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Abstract

We obtain two formulae for the higher Frobenius–Schur indicators: one for a spherical fusion category
in terms of the twist of its center and the other one for a modular tensor category in terms of its twist. The
first one is a categorical generalization of an analogous result by Kashina, Sommerhäuser, and Zhu for Hopf
algebras, and the second one extends Bantay’s 2nd indicator formula for a conformal field theory to higher
degrees. These formulae imply the sequence of higher indicators of an object in these categories is periodic.
We define the notion of Frobenius–Schur (FS-)exponent of a pivotal category to be the global period of all
these sequences of higher indicators, and we prove that the FS-exponent of a spherical fusion category is
equal to the order of the twist of its center. Consequently, the FS-exponent of a spherical fusion category is
a multiple of its exponent, in the sense of Etingof, by a factor not greater than 2. As applications of these
results, we prove that the exponent and the dimension of a semisimple quasi-Hopf algebra H have the same
prime divisors, which answers two questions of Etingof and Gelaki affirmatively for quasi-Hopf algebras.
Moreover, we prove that the FS-exponent of H divides dim(H)4. In addition, if H is a group-theoretic
quasi-Hopf algebra, the FS-exponent of H divides dim(H)2, and this upper bound is shown to be tight.
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1. Introduction

We continue our investigation, begun in [26,27], of the higher Frobenius–Schur indicators for
quasi-Hopf algebras and, more generally, certain fusion categories.

The classical (degree two) Frobenius–Schur indicator introduced a century ago as well as the
higher indicators are well-known invariants of an irreducible representation of a finite group.
The degree two indicators for simple modules over a semisimple Hopf algebra were studied by
Linchenko and Montgomery [19], a version for certain fusion categories by Fuchs, Ganchev,
Szlachányi, and Vescernyés [11], and a more general version for simple objects in pivotal cate-
gories by Fuchs and Schweigert [10]. Bantay introduced a notion of Frobenius–Schur indicator
for a primary field of a conformal field theory via a formula in terms of the modular data. The
higher indicators for Hopf algebras were introduced and studied in depth by Kashina, Sommer-
häuser, and Zhu [17]. The degree two indicators for simple modules of a semisimple quasi-Hopf
algebra were studied by Mason and Ng [20], and given a different treatment by Schauenburg
[32]. The higher indicators introduced in [26] are a generalization of all of the above to the case
of pivotal fusion categories, with more details and examples for the special case of modules over
a semisimple quasi-Hopf algebra worked out in [27].

The definition of the indicator νn(V ) of a simple object V in a pivotal fusion category C in
[26] says that νn(V ) is the trace of a certain endomorphism E

(n)
V of C(I,V ⊗n). If C = H -modfin

for a semisimple Hopf algebra over C, we can identify C(I,V ⊗n) with the invariant subspace
of V ⊗n, and E

(n)
V corresponds to a cyclic permutation of tensor factors. Thus, our definition

corresponds to the “first formula” for the indicator given in [17, Corollary 2.3]. The definition of
the higher indicators in [17] is in terms of Hopf powers of the integral, namely

νn(V ) = χ(Λ(1) · · ·Λ(n)),

where Λ is the normalized integral and χ the character of V . This formula is generalized by the
description in [26] of the nth indicator as the pivotal trace of the nth Frobenius–Schur endomor-
phism of V ; that this is indeed a direct generalization of the defining formula in [17] becomes
evident from the calculations done in [27] for the quasi-Hopf algebra case.

In the present paper, we prove a generalization of the “third formula” [17, 6.4, Corollary] for
the higher indicators, which says that the nth indicator of V is the trace of the Drinfeld element
of the double D(H) taken on the induced module D(H) ⊗H V . The appropriate generalization
to the categorical setting is the following: For a spherical fusion category C, consider the two-
sided adjoint K :C → Z(C) of the forgetful functor, where Z(C) is the (left) center of C. Then
the nth indicator νn(V ) is (dimC)−1 times the pivotal trace on K(V ) of the nth power of the
twist in the ribbon category Z(C). We prove this in Section 4, making use of results of Müger
on the adjoint K and Ocneanu’s tube algebra for C. The key ingredient is another formula for
the nth indicator in terms of the nth power of a special central element t in the tube algebra of C
obtained in Section 3.

In the Hopf algebra case, the “second formula” [17, 3.2, Proposition], of which the “third
formula” is a reformulation using the terminology of the Drinfeld double, connects the theory
of indicators to the exponent of a Hopf algebra studied by Kashina [14,15] and Etingof and
Gelaki [6]. In more detail, Kashina, Sommerhäuser and Zhu define the exponent of an irreducible
representation of a semisimple complex Hopf algebra H , and they characterize it as the order of
a certain endomorphism of the induced representation, the traces of whose powers are the higher
indicators. As a consequence of their results, the exponent of H is the least common multiple of



36 S.-H. Ng, P. Schauenburg / Advances in Mathematics 211 (2007) 34–71
the exponents of the irreducible representations; the exponent of an irreducible representation in
turn is the period of the sequence formed by its higher indicators, or the least number n such that
the nth indicator is the representation’s dimension.

Theorem 4.1 implies that the sequence {νn(V )}n of the higher indicators of an object V in the
spherical fusion category C is periodic as well. Moreover, the mth term of the sequence is the
pivotal dimension d(V ) of V whenever m is a multiple of the order of the twist of Z(C).

In Section 5 we define the Frobenius–Schur exponent of an object V in a pivotal category C to
be the least positive integer n such that νn(V ) is the pivotal dimension d(V ) of V , and we define
the Frobenius–Schur exponent of C to be the least positive integer n such that νn(V ) = d(V )

for all V ∈ C. We then prove that if C is a spherical fusion category, then its Frobenius–Schur
exponent is equal to the order of the twist of Z(C). By [5] the exponent is finite and our result
implies that the exponent of C divides the Frobenius–Schur exponent. As it turns out in the first
examples of the same section, the Frobenius–Schur exponent is different in general from the
exponent as defined by Etingof [5]. In Section 6, however, we show that the Frobenius–Schur
exponent can at most be twice the exponent.

