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Abstract

A graph withn vertices and maximum degret cannot be given weak sense of direction using
less thanA colours. It is known that colours are always sufficient, but it has been conjectured that
just A 4+ 1 are really needed. On the contrary, we show that for sufficiently latpere are graphs
requiring A + £2((nloglogn)/logn) colours. Moreover, we prove that, in terms of the maximum
degree2(A./loglogA) colours are necessary.
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1. Introduction

Sense of directioandweak sense of directid®] are properties of global consistency
of the colouring of a network that can be used to reduce the complexity of many distrib-
uted algorithms. Although there are polynomial algorithms for checking whether a given
coloured graph has (weak) sense of direction [2], the polynomial bounds are rather high,
and, moreover, there are no results (besides the obvious membership to NP) about finding
a colouring that is a (weak) sense of direction usingsiimallesthumber of colours. Even
from a theoretical point of view, there is no known way to bound from below the number
of colours that are necessary to give (weak) sense of direction to the graph representing the
network.

The number of vertices in a graph is a trivial upper bound for the number of colours,
and the maximum degre# is a trivial lower bound. If the graph is regular and it is not a
Cayley graph, themt 4 1 is a lower bound [1,7], but this is in fact the only nontrivial lower
bound known so far. The problem of determining more stringent lower bounds is made
particularly difficult by the time needed to determine the minimum number of colours
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needed by a given graph when the number of vertices grows. It is not easy to find examples
of graphs needing actually more thant 1 colours, and indeed the question about whether
this lower bound was optimal was raised in [6].

However, extensive tests performed usopt wsod, a toolt for making experimen-
tal research with weak sense of direction [3], ended up in a number of counterexamples,
showing that some graphs requite+ 2 colours. For instance, in Fig. 1 we show a (reg-
ular) directed graph of degree 2 that requires 4 colours (displayed as patterns of the arcs),
and in Fig. 2 we show a (regular) undirected graph of degree 3 requiring 5 colours (note
that checking the previous claims by hand would be almost impossible). The colourings
displayed are thus optimal. It is interesting to note that the colouring of Figsyhisnet-
ric, that is, colours are paired at the endpoints of an edge always in the same way; there
is however no better colouring even among the nonsymmetric ones. It is now natural to
wonder whether there exists a constant gagpich that every graph of maximum degege
can be given (weak) sense of direction using no more thang colours.

Fig. 2. A 3-regular undirected graph requiring 5 colours.

1 opt wsod uses implicit enumeration techniques to explore the entire search space of possible (weak) senses
of direction; easy-to-compute upper and lower bounds on the chromatic number are used to restrict the search.
The tool, written in C, is free and available under the Gnu Public License.
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Looking at the graphsin Figs. 1 and 2, one is tempted to ask what makes them “special”.
Extensive experimentation withpt wsod showed that they are not special at all, and that
instead it is rare for a graph to have a (weak) sense of direction with abgotours. It
is indeed by analyzing properties of typical graphs (using random graph theory) that we
shall prove that even if we allow to be a function of the number of vertices (in fact, of
the graph), we can always find examples of graphs needing moreAthap(n) colours,
provided that the growth of is mildly bounded (i.e., thag(n) = o(nloglogn/logn)).

This result answers in the most definitely negative way to the question above.

2. Definitions

A (directed) graph G is given by a seV = [r] ={0, 1,...,n — 1} of n vertices and a
setA C V x V of arcs. We writeP[x, y] € A* for the set of paths from vertexto vertex
y. A graph issymmetridf (y, x) is an arc wheneve, y) is.

Note that in this paper we shall always manipulate symmetric loopless directed graphs,
which are really nothing but undirected simple graphs (an edge is identified with a pair of
opposite arcs). However, the directed symmetric representation allows us to handle more
easily the notion of weak sense of direction and the related proofs. In turn, when using
results from random graph theory we shall confuse a symmetric loopless directed graph
with its undirected simple counterpart.

