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Abstract

A graph withn vertices and maximum degree∆ cannot be given weak sense of direction us
less than∆ colours. It is known thatn colours are always sufficient, but it has been conjectured
just∆+ 1 are really needed. On the contrary, we show that for sufficiently largen there are graph
requiring∆ + Ω((n log logn)/logn) colours. Moreover, we prove that, in terms of the maxim
degree,Ω(∆

√
log log∆) colours are necessary.

 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Sense of directionandweak sense of direction[5] are properties of global consisten
of the colouring of a network that can be used to reduce the complexity of many d
uted algorithms. Although there are polynomial algorithms for checking whether a
coloured graph has (weak) sense of direction [2], the polynomial bounds are rathe
and, moreover, there are no results (besides the obvious membership to NP) about
a colouring that is a (weak) sense of direction using thesmallestnumber of colours. Eve
from a theoretical point of view, there is no known way to bound from below the num
of colours that are necessary to give (weak) sense of direction to the graph represen
network.

The number of verticesn in a graph is a trivial upper bound for the number of colou
and the maximum degree∆ is a trivial lower bound. If the graph is regular and it is no
Cayley graph, then∆+1 is a lower bound [1,7], but this is in fact the only nontrivial low
bound known so far. The problem of determining more stringent lower bounds is
particularly difficult by the time needed to determine the minimum number of co
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needed by a given graph when the number of vertices grows. It is not easy to find examples
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of graphs needing actually more than∆+1 colours, and indeed the question about whe
this lower bound was optimal was raised in [6].

However, extensive tests performed usingoptwsod, a tool1 for making experimen
tal research with weak sense of direction [3], ended up in a number of counterexa
showing that some graphs require∆+ 2 colours. For instance, in Fig. 1 we show a (re
ular) directed graph of degree 2 that requires 4 colours (displayed as patterns of th
and in Fig. 2 we show a (regular) undirected graph of degree 3 requiring 5 colours
that checking the previous claims by hand would be almost impossible). The colo
displayed are thus optimal. It is interesting to note that the colouring of Fig. 2 issymmet-
ric, that is, colours are paired at the endpoints of an edge always in the same way
is however no better colouring even among the nonsymmetric ones. It is now natu
wonder whether there exists a constant gapg such that every graph of maximum degree∆
can be given (weak) sense of direction using no more than∆+ g colours.

Fig. 1. A 2-regular directed graph requiring 4 colours.

Fig. 2. A 3-regular undirected graph requiring 5 colours.

1 optwsod uses implicit enumeration techniques to explore the entire search space of possible (weak
of direction; easy-to-compute upper and lower bounds on the chromatic number are used to restrict the
The tool, written in C, is free and available under the Gnu Public License.
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Looking at the graphs in Figs. 1 and 2, one is tempted to ask what makes them “special”.
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Extensive experimentation withoptwsod showed that they are not special at all, and t
instead it is rare for a graph to have a (weak) sense of direction with about∆ colours. It
is indeed by analyzing properties of typical graphs (using random graph theory) th
shall prove that even if we allowg to be a function of the number of vertices (in fact,
the graph), we can always find examples of graphs needing more than∆+ g(n) colours,
provided that the growth ofg is mildly bounded (i.e., thatg(n) = o(n log logn/ logn)).
This result answers in the most definitely negative way to the question above.

2. Definitions

A (directed) graphG is given by a setV = [n] = {0,1, . . . , n− 1} of n vertices and a
setA⊆ V × V of arcs. We writeP [x, y] ⊆A∗ for the set of paths from vertexx to vertex
y. A graph issymmetricif 〈y, x〉 is an arc whenever〈x, y〉 is.

Note that in this paper we shall always manipulate symmetric loopless directed g
which are really nothing but undirected simple graphs (an edge is identified with a p
opposite arcs). However, the directed symmetric representation allows us to handl
easily the notion of weak sense of direction and the related proofs. In turn, when
results from random graph theory we shall confuse a symmetric loopless directed
with its undirected simple counterpart.

A colouringof a graphG is a functionλ :A→L, whereL is a finite set of colours; th
mapλ∗ :A∗ → L∗ is defined byλ∗(a1a2 · · ·ap) = λ(a1)λ(a2) · · ·λ(ap). We writeLx =
{λ(〈x, y〉) | 〈x, y〉 ∈A} for the set of colours thatx assigns to its outgoing arcs.

Given a graphG coloured byλ, let

L=
⋃

〈x,y〉∈V 2

{
λ∗(π) | π ∈ P [x, y]};

be the set of all strings that colour paths ofG.
A local namingfor G is a family of injective functionsβ = {βx :V → S}x∈V , with S a

finite set, called thename space. Intuitively, each vertexx of G gives to each other verte
y a nameβx(y) taken from the name space.