Bantay introduced the (degree 2) Frobenius–Schur indicator for a primary field V of a con-
formal field theory via a formula in terms of the modular data of the CFT and he showed that
the indicator of V is 0 if V �∼= V ∗ and ±1 if V ∗ ∼= V (cf. [3]). In Section 7, we derive a formula
for the nth indicator of a simple object V of a modular tensor category by computing the trace
of E

(n)
V . Our formula for νn(V ) contains Bantay’s formula for degree two indicators as the spe-

cial case n = 2. An important consequence of this formula is the invariance of Frobenius–Schur
exponent of a spherical fusion category under the center construction. Moreover, the Frobenius–
Schur exponent of a modular tensor category is equal to the order of the twist.

In Section 8 we obtain several results for complex semisimple quasi-Hopf algebras H , which
have been known for Hopf algebras, making use of Frobenius–Schur indicators and exponents.
We prove that the dimension of H is even if H admits a self-dual simple module, and we gen-
eralize the Hopf algebra version of Cauchy’s Theorem from [17] to our setting: The exponent,
in the sense of Etingof [5], and the dimension of a quasi-Hopf algebra H have the same prime
factors. This result answer two questions of Etingof and Gelaki [6] affirmatively for semisimple
complex quasi-Hopf algebras. We have also shown that the exponent and the Frobenius–Schur
exponent coincide if the dimension of H is odd.

In Section 9 we prove two bounds for the Frobenius–Schur exponent. In [15] Kashina asked
whether the exponent of a semisimple complex Hopf algebra always divides the dimension.
Etingof and Gelaki [6, Theorem 4.3] have shown that the exponent divides the third power of the
dimension. As an immediate consequence of the results in [5] the Frobenius–Schur exponent of
a semisimple complex quasi-Hopf algebra H divides the fifth power of the dimension of H . We
improve this bound by lowering the exponent to the fourth power. We also study an important
class of quasi-Hopf algebras, namely the group-theoretical quasi-Hopf algebras corresponding to
the group-theoretical fusion categories introduced by Ostrik [29]. For a group-theoretical quasi-
Hopf algebra H we can show that the (Frobenius–Schur) exponent divides the square of the
dimension. More precisely, we can express the Frobenius–Schur exponent of a group-theoretical
quasi-Hopf algebra, which is constructed from a finite group G and a three-cocycle ω on G, in
terms of the cohomology class of ω and its restrictions to the cyclic subgroups of G. This same
description of the exponent and the resulting general bound on the exponent for group-theoretical
categories were recently obtained by Natale [24].
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2. Preliminaries

We will collect some conventions and facts on monoidal categories and quasi-Hopf algebras.
Most of these are well known (and we refer to [26,27] and the literature cited there), the others
are easy observations.

In a monoidal category C with tensor product ⊗ we denote the associativity isomorphism by
Φ : (U ⊗ V ) ⊗ W → U ⊗ (V ⊗ W). We assume that the unit object I ∈ C is strict. If X,Y ∈ C
are obtained by tensoring together the same sequence of objects with two different arrangements
of parentheses, there is an isomorphism between them which is obtained by composing sev-
eral instances of Φ or Φ−1; it is unique by coherence, and will be denoted by Φ? :X → Y .
A monoidal functor F :C → D preserves tensor products by way of a coherent isomorphism
ξ :F(V ) ⊗ F(W) → F(V ⊗ W) and F(I ) = I . An equivalence of monoidal categories is a
monoidal functor that is an equivalence.

A left dual object (V ∨, ev,db) consists of an object V ∨ and morphisms ev :V ∨ ⊗V → I and
db : I → V ⊗ V ∨ such that

V
db⊗V−−−−→ (

V ⊗ V ∨) ⊗ V
Φ−→ V ⊗ (

V ∨ ⊗ V
) V ⊗ev−−−→ V,

V ∨ V ∨⊗db−−−−→ V ∨ ⊗ (
V ⊗ V ∨)

Φ−1−−→ (
V ∨ ⊗ V

) ⊗ V ∨ ev⊗V ∨−−−−→ V ∨

are identities. Right duals are defined analogously. If every object has a (left) dual, C is called
(left) rigid. If C is left rigid, taking duals extends naturally to a monoidal functor (–)∨ :Cop → C.
Double dualization is consequently a monoidal functor (–)∨∨ :C → C. A pivotal monoidal cate-
gory is a left rigid monoidal category equipped with an isomorphism j :V → V ∨∨ of monoidal
functors. Let f :V → V be a morphism in a pivotal category C. The left and right pivotal traces
of f are

ptrr (f ) = tr(jV f ) = (
I

db−→ V ⊗ V ∨ f ⊗V ∨−−−−→ V ⊗ V ∨ jV ⊗V ∨−−−−→ V ∨∨ ⊗ V ∨ ev−→ I
)
,

ptr�(f ) = (
I

db−→ V ∨ ⊗ V ∨∨ V ∨⊗j−1
V−−−−−→ V ∨ ⊗ V

V ∨⊗f−−−−→ V ∨ ⊗ V
ev−→ I

)
.

The left and right pivotal dimensions of V ∈ C are d�(V ) = ptr�(idV ) and dr(V ) = ptrr (idV ). If
the left and right traces of every morphism are the same, then C is called a spherical monoidal
category. In this case, traces and pivotal dimensions will be denoted by ptr(f ) and d(V ). If C is
C-linear, semisimple, and d�(V ) = dr(V ) for each simple V , then C is spherical.

Any monoidal category is equivalent as a monoidal category to a strict monoidal category, that
is, one in which the associativity isomorphism Φ is the identity. A pivotal monoidal category C is,
moreover, equivalent as a pivotal monoidal category to a strict pivotal monoidal category Cstr, that
is, a pivotal monoidal category in which the associativity isomorphism, the pivotal structure j ,
and the canonical isomorphism (V ⊗ W)∨ → W∨ ⊗ V ∨ are identities. Equivalence as pivotal
monoidal categories means that the monoidal equivalence C → Cstr preserves pivotal structures
in a suitable sense; we refer to [26] for details. If C is spherical, then so is Cstr.
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In a strict monoidal category we make free use of graphical calculus. For instance, the condi-
tion on a pivotal category to be spherical is depicted as

ptrr (f ) = = = ptr�(f ).