A colouringof a graphG is a functionk: A — £, where. is a finite set of colours; the
mapA*:A* — L* is defined byA*(aiaz---ap) = AlaDAi(az) - - - A(ap). We write £, =
{A({x, y)) | {x,y) € A} for the set of colours that assigns to its outgoing arcs.

Given a graphG coloured bya, let

L= U (M) | 7 € Plx, y1};

(x,y)eVv?2

be the set of all strings that colour paths(of

A local namingfor G is a family of injective function® = {8, : V — S}icv,With S a
finite set, called th@eame spacdntuitively, each vertex of G gives to each other vertex
y a names, (y) taken from the name space.

Given a coloured graph endowed with a local naming, a functioh — S is acoding
functioniff

Vx,yeVVrePlx,yl f(A*()=pB:0).

A coding function translates the colouring of a path along which two verticesare
connected into the name thatgives toy. A colouringa is aweak sense of directidior

a graphG iff for some local naming there is a coding functidie shall also say that a
coloured grapihasweak sense of direction, or thaigivesweak sense of direction 1G.

2n [5] a slightly different definition is given, in which the empty string is not part.ofThe examples and
the results of this paper are not affected by this difference.
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3. Representing graphs using weak sense of direction

The main idea of this paper is that a coding functforepresents compactly a great deal
of information about a graphand that the values of on a small set of strings, together
with some additional information, can be used to reconstruct the graph. This happens be-
causef tells whether two paths outgoing from the same vertex have the same ending
vertex.

Suppose now that we want to exploit this feature to code compactly a (strongly) con-
nected graplG with weak of sense of direction, and to this purpose assume without loss
of generality thapBo(x) = x for all verticesx, that is, vertex O locally gives to all other ver-
tices their real names. To codg first specify for each vertex the set of colours of outgoing
arcs. Then, give the values gfon every string of colours having length at ma@st- 1,
whereD is the diameter o6.

To rebuild G from the above data, we proceed as follows: first of all we compute the
targets of the arcs out of 0 using on strings of length one, thus obtaining the set of
coloured paths of length one going out of 0. Then, since we know the colours of the arcs
going out of the targets of such paths, we can build the set of coloured paths of length two
out of 0, and compute their targets usifigon strings of length two. When, continuing in
this way, we compute all coloured paths of length+ 1 out of O we are done, since every
arc of G must appear in some of these paths. An example of this process for a very simple
graph is given in Fig. 3.

In the process above, all the information used was the valug of paths of length
D + 1 at most. If we concentrate on graphs of diameter 2, then we need approximately
(L] + |£]2 + |£]®)[2logn] bits to codef (the name space has cardinality at me&t
so [2logn] bits are sufficient to specify a name), amd’| bits to code the colours of the
outgoing arcs. However, this is still too much for our purposes, so we are going to use a

| Coding Function |

w [ J0w) [ w 70

- Z. € 0 aab 4
0 {a b T a 1 aba 4
1 {c;} b 2 abb 0
2| {a,b} aa 2 baa 4
3 {(’1} ab 3 bab 0
4 {a} ba 3 bba 0

bb 4 bbb 1

aaa 3

Phase O | Phase 1 Phase 2 Phase 3

©

Fig. 3. An example of graph reconstruction.
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more sophisticated approach; nonetheless, the basic idea is more easily grasped using the
above description.

Let C(n, k) be the class of all symmetric graphs withvertices, maximum degree at
mostk and enjoying the following property, which we shall gatbperty A3:

For every seX of at most three vertices, there is a verteg X that is adjacent to all
vertices inX.

Intuitively propertyAs is “a bit more than having diameter two” (which would be implied

by the existence of a vertex adjacent to eveayr of vertices). Somehow this is the key
point: we want to get down tpC|2[logn] bits to codef, but this would mean to restrict

to graphs of diameter one—that is, just complete graphs. On the contrary, we shall see
that almost all graphs enjoy property, and that nonetheless graphs satisfysigcan be

coded compactly.