Given a coloured graph endowed with a local naming, a functionf :L→ S is acoding
functioniff

∀x, y ∈ V ∀π ∈ P [x, y] f
(
λ∗(π)

) = βx(y).
A coding function translates the colouring of a path along which two verticesx, y are
connected into the name thatx gives toy. A colouringλ is aweak sense of directionfor
a graphG iff for some local naming there is a coding function.2 We shall also say that
coloured graphhasweak sense of direction, or thatλ givesweak sense of direction toG.

2 In [5] a slightly different definition is given, in which the empty string is not part ofL. The examples and
the results of this paper are not affected by this difference.
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3. Representing graphs using weak sense of direction
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The main idea of this paper is that a coding functionf represents compactly a great de
of information about a graph, and that the values off on a small set of strings, togeth
with some additional information, can be used to reconstruct the graph. This happe
causef tells whether two paths outgoing from the same vertex have the same e
vertex.

Suppose now that we want to exploit this feature to code compactly a (strongly
nected graphG with weak of sense of direction, and to this purpose assume withou
of generality thatβ0(x)= x for all verticesx, that is, vertex 0 locally gives to all other ve
tices their real names. To codeG, first specify for each vertex the set of colours of outgo
arcs. Then, give the values off on every string of colours having length at mostD + 1,
whereD is the diameter ofG.

To rebuildG from the above data, we proceed as follows: first of all we compute
targets of the arcs out of 0 usingf on strings of length one, thus obtaining the set
coloured paths of length one going out of 0. Then, since we know the colours of th
going out of the targets of such paths, we can build the set of coloured paths of leng
out of 0, and compute their targets usingf on strings of length two. When, continuing
this way, we compute all coloured paths of lengthD + 1 out of 0 we are done, since eve
arc ofG must appear in some of these paths. An example of this process for a very
graph is given in Fig. 3.

In the process above, all the information used was the value off on paths of length
D + 1 at most. If we concentrate on graphs of diameter 2, then we need approxim
(|L| + |L|2 + |L|3)�2 logn� bits to codef (the name space has cardinality at mostn2,
so�2 logn� bits are sufficient to specify a name), andn|L| bits to code the colours of th
outgoing arcs. However, this is still too much for our purposes, so we are going to

Fig. 3. An example of graph reconstruction.
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more sophisticated approach; nonetheless, the basic idea is more easily grasped using the
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above description.
Let C(n, k) be the class of all symmetric graphs withn vertices, maximum degree

mostk and enjoying the following property, which we shall callpropertyA3:

For every setX of at most three vertices, there is a vertexx /∈X that is adjacent to al
vertices inX.

Intuitively propertyA3 is “a bit more than having diameter two” (which would be impli
by the existence of a vertex adjacent to everypair of vertices). Somehow this is the ke
point: we want to get down to|L|2�logn� bits to codef , but this would mean to restric
to graphs of diameter one—that is, just complete graphs. On the contrary, we sh
that almost all graphs enjoy propertyA3, and that nonetheless graphs satisfyingA3 can be
coded compactly.

Lemma 3.1. LetG be a graph satisfyingA3. Letλ be a sense of direction forG with name
spaceS, coding functionf and local namingβ . Assume without loss of generality th
S ⊇ [n] andβ0(x) = x for all verticesx. Then〈x, y〉 is an arc iff there exist a vertexz
and coloursa ∈ L0, b, c ∈ Lz andd ∈ Lx such thatf (a)= z, f (ab)= x, f (ac)= y and
f (bd)= f (c).

Proof. For the left-to-right implication, suppose that〈x, y〉 is an arc, and use propertyA3
to find a vertexz adjacent tox, y and 0. Leta = λ(〈0, z〉), b = λ(〈z, x〉), c= λ(〈z, y〉) and
d = λ(〈x, y〉) (see Fig. 4). By weak sense of direction, we have the following identitie

f (a)= β0(z)= z,
f (ab)= β0(x)= x,
f (ac)= β0(y)= y,
f (bd)= βz(y)= f (c),

as required.

Fig. 4. PropertyA3 in action.
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For the other implication, let 0a, zb, zc andxd be vertices ofG such thatλ(〈0,0a〉)= a,
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λ(〈z, zb〉)= b, λ(〈z, zc〉)= c andλ(〈x, xd 〉)= d . Then we have:

0a = β0(0a)= f (a)= z,
zb = β0(zb)= f

(
λ
(〈0, z〉)λ(〈z, zb〉)) = f (ab)= x,

zc = β0(zc)= f
(
λ
(〈0, z〉)λ(〈z, zc〉)) = f (ac)= y,

βz(y)= f
(
λ
(〈z, y〉)) = f (c)= f (bd)= f (

λ
(〈z, x〉)λ(〈x, xd〉)) = βz(xd).