The strict pivotal case allows us to simply drop any instance of j resulting in

ptr(f ) = = .

Now let C be a braided monoidal category with braiding c. The Drinfeld isomorphism is the
natural isomorphism u : Id → (−)∨∨ given by

uV := (
evV ⊗V ∨∨) ◦ Φ−1

V ∨,V ,V ∨∨ ◦ (
V ∨ ⊗ c−1

V,V ∨∨
) ◦ ΦV ∨,V ∨∨,V ◦ (dbV ∨ ⊗V ).

If C is strict, then we have the graphical representation

uV = , where cV W = and (cV W )−1 = .

We see that uV ⊗W = (uV ⊗ uW)c−1
V Wc−1

WV . In particular, there is a bijective correspondence be-
tween pivotal structures j on C and twists, that is, automorphisms θ of the identity endofunctor
satisfying

θV ⊗W = (θV ⊗ θW )cWV cV W and θI = idI , (2.1)

given by θ = u−1j .
The (left) center Z(C) of a monoidal category C has objects pairs (V , eV ) with V ∈ C and

eV (−) :V ⊗ (−) → (−) ⊗ V a natural isomorphism satisfying the properties eV (I ) = idV and

(
X ⊗ eV (Y )

) ◦ ΦX,V,Y ◦ (
eV (X) ⊗ Y

) = ΦX,Y,V ◦ eV (X ⊗ Y) ◦ ΦV,X,Y

for all X,Y ∈ C. The tensor product of Z(C) is given by (V , eV ) ⊗ (W, eW ) = (V ⊗ W,eV ⊗W),

where

eV ⊗W(X) = ΦX,V,W ◦ (
eV (X) ⊗ W

) ◦ Φ−1
V,X,W ◦ (

V ⊗ eW (X)
) ◦ ΦV,W,X

for any X ∈ C, and the neutral object is (I, eI ) with eI (X) = idX . The associativity isomorphism
in Z(C) is that of C. In this way Z(C) is a monoidal category, and braided with braiding given by
eV (W).
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If C is left rigid, then Z(C) is rigid; the dual of (V , eV ) ∈ Z(C), is (V ∨, eV ∨) with

eV ∨(X) = (
evV ⊗(

X ⊗ V ∨)) ◦ Φ? ◦ (
V ∨ ⊗ (

eV (X)−1 ⊗ V
)) ◦ Φ? ◦ (

V ∨ ⊗ (X ⊗ dbV )
)
.

The evaluation and dual basis homomorphisms for the dual in Z(C) are those of the dual V ∨
in C. If C is pivotal, the pivotal structure j : Id → (−)∨∨ induces a pivotal structure in Z(C). If C
is spherical, so is Z(C).

Any equivalence F :C → D of monoidal categories induces in a natural way an equivalence
F̂ :Z(C) → Z(D) of braided monoidal categories. In addition, if C and D are pivotal monoidal
categories and F preserves their pivotal structures, then F̂ :Z(C) → Z(D) also preserves their
pivotal structures. Moreover, F̂ preserves the twists θ associated with their pivotal structures, i.e.

F̂(θ(V,eV )) = θF̂(V ,eV )
.

A fusion category over C is a rigid C-linear monoidal category which is semisimple with
finitely many non-isomorphic simple objects, one of them the neutral object I , whose endomor-
phism rings are isomorphic to C. If C is a strict spherical fusion category with a braiding c, then
by (2.1) the twist θ associated with the pivotal structure of C is identical to u−1 where u is the
Drinfeld isomorphism associated with the braiding of Z(C). Moreover, for any simple object V

of C,

ptr(θV ) = ptr = = ptr

and so

θV = u−1
V = = , and θ−1

V = = .

In particular, Z(C) is a ribbon category with respect to the twist θ .
If H is a quasi-Hopf algebra with associator φ ∈ H⊗3 and (quasi-)antipode (S,α,β), then

the category H -modfin of finite-dimensional left H -modules is a rigid monoidal category with
associativity isomorphism Φ given as left multiplication with φ, dual object V ∨ = V ∗ the vector
space dual with module structure the transpose of the action through S, evaluation ev(f ⊗ v) =
f (αv), and dual basis morphism db(1) = ∑

i βvi ⊗ vi , where {vi}i and {vi}i are dual bases for
V and V ∗ respectively. If H is semisimple, we denote the normalized integral in H by Λ.

By a result of Etingof, Nikshych and Ostrik [8, Section 8], the categories H -modfin for semi-
simple quasi-Hopf algebras H can be characterized as those fusion categories C for which
the Frobenius–Perron dimension of every simple object is an integer. For such a category,
[8] show that C is pseudo-unitary, and it has a pivotal structure j determined by the condition
d(V ) = evV (jV ⊗ id)dbV = dim(V ) idC. We will call this the canonical pivotal structure; it is
spherical. For C = H -modfin with a quasi-Hopf algebra H we have j (v) = g−1v for a certain
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element g of H called the trace-element of H , once we identify a vector space and its double
dual space in the usual way.

Remark 2.1. If j ′ is a second pivotal structure on a pivotal fusion category C over C with pivotal
structure j , we have j ′ = jλ for some monoidal automorphism λ of the identity functor. For a
simple V , the component λV is a scalar. In particular, λI = 1. If we denote the left and right piv-
otal dimensions with respect to the pivotal structure j ′ by d ′

� and d ′
r , we see d ′

�(V ) = λ−1
V d�(V )

and d ′
r (V ) = λV dr(V ) for simple V . Also, since V ⊗ V ∨ contains I , we have λV ∨λV = 1. By

[8, Proposition 2.9],

∣∣d ′
�(V )

∣∣2 = |V |2 = ∣∣d�(V )
∣∣2

.

In particular, the absolute values of the pivotal dimensions of simple objects and the pivotal di-
mension of C do not depend on the choice of a pivotal structure. Finally, if both pivotal structures
are spherical, then λV = ±1 for each simple V .