Lemma 3.1. LetG be a graph satisfyingi3. LetA be a sense of direction fa¥ with name
spaces, coding functionf and local naming8. Assume without loss of generality that
S D [n] and Bo(x) = x for all verticesx. Then(x, y) is an arc iff there exist a vertex
and coloursa € Lg, b, c € L, andd € L, such thatf(a) =z, f(ab) =x, f(ac)=y and

f(bd) = f(c).

Proof. For the left-to-right implication, suppose that, y) is an arc, and use propertys
to find a vertex, adjacenttoc, y and 0. Leta = A({0, z)), b = A({z, x)), c = A({z, y)) and
d = )({x,y)) (see Fig. 4). By weak sense of direction, we have the following identities:

fa)=Bo(z) =z,
f(ab) = Bo(x) =x,
flac) = Bo(y) =y,
fbd) =B (y)= f(c),

as required.

Fig. 4. PropertyAs in action.
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For the other implication, letQ z,, z. andx, be vertices ofz such that.((0, 0,)) =«,
Az, zp)) = b, A({z, z¢)) = c andA({x, x4)) = d. Then we have:

0z = Bo(0a) = f(a) =z,

2 = Po(zp) = £ (A((0, 2))A((z. 2))) = f (ab) =x,

ze = Bo(ze) = f(A((0. 2))A((z. 2c))) = f(ac) =y,

B-(») = f(A((z.¥))) = f(e) = fbd) = f(A((z. x))A((x. xa))) = B (xa).
Hence,y = x4 and(x, y) isan arc. O

Using the above lemma, we can finally prove the promised result about compact coding:

Theorem 3.2. Let ¢ = ¢(G) € N be such that every grapy can be given weak sense
direction using no more than(G) colours. Then every graph withvertices satisfyingis
can be describetlusinga (cn 4 c?logn) bits, for some constant. Hence, in particular, if

¢ is a function of: only O(cn + c?logn) bits are sufficient.

Proof. Let G be a graph with vertices, satisfyingiz, and having weak sense of direction
with colouringi, name spacé, local namingg and coding functiory. Assume without
loss of generality tha$ D [r#] andBo(x) = x for every vertexc. DescribeG as follows:

(1) give the number of colouks
(2) for every vertext, usec bits to describe the set;;
(3) give the values of on every string of length one or two.

The first data requirélogc] bits, the second one: and the third onéc + ¢?)[2logn] (as
we mentioned[2logn] bits are sufficient to specify a name). From the above description,
G can be recovered using Lemma 3.10

4. Some random graph theory

We briefly describe two standards models of random graphs, referring the reader to [4]
for further information. For the rest of the paper #t= (3).

e For p e (0,1) CR andn € N, the modelG(n, p) consists of all the labellédundi-
rected simple graphs with vertex gef in which the edges are chosen independently
and with probabilityp.

e For 0< M < N, the modelG(n, M) consists of all the labelled undirected simple
graphs with vertex s¢iz] andM edges in which all graphs have the same probability.

3 From now on, we shall sometimes omit the explicit dependence of functions from their argument, when the
latter is clear from the context, thus writirgnstead ofc(G), d instead ofd(n) and so on.
4 The term “labelled” underlines the fact that we do not consider graphs up to isomorphisms.
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One says thaalmost every graph has propery (in a certain model) if the probability
that a graph in the model satisfi@sgoes to 1 whemn — oo (of course, in this casg and
M might depend om).

The following two results are trivial consequences of Theorem 1.5 and Corollary 111.14
of [4]:

Theorem 4.1. Supposep = p(n):N — [0, 1] C R is such that for alle > 0 we have
pn® — oo and (1 — p)n® — oo for n — oo. Then for every fixed € N' almost every
graph in G(n, p) has the following property: for every pair of disjoint sets of at most
verticesX andY there is a vertex ¢ X UY that is adjacent to all vertices iX but to no
vertex inY.