Hence,y = xd and〈x, y〉 is an arc. ✷
Using the above lemma, we can finally prove the promised result about compact c

Theorem 3.2. Let c = c(G) ∈ N be such that every graphG can be given weak sens
direction using no more thanc(G) colours. Then every graph withn vertices satisfyingA3
can be described3 usingα(cn+ c2 logn) bits, for some constantα. Hence, in particular, if
c is a function ofn only O(cn+ c2 logn) bits are sufficient.

Proof. LetG be a graph withn vertices, satisfyingA3, and having weak sense of directi
with colouringλ, name spaceS, local namingβ and coding functionf . Assume without
loss of generality thatS ⊇ [n] andβ0(x)= x for every vertexx. DescribeG as follows:

(1) give the number of coloursc;
(2) for every vertexx, usec bits to describe the setLx ;
(3) give the values off on every string of length one or two.

The first data require�logc� bits, the second onecn and the third one(c+ c2)�2 logn� (as
we mentioned,�2 logn� bits are sufficient to specify a name). From the above descrip
G can be recovered using Lemma 3.1.✷

4. Some random graph theory

We briefly describe two standards models of random graphs, referring the reade
for further information. For the rest of the paper letN = (

n
2

)
.

• For p ∈ (0,1) ⊆ R andn ∈ N, the modelG(n,p) consists of all the labelled4 undi-
rected simple graphs with vertex set[n] in which the edges are chosen independe
and with probabilityp.

• For 0� M � N , the modelG(n,M) consists of all the labelled undirected simp
graphs with vertex set[n] andM edges in which all graphs have the same probab

3 From now on, we shall sometimes omit the explicit dependence of functions from their argument, wh
latter is clear from the context, thus writingc instead ofc(G), d instead ofd(n) and so on.

4 The term “labelled” underlines the fact that we do not consider graphs up to isomorphisms.
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One says thatalmost every graph has propertyQ (in a certain model) if the probability
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that a graph in the model satisfiesQ goes to 1 whenn→ ∞ (of course, in this casep and
M might depend onn).

The following two results are trivial consequences of Theorem II.5 and Corollary I
of [4]:

Theorem 4.1. Supposep = p(n) : N → [0,1] ⊆ R is such that for allε > 0 we have
pnε → ∞ and (1 − p)nε → ∞ for n→ ∞. Then for every fixedk ∈ N almost every
graph in G(n,p) has the following property: for every pair of disjoint sets of at mosk
verticesX andY there is a vertexz /∈X ∪ Y that is adjacent to all vertices inX but to no
vertex inY .

Theorem 4.2. Supposepn/ logn→ ∞. Then almost every graph inG(n,p) has maximum
degreeO(pn).

A propertyQ of graphs of ordern is convexif H satisfiesQ wheneverF ⊆ H ⊆ G
andF , G satisfyQ, where we write⊆ to denote (partial) subgraph inclusion. A power
meta-theorem of random graph theory (Theorem II.2, ibid.) has the following consequ

Theorem 4.3. LetQ be a convex property andp(1 − p)N → ∞ whenn→ ∞. If almost
every graph inG(n,p) satisfiesQ then almost every graph inG(n, �pN�) satisfiesQ.

In other words, we can first prove convex properties of almost all graphs in the p
bilistic modelG(n,p) and then translate them into properties of the modelG(n,M). Stating
that “almost every graph satisfies propertyQ in G(n,M)” is equivalent to saying that th
ratio between the number of graphs havingn vertices andM edges satisfying the proper
and the overall number of graphs withn vertices andM edges goes to 1 asn goes to∞;
hence, we will be able to use Theorem 4.3 to turn probabilistic statements into deter
tic ones.

For the rest of the paper, we shall concentrate on the case in whichp→ 0 asn→ ∞,
and moreoverp = Ω(1/ logn). It is just a matter of elementary calculus to prove t
in this casep satisfies the hypotheses of the previous theorems. Thus, noting thatA3 is
implied by the property of Theorem 4.1 fork = 3, we have

Proposition 4.4. Withp as above, almost every graph inG(n,p) has propertyA3 and has
maximum degreeO(pn).

Henceforth, by Theorem 4.3 we have that almost all graphs with�pN� edges have
propertyA3 and have maximum degree O(pn) (these properties are easily shown to
convex).

Corollary 4.5. Withp as above, there exist a functionM = O(pn) such that
∣∣G(
n, �pN�)∣∣ = O

(∣∣C(n,M)∣∣).
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5. Counting the number of bits required to describe a graph

raphs
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Theorem 3.2 tells us that a certain number of bits are sufficient to describe all g
out of a certain class, and thus implicitly bounds the overall number of graphs in that
Nevertheless, we shall prove that the cardinality of the class grows too fast, hence ob
the main theorem by contradiction.