Remark 2.2. Analogous to the left center construction, the right version of the center Z(C)

of C consists of objects pairs (V , ēV ) with V ∈ C and ēV (−) : (−) ⊗ V → V ⊗ (−) a natural
isomorphism satisfying the properties ēV (I ) = idV and

ēV (X ⊗ Y) = ΦV,X,Y ◦ (
ēV (X) ⊗ Y

) ◦ Φ−1
X,V,Y ◦ (

X ⊗ ēV (Y )
) ◦ ΦX,Y,V for X,Y ∈ C.

The tensor product of Z(C) is given by (V , ēV ) ⊗ (W, ēW ) = (V ⊗ W, ēV ⊗W), where

ēV ⊗W(X) = Φ−1
V,W,X ◦ (

V ⊗ ēW (X)
) ◦ ΦV,X,W ◦ (

ēV (X) ⊗ W
) ◦ Φ−1

X,V,W

for any X ∈ C, and the neutral object is (I, ēI ) with ēI (X) = idX . The associativity isomorphism
in Z(C) is also the same as in C. The right center Z(C) is also a braided monoidal category with
braiding given by ēV (W) : (W, ēW ) ⊗ (V , ēV ) → (V , ēV ) ⊗ (W, ēW ). In addition, if C is left
rigid, then Z(C) is rigid; the dual of (V , ēV ) ∈ Z(C), is (V ∨, ēV ∨) with

ēV ∨(X)−1 = (
evV ⊗(

X ⊗ V ∨)) ◦ Φ? ◦ (
V ∨ ⊗ (

ēV (X) ⊗ V
)) ◦ Φ? ◦ (

V ∨ ⊗ (X ⊗ dbV )
)

ev(V ,ēV ) = evV , and db(V ,ēV ) = dbV .

By [13], the natural isomorphism c′
(V ,eV ),(W,eW ) := eW (V )−1 for (V , eV ), (W, eW ) ∈ Z(C)

also defines a braiding on Z(C), and we denote by Z′(C) the braided monoidal category
Z(C) with the braiding c′. Then Z′(C) and Z(C) are equivalent braided monoidal cate-
gories under monoidal equivalence (T , ξ) :Z′(C) → Z(C) with ξ :T (V, eV ) ⊗ T (W,eW ) →
T (V ⊗ W,eV ⊗W) the identity, T (V, eV ) = (V , e−1

V ) and T (f ) = f for any objects (V , eV ),
(W, eW ) and map f of Z′(C). If C admits a pivotal structure, (T , ξ) preserves the induced piv-
otal structures of Z′(C) and Z(C) as well as their associated twists.

In addition, if C is a spherical fusion category over C with the pivotal structure j , then Z(C),
Z′(C) and Z(C) are pivotal fusion categories with their pivotal structures inherited from C. Let
θ, θ ′ and θ̄ be the associated twists of Z(C), Z′(C) and Z(C) respectively and (V , eV ) a sim-
ple object of Z(C). Then θ(V,eV ) = ω id(V ,eV ) for some non-zero scalar ω in C. By considering
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the strictifications of these pivotal fusion categories, we have θ ′
(V ,eV ) = ω−1 id(V ,eV ) and hence

θ̄T (V ,eV ) = ω−1 idT (V,eV ). In particular, we have

θ ′
(V ,eV ) = θ−1

(V ,eV ).

3. Tube algebra of a strict spherical fusion category

In this section, we consider Ocneanu’s tube algebra ΘL of a strict spherical fusion category
and a special element t ∈ ΘL. This element t has been considered in [12,23] for the computations
of the Gauss sums of C. We will show in Lemma 3.2 that the nth FS-indicator can be expressed
in terms of tn. This observation is essential to our proofs of Theorem 4.1 and Proposition 4.5.

Let C be a strict spherical fusion category over C. Let Xi , i ∈ Γ , be the set of isomorphism
classes of simple objects of C. Since the left dual and right dual of an object in C are isomorphic,
we simply denote the left (or right) dual of any object V ∈ C by V ∗. For any i ∈ Γ , we define ī

by the equation

X∗
i = Xī

and we define 0 ∈ Γ by X0 = I , the neutral object of C.
For any V ∈ C, we let

d(V ) = ptr(idV ), di = d(Xi) for i ∈ Γ, and dimC =
∑
i∈Γ

didī .

Note that d0 = 1 and di = dī for i ∈ Γ . Following [23], we consider Ocneanu’s tube algebra
ΘL = ⊕

i,j,k∈Γ C(Xi ⊗ Xj ,Xj ⊗ Xk) with multiplication given by

uv[i, j, k] = 1

djλ

∑
s,l,m∈Γ

dldm

N
j
lm∑

α=1

where {pα
j,lm}α is a basis for C(Xj ,Xl ⊗ Xm) and {qα

lm,j }α the basis for C(Xl ⊗ Xm,Xj ) dual

to {pα
j,lm}α and λ = √

dimC. The product of ΘL is independent of the choice of basis for
C(Xj ,Xl ⊗Xm) (cf. [9,12,28] for the original definition of Ocneanu’s tube algebra). The identity
element 1 of ΘL is given by

1[i, j, k] = λδj,0δi,k idXi
.
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Let Θi = ⊕
j∈Γ C(Xi ⊗ Xj ,Xj ⊗ Xi) and ΘC = ⊕

i∈Γ Θi . For any u ∈ ΘC , one can define
û ∈ ΘL given by

û[i, j, k] = δi,ku[i, j ] for all i, j, k ∈ Γ.

We will identify ΘC with a subspace of ΘL under this identification. It is easy to see that ΘC
is closed under the multiplication on ΘL, and it also contains the identity element 1 of ΘL.
Consider the element t ∈ ΘC given by

t[i, j ] = λ

di

δij id
X⊗2

i
. (3.1)

Lemma 3.1.

tn[i, j ] = λ

dj

N
j

in∑
α=1

(3.2)

for n � 1 where N
j
in = dimC(Xj ,X

⊗n
i ), {f α

j,in}α is a basis for C(Xj ,X
⊗n
i ), and {gα

in,j }α is the

dual basis for C(X⊗n
i ,Xj ).

Proof. For n = 1, the formula holds by definition of t . Assume that tn is given by (3.2). Then

tn+1[i, j ] = 1

djλ

∑
l,m∈Γ

dldm

N
j
lm∑

α=1

= λ

dj

∑
l∈Γ

N
j

in∑
β=1

N
j
li∑

α=1

.