Theorem 4.2. Supposeyn/logn — oo. Then almost every graph §n, p) has maximum
degreeO(pn).

A property Q of graphs of order. is convexif H satisfiesQ wheneverF C H C G
andF, G satisfy O, where we writeC to denote (partial) subgraph inclusion. A powerful
meta-theorem of random graph theory (Theorem 11.2, ibid.) has the following consequence:

Theorem 4.3. Let Q be a convex property ang(1 — p) N — oo whenn — oo. If almost
every graph inG(n, p) satisfiesQ then almost every graph i@, | pN |) satisfiesQ.

In other words, we can first prove convex properties of almost all graphs in the proba-
bilistic modelG(n, p) and then translate them into properties of the mgde| M). Stating
that “almost every graph satisfies prope@yin G(n, M)” is equivalent to saying that the
ratio between the number of graphs havingertices and” edges satisfying the property
and the overall number of graphs withvertices andV edges goes to 1 asgoes tooo;
hence, we will be able to use Theorem 4.3 to turn probabilistic statements into determinis-
tic ones.

For the rest of the paper, we shall concentrate on the case in whielD asn — oo,
and moreovep = £2(1/logn). It is just a matter of elementary calculus to prove that
in this casep satisfies the hypotheses of the previous theorems. Thus, noting Hat
implied by the property of Theorem 4.1 fdr= 3, we have

Proposition 4.4. With p as above, almost every graphditn, p) has propertyAs and has
maximum degre®(pn).

Henceforth, by Theorem 4.3 we have that almost all graphs iN | edges have
property Az and have maximum degree( ) (these properties are easily shown to be
convex).

Coroallary 4.5. With p as above, there exist a functidh = O(pn) such that

9. LN | = O((ctn. ).
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5. Counting the number of bitsrequired to describe a graph

Theorem 3.2 tells us that a certain number of bits are sufficient to describe all graphs
out of a certain class, and thus implicitly bounds the overall number of graphs in that class.
Nevertheless, we shall prove that the cardinality of the class grows too fast, hence obtaining
the main theorem by contradiction.

We first prove the following asymptotic identity:

Lemmab5.1. Let A= A(n):N— N anda = a(n):N — [0, 1] € R be such thatt — 0
and Aa — oo whenn — oco. Then, we have

lo A ~ Aalo E
g laA| goc'

Proof. We use the factorial symbol (and consequently binomials) in its generalized mean-
ing, that is,x! = I'(x + 1) for all nonnegative reat. By Stirling’s approximation (i.e.,
Inn! ~nlnn), and sincexA < A/2 ultimately, we have

A A Al
In( )gln( ):Ini
laA] aA aAl(A — aA)!

~AINA —aAlIn(@Ad) — Al —a)In(A — Ax)
=A—-aA—-—A+aA)INA—aAlne—A(l—a)In(1—a)
1
~—Aalnag =Aaln—.
o
On the other hand,

(1) (s )
In >1n
leA] aA -1

Al
=1In
(A -—DI(A—-aA+1)!

~AlnA— (aA—l)In(A(a— E))
A
—(A—Aa+1)|n<A<1—a+%>>

= A-1l 1 A—A Din| 1 !
=—(xA— )n<a—2>—( — Aa + )n( —a+Z>,

A 1
In Aaln —
aA—1 o

_ 1 _ 1
(A (e ROy (2, Lyacerd)

oA Ina o aA Ina

asn — oo, hence the result follows immediately (after a change of basg).

SO
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Since the number of graphs withvertices and pN | edges is(LpAl’VJ), we have the
following

Corollary 5.2. Let p — 0and pN — oo asn — oo. Then, the number of bits required to
describe a graph witlx vertices and pN | edges is asymptotic t¥p log %
6. Lower boundson the number of colours

We are finally able to state our main results:

Theorem 6.1. If g(n) = o(nloglogn/logn), itis impossible to give (weak) sense of direc-
tion to all regular graphs usingi¢ + g(n) colours.

