [M]. 

THEOREM 19. I f  r: Z *  --+ Z'*, s, t: Z*  --+ N are recursive functions, with t(x) >~ 21~l 
for all x, and we have: 

(i) r spreads s to t, 

(ii) Comp A <~ s a.e., and 

(iii) B T-encodes Ax[p(t(x))],for all polynomials p, then Comp (~) _d ~< Ax[p([ r(x)l)] 
for some polynomial p. 

Proof. Assume r, s, t, _d, and B are given. We define a new "spread-out" version 
A '  o l d :  

x E n '  ~ .  (~y ~ A) [x  = r (y) ] .  

We claim first that Comp A '  <~ )tx[pl(t(x)) ] for some polynomial Px. 
Given input string x, we compute r(A), r(0), r(1),..., r(x) to see if any equal x; 

property (i) of the above definition guarantees that this search is sufficient. Property (ii) 
of the same definition bounds the amount of time we must spend on each computation. 
I f  none of these computations gives output x in the required time, we output 0. 
Otherwise, assume we have found string y with r (y )  = x. We compute and output 
CA(y).  In the worst case, the total time needed may be bounded by p2(21 ~1, s(y)), for 
some polynomial P2 (by hypothesis (ii) of the theorem). By the lower bound on t and 
by property (iii) of the definition, the time may be bounded by pl(t(x)),  as needed. 



COMPLEXITY-CLASS-ENCODING SETS 115 

By the definition of A', it is clear that Comp (A') A ~< ax[pa(] r(x)l)] for some poly- 
nomial Pa �9 Also, by hypothesis (iii) of the theorem, A' ~<r ~ B. By combining these 
two facts, it is easy to show that Comp Im A ~< Ax[p(J r(x)l)] for some polynomial, 
as needed. I 

Thus, if A has an i.o. lower bound on its complexity much above Ax(] r(x)[), (shown, 
say, by an encoding argument) then having the help of B as an oracle must lower the 
complexity of A i.o. We conclude that if A and B are two sets with large i.o. complexity 
demonstrated by encoding arguments, then they cannot have an independence 
property if their complexity bounds are reasonably compatible (i.e., of the "same 
shape"). 

For example, consider a set A such that 

and 

Comp A > Ax 
[( 2x)] 

P 2 2 2  

Comp A <~ Ax 

and any recursive set B such that 

B T-encodesAx p 

Defining 

2 

2 
2 

2 
2 

(2 2 2 xl)] 

i.o. for all polynomials p 

I x l ]  a.e., 

for all polynomials p. 

r (x )  = x O  "'" 0 

length = 2 2>r 

allows us to apply Theorem 19 and conclude: 

[( x)] Comp ImA ~ A x  p 2 
2 

Thus, B "helps" A by two exponentials. 

for some polynomial p. 



116 NANCY LYNCH 

7. DIFFERENCES BETWEEN ENCODING DEFINITIONS 

In  Theorem 7 and Corollary 12, we have a proof that T-encoding and m-encoding 
are distinct relations. In  this section, we make this distinction explicit. We then 
suggest the possibility of definitions of encoding other than T-encoding and m- 
encoding, such as "truth-table-encoding." 

(i) 

(ii) 
(iii) 

Proof. 

THEOREM 20. I f  t: X* ~ N is honest, monotone nondecreasing in the length of its 
argument, and su3ficiently large, then there exist a recursive set A and a polynomial p 
such that: 

A T-encodes t, 

-~A m-encodes t, and 

Comp A <~ Ax[p(t(x))]. 

We use a lemma of interest in itself: 

LEMMA 21. (3B, recursive)(VC, recursive)(3A, recursive)[B ~ A and C <~T ~ A]. 
Furthermore, if t: X* --> N is recursive, monotone nondecreasing in the length of its input, 
and suj~ciently large, then for any recursive C with Comp C <~. t, the A produced above 
has Comp A ~ Ax[p(t(x))] for some polynomial p independent of C and t. 

Proof ofLemma 21. B, along with a partial determination of A, is defined in stages, 
beginning with stage 1. At stage n, C 8 is determined on one or several consecutive 
strings, and CA may also be fixed at 0 on either one or two arguments. We will arrange 
the construction so that by the end of stage ~, exactly one of CA(xO ) and CA(xl) will 
have been determined to equal 0. The  strings x0 and xl will be called "mates." 

(We will eventually define x ~ C ~ (xO E A or xl ~ A).) Define Ca(A) = O. 

Stage n. 

Substage 1. Let y be the first string such that CB(y) is as yet undefined. See if 
T,l(~)(y ) ~ 21~1. If  not, let Cn(y) = 0 and go on to substage 2. I f  so, we will diagonalize 
over ~=l(n) as a many-one procedure: 

(a) I f  CA(6,~(,)(y) is determined to equal 0, we let C B ( y ) =  1, and go to 
substage 2. 

(b) If  CA(~=l(,)(y)) is not determined to equal 0, and also CA is not already equal 
to 0 for the mate of q~(~)(y), we let CB(y) = I and CA(6~(,)(y)) ---- 0, and go to 
substage 2. 

(c) Otherwise, Ca(ff~l(~)(y)) is not already defined to be 0, but CA is defined to 
be 0 for the mate of ~x(n)(y ). We then simulate substage 1, parts (a) and (b), for 
successively higher strings y. Since only finitely many values of C a are determined at 
any stage, two eventual outcomes are possible: either 



COMPLEXITY-  CLASS-ENCODING SETS 117 

(i) some string y would cause an exit to substage 2, or 
A / x  

(ii) we will discover two strings y', y" with y' < y" and ~,~(~)(y') = ~,~(~)(y"). 
If  the former occurs, then before exiting to substage 2, we augment the required 
definition of Cn in such a way as to ensure that Cn is defined on an initial segment. 