Note that {(f β
l,in ⊗ Xi) ◦ pα

j,li}α,β,l forms a basis for C(Xj ,X
⊗(n+1)
i ) with dual basis

{
qα
li,j ◦ (

g
β
in,l ⊗ Xi

)}
α,β,l

for C(X
⊗(n+1)

,Xj ). Thus, the result follows by induction. �
i
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Define φ and φi ∈ Θ∗
C by

φ(u) = λ
∑
i∈Γ

di ptr
Xi

(
u[i,0]), and φi(u) = φ ◦ πi(u)

where πi is the natural projection from ΘC to Θi .

Lemma 3.2. For any i ∈ Γ , λ2diνn(Xi) = φi(t
n).

Proof. By Lemma 3.1,

φi

(
tn

) = λ2

d0

N0
in∑

α=1

di ptr
Xi

= λ2

N0
in∑

α=1

di = λ2diνn,n−1(Xi) = λ2diνn(Xi)

where N0
in = dimC(X0,X

⊗n
i ). The third and the fourth equalities follow from definitions and

results in [26]. �
4. Indicators and the twist of the center

We continue to consider a strict spherical fusion category C over C. The center Z(C) of C is
a ribbon category with the twist θ associated with the pivotal structure of C. In this section, we
obtain a formula, in Theorem 4.1, for the nth Frobenius–Schur indicator νn(V ) of an object V in
a spherical fusion category C over C in terms of the twist θ of the center. The result is a categor-
ical generalization of the formula for higher indicators of Hopf algebras in [17, 6.4, Corollary].
By [23], Z(C) is a modular tensor category and hence θ is of finite order (cf. [2,33]). The formula
implies that the sequence {νn(V )}n is periodic for each object V and νn(V ) = d(V ) if n is a mul-
tiple of the order of θ . In addition, if d(V ) is positive for simple V , we show in Proposition 4.5
that d(V ) = νn(V ) if and only if n is a multiple of the order of θ , and for any n the inequality
|νn(V )| � d(V ) holds for all V ∈ C. By a result of [8, Section 8], there is at most one pivotal
structure on a fusion category such that the pivotal dimension d�(V ) of a simple object V is pos-
itive. In this case, the pivotal structure is spherical and d(V ) is the Frobenius–Perron dimension
of V .
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Let Γ̂ be the set of isomorphism classes of simple objects of Z(C). For any (X, eX) ∈ Γ̂ ,
θ(X,eX) = ω(X,eX) id(X,eX) for some root of unity ω(X,eX) ∈ C. By Müger’s results [23, Proposi-
tions 5.4 and 5.5], for any (X, eX) ∈ Γ̂ , the element z(X,eX) ∈ ΘC defined by

z(X,eX)[i, j ] = d(X)

λdi

NX
i∑

α=1

is a primitive central idempotent of ΘC and
∑

(X,eX)∈Γ̂
z(X,eX) = 1ΘC , where {ιαi,X}α is a basis for

C(Xi,X) and {πα
i,X}α its dual basis for C(X,Xi), and NX

i = dimC(Xi,X). By [23, Lemma 5.17],
the element t defined in (3.1) can be written as

t =
∑

(X,eX)∈Γ̂

ω−1
(X,eX)z(X,eX). (4.1)

By another result of Müger [23, Proposition 8.1], the forgetful functor H :Z(C) → C has a two-
sided adjoint K :C → Z(C) such that

K(Y) ∼=
⊕

(X,eX)∈Γ̂

dim
(
C(X,Y )

)
(X, eX) (4.2)

for any Y ∈ C. Now, we can prove our formula for the Frobenius–Schur indicators of an object
in C.

Theorem 4.1. Let C be any spherical fusion category over C with pivotal structure j and let u

be the Drinfeld isomorphism of Z(C). For any V ∈ C,

νn(V ) = 1

dimC ptr
(
θn
K(V )

)
,

where θ = u−1j is the twist of Z(C) associated with j .

Proof. Since Frobenius–Schur indicators as well as pivotal traces are invariant under tensor
equivalences that preserve the pivotal structures, we may assume that C is strict spherical. In
this case V ∗∗ = V and jV = idV for all V ∈ C. Moreover, since C is semisimple and K preserves
direct sums, it suffices to prove the case when V = Xi for some i ∈ Γ . By (4.1) and Lemma 3.2,
we have

λ2diνn(Xi) = φi

(
tn

) =
∑

(X,eX)∈Γ̂

ω−n
(X,eX)φi(z(X,eX)) =

∑
(X,eX)∈Γ̂

ω−n
(X,eX)d(X)NX

i di,

where NX
i = dimC(Xi,X). By [8, Corollary 2.10], d(V ) = d(V ∗) is real for all V ∈ C. There-

fore,
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νn(Xi) = 1

λ2

∑
(X,eX)∈Γ̂

ω−n
(X,eX)d(X)NX

i

= 1

λ2

∑
(X,eX)∈Γ̂

ωn
(X,eX)d(X)NX

i

= 1

dimC ptr
(
θn
K(Xi)

)
. � (4.3)

Remark 4.2. Since

ptr(θK(V ∗)) =
∑

(X∗,eX∗ )∈Γ̂

NX∗
V ∗ ω(X∗,eX∗ )d

(
X∗) =

∑
(X∗,eX∗ )∈Γ̂

NX
V ω(X,eX)d(X) = ptr(θK(V ))

for V ∈ C, Theorem 4.1 implies that νn(V ) = νn(V
∗) for all positive integers n, which has been

proved in [26] using graphical calculus.

Remark 4.3. By Remark 2.2, θ ′
(V ,eV ) = θ−1

(V ,eV ) for (V , eV ) ∈ Z(C). Then the nth Frobenius–
Schur indicator of V in C can be rewritten as

νn(V ) = 1

dimC ptr
(
θ ′−n

K(V )

)
.

It follows from the equivalence of Z′(C) and Z(C) that we also have

νn(V ) = 1

dimC ptr
(
θ̄−n

K(V )

)
where K is the two-sided adjoint for the forgetful functor from Z(C) to C and θ̄ is the twist of
Z(C) associated with the pivotal structure of C.