Proof. We work by contradiction, and consider two casesg ¥ O(n/logn), let p =
1/logn. Let M be as in Corollary 4.5. Then, by Theorem 3.2 we can describe the graphs
inC(n, M) using

2 n’
O(cn +c |Ogn) = O(IOgn)

bits, sincec = O(M + g) = O(n/logn). On the other hand, by Corollary 5.2,

o <n2 log Iogn)
logn
bits are necessary, contradicting Corollary 4.5.
Otherwise, lelg(n) = nf (n)/logn, with f(n) = o(loglogn), p = g/n and agailV =

O(pn) = O(g) as in Corollary 4.5. Then, by Theorem 3.2 we can describe the graphs in
C(n, M) using

n?loglogn
“ogn f(n)>

2
2 _ n 2\ _
O(cn+c Ogn) O |Ognf(n) o]
bits, sincec = O(M + g) = O(g). On the other hand, by Corollary 5.2,

n®loglogn )

) n?
@<@f(n)(log logn — log f(n))> = @< logn 7o

bits are necessary, contradicting again Corollary 45.

Theorem 6.2. It is impossible to give (weak) sense of direction to all regular graphs using

o(Ag+/loglogAg)

colours. That is, for every function(m) = o(m./loglogm ) there is a graphG such that
h(Ag) colours are not sufficient.
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Proof. By contradiction, let:(m) = o(m./loglogm ), p = 1/logn andM be as in Corol-
lary 4.5. Then, by Theorem 3.2, we can describe the grapfi6:inV/) using

2loglogn

0 2logn) = of 122"

(cn +c Ogn) 0( logn )

bits, sincec = h(M) = o(M /loglogM) and M = O(pn) = O(n/logn). On the other
hand, by Corollary 5.2,

2loglo
@<n g gn)
logn
bits are necessary, contradicting Corollary 4.5

Of course, the bounds we obtain aréortiori true for nonsymmetric graphs. However,
it should be noted that the contradiction is obtained using graphs of very high degree; an
extension of these techniques to obtain results for graphs of low degree seems difficult.

Anyway, the previous theorems show that in the worst case the local colouring around a
processor requireR (logn) bits per edge, that is, the same amount of information required
to specify the identifier of the adjacent neighbour. Said otherwise, from the point of view of
the amount of information used the trivial sense of direction that is obtained by assigning
to the arc(x, y) the labely is asymptoticallyoptimal

Acknowledgement

Sebastiano Vigna has been partially supported by the Italian MURST (Finanziamento
di iniziative di ricerca “diffusa” condotte da parte di giovani ricercatori).

References

[1] P. Boldi, S. Vigna, Minimal sense of direction and decision problems for Cayley graphs, Inform. Process.
Lett. 64 (1997) 299-303.

[2] P. Boldi, S. Vigna, Complexity of deciding sense of direction, SIAM J. Comput. 29 (2000) 779-789.

[3] P. Boldi, S. Vigna, A tool for optimal weak sense of direction, Note del Polo (ricerca) 27, Universita di Milano,
2000.

[4] B. Bollobas, Random Graphs, Academic Press, London, 1985.

[5] P. Flocchini, B. Mans, N. Santoro, Sense of direction: Definitions, properties, and classes, Networks 32 (1998)
165-180.

[6] P. Flocchini, B. Mans, N. Santoro, Sense of direction in distributed computing, in: Proc. DISC 98, in: Lecture
Notes in Comput. Sci., Vol. 1499, Springer, Berlin, 1998, pp. 1-15.

[7] P. Flocchini, A. Roncato, N. Santoro, Symmetries and sense of direction in labeled graphs, Discrete Appl.
Math. 87 (1998) 99-115.



	Lower bounds for weak sense of direction
	Introduction
	Definitions
	Representing graphs using weak sense of direction
	Some random graph theory
	Counting the number of bits required to describe a graph
	Lower bounds on the number of colours
	Acknowledgement
	References