We first prove the following asymptotic identity:

Lemma 5.1. LetA = A(n) : N → N andα = α(n) : N → [0,1] ⊆ R be such thatα→ 0
andAα→ ∞ whenn→ ∞. Then, we have

log

(
A

�αA�
)

∼Aα log
1

α
.

Proof. We use the factorial symbol (and consequently binomials) in its generalized m
ing, that is,x! = '(x + 1) for all nonnegative realx. By Stirling’s approximation (i.e.
lnn! ∼ n lnn), and sinceαA<A/2 ultimately, we have

ln

(
A

�αA�
)

� ln

(
A

αA

)
= ln

A!
αA!(A− αA)!

∼A lnA− αA ln(αA)−A(1− α) ln(A−Aα)
= (A− αA−A+ αA) lnA− αA lnα −A(1− α) ln(1− α)
∼ −Aα lnα =Aα ln

1

α
.

On the other hand,

ln

(
A

�αA�
)

� ln

(
A

αA− 1

)

= ln
A!

(αA− 1)!(A− αA+ 1)!
∼A lnA− (αA− 1) ln

(
A

(
α − 1

A

))

− (A−Aα + 1) ln

(
A

(
1− α + 1

A

))

= −(αA− 1) ln

(
α− 1

A

)
− (A−Aα+ 1) ln

(
1− α + 1

A

)
,

so

ln

(
A

αA− 1

)/
Aα ln

1

α

∼
(

1− 1

αA

)(
1+ ln(1− 1

αA
)

lnα

)
+

(
1

α
− 1+ 1

αA

)
ln(1− α + 1

A
)

lnα
→ 1

asn→ ∞, hence the result follows immediately (after a change of base).✷
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Since the number of graphs withn vertices and�pN� edges is
(
N

)
, we have the
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Corollary 5.2. Letp→ 0 andpN → ∞ asn→ ∞. Then, the number of bits required
describe a graph withn vertices and�pN� edges is asymptotic toNp log 1

p
.

6. Lower bounds on the number of colours

We are finally able to state our main results:

Theorem 6.1. If g(n)= o(n log logn/ logn), it is impossible to give (weak) sense of dire
tion to all regular graphs using∆G + g(n) colours.

Proof. We work by contradiction, and consider two cases. Ifg = O(n/ logn), let p =
1/ logn. LetM be as in Corollary 4.5. Then, by Theorem 3.2 we can describe the g
in C(n,M) using

O
(
cn+ c2 logn

) = O

(
n2

logn

)

bits, sincec= O(M + g)= O(n/ logn). On the other hand, by Corollary 5.2,

Θ

(
n2 log logn

logn

)

bits are necessary, contradicting Corollary 4.5.
Otherwise, letg(n)= nf (n)/ logn, with f (n)= o(log logn), p = g/n and againM =

O(pn) = O(g) as in Corollary 4.5. Then, by Theorem 3.2 we can describe the grap
C(n,M) using

O
(
cn+ c2 logn

) = O

(
n2

logn
f (n)2

)
= o

(
n2 log logn

logn
f (n)

)

bits, sincec= O(M + g)= O(g). On the other hand, by Corollary 5.2,

Θ

(
n2

logn
f (n)(log logn− logf (n))

)
=Θ

(
n2 log logn

logn
f (n)

)

bits are necessary, contradicting again Corollary 4.5.✷
Theorem 6.2. It is impossible to give (weak) sense of direction to all regular graphs u

o
(
∆G

√
log log∆G

)
colours. That is, for every functionh(m)= o(m

√
log logm) there is a graphG such that

h(∆G) colours are not sufficient.
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Proof. By contradiction, leth(m)= o(m
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lary 4.5. Then, by Theorem 3.2, we can describe the graphs inC(n,M) using

O
(
cn+ c2 logn

) = o

(
n2 log logn

logn

)

bits, sincec = h(M) = o(M
√

log logM) andM = O(pn) = O(n/ logn). On the other
hand, by Corollary 5.2,

Θ

(
n2 log logn

logn

)

bits are necessary, contradicting Corollary 4.5.✷
Of course, the bounds we obtain area fortiori true for nonsymmetric graphs. Howeve

it should be noted that the contradiction is obtained using graphs of very high degr
extension of these techniques to obtain results for graphs of low degree seems diffic

Anyway, the previous theorems show that in the worst case the local colouring aro
processor requiresΩ(logn) bits per edge, that is, the same amount of information requ
to specify the identifier of the adjacent neighbour. Said otherwise, from the point of vi
the amount of information used the trivial sense of direction that is obtained by ass
to the arc〈x, y〉 the labely is asymptoticallyoptimal.
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