Remark 4.4. Since θ has finite order, the sequence {νn(V )}n is periodic for any V ∈ C, with a
period that divides the order of θ .

The following Eq. (4.4) can also be obtained easily by [8, Proposition 5.4] using the fact that∑
i∈Γ |di |2 = dimC. In the following proposition, we give another proof for the formula. The

special case of the equation for V = I is the class equation in [8, Proposition 5.7].

Proposition 4.5. Let C be a spherical fusion category over C and θ the twist of Z(C) associated
with the pivotal structure of C. Then

d(V ) = 1

dimC
∑

(X,eX)∈Γ̂

dim
(
C(X,V )

)
d(X) (4.4)

for all V ∈ C. In particular, if θn
K(V ) = idK(V ), then νn(V ) = d(V ). In addition, if di > 0 for all

i ∈ Γ , then the converse also holds, and we have∣∣νr(V )
∣∣ � d(V )

for all positive integers r and V ∈ C.
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Proof. Let n be a positive integer such that θn = id. Then ωn
(X,eX) = 1 for all (X, eX) ∈ Γ̂ . In

particular, tn = 1 by (4.1). By Lemma 3.2, we have

λ2diνn(Xi) = φi(1) = λ2d2
i .

Since di is real, by Theorem 4.1, we have

di = νn(Xi) = 1

dimC ptr(idK(Xi)) = 1

dimC
∑

(X,eX)∈Γ̂

NX
i d(X).

The first statement follows directly from the additivity of the dimension function. In particular,
if θn

K(V ) = idK(V ), then

νn(V ) = 1

dimC ptr(idK(V )) = 1

dimC
∑

(X,eX)

dim
(
C(X,V )

)
d(X) = d(V ).

If, in addition, di > 0 for all i ∈ Γ , then d(V ) > 0 for all non-zero V ∈ C. Thus, for any positive
integer r and for any V ∈ C, we have

∣∣νr(V )
∣∣ =

∣∣∣∣ 1

dimC
∑

(X,eX)∈Γ̂

dim
(
C(X,V )

)
d(X)ωr

(X,eX)

∣∣∣∣
� 1

dimC
∑

(X,eX)∈Γ̂

dim
(
C(X,V )

)
d(X) = d(V ).

Moreover, if νn(V ) = d(V ), then ωn
(X,eX) = 1 for any component (X, eX) of K(V ). Hence,

θn
K(V ) = idK(V ). �

Remark 4.6. Note that

δi,0 = ν1(Xi) = 1

dimC
∑

(X,eX)∈Γ̂

NX
i d(X)ω(X,eX) (4.5)

for i ∈ Γ . If di > 0 for all i ∈ Γ , (4.4) implies that ω(X,eX) = 1 whenever NX
0 �= 0. Thus, the

class equation in [8] is the special case of Eq. (4.5) when i = 0.

5. Frobenius–Schur exponent

In this section, we define the Frobenius–Schur exponent of a pivotal category over any field k,
and give an example to demonstrate the difference between the Frobenius–Schur exponent and
the (quasi-)exponent, in the sense of Gelaki and Etingof, of a spherical fusion category. We
prove in Theorem 5.5 that the Frobenius–Schur exponent of a spherical fusion category C over
C is equal to the order of the twist θ of Z(C) associated with the pivotal structure of C. It will
be shown later in Section 7 that the Frobenius–Schur exponent of a spherical fusion category
is invariant under the center construction. We then apply Theorems 4.1 and 5.5 to a semisimple
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quasi-Hopf algebra H over C to obtain a formula for the nth indicator of an H -module in terms
of the value χ̂V ((gu)−n) of the character χ̂V of the induced module D(H)⊗H V , where g is the
trace-element of H (cf. [20, Section 6]) and u is the Drinfeld element of D(H). When H is an
ordinary Hopf algebra, then g = 1 and the formula reduces to the one in [17, 6.4, Corollary].

As in [26], a pivotal category over a field k is a k-linear pivotal monoidal category with a
simple neutral object, finite-dimensional morphism spaces, and End(V ) = k for every simple
object V .

Definition 5.1. Let C be a pivotal category over any field k. The Frobenius–Schur exponent of an
object V in C, denoted by FSexp(V ), is defined to be the least positive integer n such that

νn(V ) = d�(V ),

where d�(V ) and νn(V ), respectively, denote the left pivotal dimension and the nth Frobenius–
Schur indicator of V . If such an integer does not exist, we define FSexp(V ) = ∞. We call the
least positive integer n such that νn(V ) = d�(V ) for all V ∈ C the Frobenius–Schur exponent of
C and denote it by FSexp(C). If such an integer does not exist, we define FSexp(C) = ∞.

If H is a finite-dimensional semisimple Hopf algebra over C, FSexp(V ) is identical to the ex-
ponent of V for V ∈ H -modfin defined in [17]. Moreover, the results of [17] show that FSexp(H)

is the same as the exponent of H -modfin in the sense of Etingof and Gelaki (cf. [5,7]).

Remark 5.2. Let C be a pivotal category over a field k with the pivotal structure j . For a sim-
ple object V ∈ C, if j ′ is another pivotal structure, then jV and j ′

V differ by a scalar factor, say
j ′
V = λjV with λ ∈ k. From the definition of the left pivotal trace, it is clear that the left pivotal

dimension d ′
�(V ) computed with respect to j ′ is d ′

�(V ) = λ−1d�(V ). Equally, one can read off
from the definition of the Frobenius–Schur indicators that the indicator ν′

n(V ) computed with
respect to j ′ is ν′

n(V ) = λ−1νn(V ). In particular the Frobenius–Schur exponent of a simple ob-
ject does not depend on the choice of a pivotal structure, and neither does the Frobenius–Schur
exponent of a pivotal fusion category over k.

Recall from [8] that a fusion category C over C is pseudo-unitary if it admits a spherical
pivotal structure such that the pivotal dimension d(V ) for non-zero V ∈ C is positive.

Proposition 5.3. Let C be a pseudo-unitary fusion category over C. If the object V ∈ C contains
every simple object of C, then FSexp(V ) = FSexp(C). In particular, if H is a semisimple complex
quasi-Hopf algebra, then FSexp(H) = FSexp(H -modfin).