I f  the latter occurs, then define CB(y') = 0 and CB(y") = 1, augment the definition 
of Cn to keep the initial segment definition, and go to substage 2. 

Substage 2. If  k = n, and if both CA(xO) and CA(xl) are still undefined, let 
cA(~0)  = 0. 

E N D  

This succession of stages completely defines B. Clearly, for any set A satisfying the 
partial determination above, B 4 ~  A. If  C is any recursive set, define A so that: 

x ~ C  ~ ( x O E A o r x l e A ) .  
This insures C ~ r  ~ A. 

Finally, if t is as hypothesized, then the time to compute either CA(xO) or CA(M) is 
just the time needed to complete ~ stages in the construction of CB, then possibly to 
compute Cc(x), which may be bounded as in the statement of the lemma. I 

Proof of Theorem 20 (continued). Obtain B as in the lemma, and let t: 27* ~ N be 
honest, t(x) ~ I x l for all x, t monotone nondecreasing in the length of its input, t 
sufficiently large as required for Lemma 21, and Comp B ~ t. 

By Theorem 2, there exists a recursive set C such that C m-encodes t and Comp C ~< 
Ax[p(t(x))] for some polynomial p. 

By Lemma 21, we obtain A recursive such that B 4s A, C <~r A, and Comp A ~< 
Ax[p(t(x))] for some polynomial p. 

Since C m-encodes t, A T-encodes t. 
Since B ~ A and Comp B <~ t, ~A m-encodes t. I 

Just as in the proof in [9] that ~<r ~ =/= ~<~, Theorem 20 actually proves a somewhat 
stronger result than stated. Specifically we have not used the full power of T-encoding; 
actually, A encodes t by a very simple 2-question disjunctive truth-table procedure. 
The  same remark is true, for example, for Lemma 8. It would seem reasonable, 
therefore, to consider other definitions of encoding, corresponding to the various 
polynomial truth-table reducibilities studied in [9]. For instance, 

DEFINITION. A tt-encodes t for a recursive set A and recursive function t: 2~* --~ N, 
provided 

(VB)[Comp B ~< t =~ B -<~,-<8 A]. 

(For the formal definition of -<~ -~**, we refer to [9].) 
Most questions about tt-encoding seem to have straightforward answers, given the 

answers to the corresponding questions for m-encoding and T-encoding. However, 



118 NANCY LYNCH 

one interesting open question is whether a result analogous to Theorem 20 can be 
proved, distinguishing between T-encoding and tt-encoding with a set A of small 
complexity. Part of the difficulty in proving such a result is that we do not know 
whether the appropriate analog for Lemma 21 is true. A somewhat weaker result, 
sufficient to show that T-encoding and tt-encoding are distinct relations, appears in [7]. 

Note .  As mentioned earlier in the paper, an unusually long time has elapsed 
between the initial writing of this paper and its appearance. In the interim, some of 
the results have been superseded and therefore eliminated from the final version. In  
addition, some results possibly lesser interest, some examples and some details of 
proofs have been omitted. The  complete original version of the paper appears as [7]. 

REFERENCES 

1. M. BLUM, A machine-independent theory of the complexity of recursive functions, jr. 
Assoc. Comput. Mach. (1967), 322-336. 

2. S. A. COOK, The complexity of theorem-proving procedures, in "Conf. Rec. Third ACM 
Symposium on Theory of Computing," pp. 151-158, 1971. 

3. M. FISCHER AND M. RABIN, Super-exponential complexity of Presburger arithmetic, in 
"Project Mac T M , "  Vol. 43, 1974. 

4. J. HARTMANIS AND J. HOPCROFT, An overview of the theory of computational complexity, 
J. Assoc. Comput. Mach. (1971), 444-473. 

5. J. HOPCROFT AND J. ULLMAN, "Formal Languages and Their Relation to Automata," 
Addison-Wesley, Reading, Mass., 1969. 

6. R. KARP, Reducibility among combinatorial problems, in "Complexity of Computer Com- 
putations" (R. Miller and J. Thatcher, Eds.), Plenum Press, New York, 1972. 

7. N. LYNCH, Complexity-class-encoding sets, USC Department of Mathematics, Preprint 
No. 57, 1974. 

8. N. LYNCH, On reducibility to complex or sparse sets, J. Assoc. Comput. Mach. (1975), 
341-345. 

9. R. LADNER, N. LYNCH, AND A. SELMAN, A comparison of polynomial-time reducibilites, 
TCS,  to appear. 

10. N. LYNCH, A. MEYER, AND M. FISCHER, Relativization of the theory of computational 
complexity, Trans. Amer. Math. Soc., to appear. 

11. A. MEYER, Personal communication. 
12. E. McCREmHT AND M. MEYER, Computationaily complex and pseudo-random zero-one 

valued functions. 
13. A. MEYER AND L. STOCKMEVER, The equivalence problem for regular expressions with 

squaring requires exponential space, in "SWAT Conference Record," 1972. 
14. H. ROGERS, "Theory of Recursive Functions and Effective and Effective Computability," 

McGraw-Hill, New York, 1967. 
15. R. SOLOVAY, On sets Cook-reducible to sparse sets, IBM RC 5215, 1975. 

Printed in Belgium 