Proof. Let V ∼= ∑
i∈Γ niXi and n = FSexp(V ). Then by additivity of νn

∑
i∈Γ

nidi = d(V ) = νn(V ) =
∑
i∈Γ

niνn(Xi).

Since |νn(Xi)| � di for i ∈ Γ and ni > 0 by assumption, the equality implies that di = νn(Xi)

for all i ∈ Γ . Now it follows from the additivity of νn that the Frobenius–Schur exponent of C
is n.
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If H is a semisimple complex quasi-Hopf algebra, C = H -modfin is a pseudo-unitary fusion
category over C. We have

∑
i∈Γ diXi

∼= H ∈ H -modfin. Therefore, FSexp(H) = FSexp(C). �
It is reasonable to conjecture that the Frobenius–Schur exponent of a semisimple quasi-Hopf

algebra is identical to its exponent. However, the following example demonstrates the difference
between the two exponents of a quasi-Hopf algebra and hence FSexp(C) is different from the
exponent of C in general.

Example 5.4. Let G = {1, x} be an abelian group of order 2 and ω a 3-cocycle of G given by

ω(a, b, c) =
{−1 if a = b = c = x,

1 otherwise.

The dual group algebra C[G]∗ is a well-known Hopf algebra with the usual multiplication, co-
multiplication Δ, counit ε, and antipode S. Let {e(1), e(x)} be the dual basis of {1, x} for C[G]∗.
Define

φ =
∑

a,b,c∈G

ω(a, b, c)e(a) ⊗ e(b) ⊗ e(c), α = 1C[G]∗ ,

β =
∑
a∈G

ω
(
a, a−1, a

)
e(a) = e(1) − e(x).

Then H = (C[G]∗,Δ, ε,φ,α,β,S) is a quasi-Hopf algebra and D(H) = Dω(G). The universal
R-matrix is given by

R =
∑

a,h∈G

e(a) ⊗ 1 ⊗ e(h) ⊗ a.

Then

R21R =
∑

a,b,h,k∈G

(
e(k) ⊗ b

) · (e(a) ⊗ 1
) ⊗ (

e(b) ⊗ 1
) · (e(h) ⊗ a

) =
∑

a,b∈G

e(a) ⊗ b ⊗ e(b) ⊗ a.

Since

(R21R)2 =
∑

a,b∈G

θa(b, b)θb(a, a)e(a) ⊗ b2 ⊗ e(b) ⊗ a2 =
∑

a,b∈G

e(a) ⊗ 1 ⊗ e(b) ⊗ 1 = 1D(H),

the exponent of H -modfin, in the sense of Etingof and Gelaki, is 2. Here, we have used the
notation and multiplication for Dω(G) given in [20, Section 5].

The Frobenius–Schur indicators of the nontrivial representation of H , on the other hand, were
already computed in [27]. In fact H ∼= C[G]x is a special case of the constructions studied in
Section 5 of [27], and hence the indicators of the nontrivial simple H -module V are

νn(V ) = cos

(
(n − 1)π

2

)
.

In particular, the Frobenius–Schur exponent of H is 4.
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Theorem 5.5. Let C be a spherical fusion category over C. The Frobenius–Schur exponent of C is
equal to the order of the twist θ of Z(C) associated with the pivotal structure of C. In particular,
FSexp(C) is finite.

Proof. Since the Frobenius–Schur exponent as well as the order of θ are invariant under
monoidal equivalences of C preserving the pivotal structure, it suffices to prove the claim in
the case when C is a strict spherical category. It follows from (4.3) that for any positive integer n

∑
i∈Γ

νn(Xi)di = 1

dim(C)

∑
(X,eX)∈Γ̂

ωn
(X,eX)

∑
i∈Γ

NX
i did(X)

= 1

dim(C)

∑
(X,eX)∈Γ̂

ωn
(X,eX)d(X)2. (5.1)

If νn(V ) = d(V ) for all V ∈ C, then (5.1) becomes

dim(C)2 =
∑

(X,eX)∈Γ̂

ωn
(X,eX)d(X)2.

Since dim(Z(C)) = dim(C)2 (cf. [23]), we have∑
(X,eX)∈Γ̂

d(X)2 = dim
(
Z(C)

) =
∑

(X,eX)∈Γ̂

ωn
(X,eX)d(X)2. (5.2)

By [8], d(X) is real for (X, eX) ∈ Γ̂ . Equation (5.2) implies that ωn
(X,eX) = 1 for all (X, eX) ∈ Γ̂ .

Therefore,

θn
(X,eX) = id(X,eX).

Conversely, suppose that θn = id. By Theorem 4.1, we obtain

νn(V ) = 1

dimC ptr(idK(V )) = 1

dimC
∑

(X,eX)∈Γ̂

NX
V d(X) = d(V )

for any V ∈ C. �
Since the Drinfeld isomorphism is clearly invariant under equivalences of braided monoidal

categories, we can immediately conclude:

Corollary 5.6. The Frobenius–Schur exponent of a spherical fusion category C depends only on
the equivalence class of the spherical braided monoidal category Z(C).

As it will turn out, the Frobenius–Schur exponent of a spherical fusion category over C is
actually invariant under the center construction. This invariance follows immediately from a for-
mula of higher Frobenius–Schur indicators for a modular tensor category which will be derived
in Section 7.
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If the fusion category in question is given as the representation category of a semisimple quasi-
Hopf algebra H , then the characterizations of the Frobenius–Schur indicators and exponent in
terms of the Drinfeld isomorphism in the center turn, of course, into descriptions in terms of
the Drinfeld element of the double of H . The following corollary spells out the details, and
the remark following it gives some more information about the explicit form of the elements of
D(H) involved. Here D(H) stands for a version of the Drinfeld double construction for quasi-
Hopf algebras matching the left center construction, so that D(H)-modfin is equivalent to the
center Z(H -modfin) of H -modfin as in [31]. See Remark 5.8 below.

Corollary 5.7. Let H be a finite-dimensional semisimple quasi-Hopf algebra over C and u the
Drinfeld element of the quantum double D(H) of H and g the trace-element of H . Then for any
simple H -module V of H and n ∈ N,

νn(V ) = 1

dim(H)
χ̂V

(
(gu)−n

)
where χ̂V is the induced character of the character χV of V to D(H) ⊗H V . Moreover, the
Frobenius–Schur exponent of H is equal to the order of gu.

Proof. Note that the canonical pivotal structure on H -modfin is given by the formula

jV (x) = g−1x

for any V ∈ H -modfin and x ∈ V . Moreover, d(V ) = dim(V ) for any V ∈ C. Therefore, the
pivotal trace of any f in EndH (V ) is identical to the ordinary trace of the linear map f and
H -modfin is spherical. The Drinfeld isomorphism uY of D(H)-modfin is given by the action
of u on the D(H)-module Y and the associated twist θ is given by the action of (gu)−1. Since
we always have the natural isomorphism

HomD(H)

(
D(H) ⊗H V,Y

) ∼= HomH (V,Y ),

by the uniqueness of adjoint functors, D(H)⊗H − is naturally equivalent to K . By Theorem 4.1,
we have

νn(V ) = 1

dim(H -modfin)
TrD(H)⊗H V

(
(gu)−n

) = 1

dim(H)
χ̂V

(
(gu)−n

)
.

The second statement follows immediately from Theorem 5.5. �
Remark 5.8. The Drinfeld double D(H) of a finite-dimensional quasi-Hopf algebra H is usually
defined so that D(H)-modfin = Z(H -modfin) (cf. [18,21] for the Drinfeld double of a Hopf
algebra). If H is a complex semisimple quasi-Hopf algebra, it follows from Remark 4.3 that

νn(V ) = 1

dimH
χ̂V

(
(gu)n

)
for V ∈ H -modfin, where u is the Drinfeld element of D(H) and g is the trace-element of H .
This formula for higher indicators recovers the one in [17, 6.4, Corollary] when H is a Hopf
algebra.
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Remark 5.9. Let H be a quasi-Hopf algebra. By [1], the Drinfeld element u of D(H) is given by

u = S
(
φ(−2)βS

(
φ(−3)

))
S
(
R(2)

)
αR(1)φ(−1),

where φ(−1) ⊗ φ(−2) ⊗ φ(−3) is the inverse of the associator of D(H).
If H is a semisimple complex quasi-Hopf algebra, one can find a formula for gu that does not

contain the element g corresponding to the pivotal structure explicitly. Using the expressions for
g in [20, Corollary 8.5], or using [32, Lemma 3.1], we find that for any t ∈ H ⊗ H satisfying
S(t(1))αt(2) = 1 we have

gu = gS
(
φ(−2)βS

(
φ(−3)

))
S
(
R(2)

)
αR(1)φ(−1)

= gS2(φ(−3)
)
S(β)S

(
φ(−2)

)
S
(
R(2)

)
αR(1)φ(−1)

= φ(−3)gS(β)S
(
φ(−2)

)
S
(
R(2)

)
αR(1)φ(−1)

= φ(−3)Λ(2)t
(2)S

(
Λ(1)t

(1)
)
S
(
φ(−2)

)
S
(
R(1)

)
αR(1)φ(−1).

Possible choices are t = pL or t = pR .

We have already computed the Frobenius–Schur exponent of the nontrivial two-dimensional
quasi-Hopf algebra above, and seen that it differs from the exponent in the sense of Etingof. We
shall redo this example now using the new characterization of the Frobenius–Schur exponent as
the order of gu:

Example 5.10. Let H be the quasi-Hopf algebra given in Example 5.4. Since Dω(G) is com-
mutative and the antipode of Dω(G) is the identity map, the general formula for u from [1]
specializes to

u = R(2)R(1) =
∑
a∈G

e(a) ⊗ a = e(1) ⊗ 1 + e(x) ⊗ x.

Direct computation shows that ord(u) = 4. By [20], the trace-element g of D(H) is given by

g =
∑
a∈G

ω
(
a, a−1, a

)
e(a) ⊗ 1 = (

e(1) − e(x)
) ⊗ 1.

Therefore, ord(g) = 2. By the commutativity of Dω(G) again,

ord(gu) = 4.

Therefore, as we have already seen in Example 5.4, the Frobenius–Schur exponent of H is 4.

Since the canonical pivotal structure of the module category over a semisimple quasi-Hopf
algebra is preserved by every monoidal equivalence, we can deduce some invariance properties
of the Frobenius–Schur exponent:

Proposition 5.11. Let H,H ′ be complex semisimple quasi-Hopf algebra.
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(i) The Frobenius–Schur exponent of H depends only on the gauge equivalence class of the
double D(H) as a quasi-triangular quasi-Hopf algebra, i.e. FSexp(H) = FSexp(H ′) pro-
vided D(H) and D(H ′) are gauge equivalent quasi-triangular quasi-Hopf algebras.

(ii) FSexp(H ⊗ H ′) = lcm(FSexp(H),FSexp(H ′)).
(iii) FSexp(H op) = FSexp(H cop) = FSexp(H).
(iv) FSexp(D(H)) = FSexp(H).

Proof. Since the pivotal structure is preserved under any monoidal equivalence between module
categories of semisimple complex quasi-Hopf algebras, (i) is a direct consequence of Corol-
lary 5.6. Statement (ii) can be verified directly from the definition of the Frobenius–Schur expo-
nent, since one easily sees νn(V ⊗W) = νn(V )νn(W) for V ∈ H -modfin and W ∈ H ′-modfin. As
for (iii), it suffices to treat H cop, since H op and H cop are gauge equivalent through the antipode.
Now H cop-modfin = (H -modfin)

sym is the category H -modfin with the opposite tensor product.
For n = FSexp(H) we have

dim(V ) = dim(V ) = νn(V ) = νn,n−1(V ) = νn

(
V sym)

by [26, Theorem 5.1, Lemma 5.2], where V sym denotes the module V considered as an object
of (H -modfin)

sym. Thus FSexp(H) divides FSexp(H cop), and by symmetry we are done. Finally
(iv) follows since D(D(H)) is gauge equivalent to D(H ⊗ H op). This is can be rephrased and
proved entirely in categorical terms (see the remark below). For quasi-Hopf algebras we can
argue as follows, without using semisimplicity: By [31] the category of modules over the dou-
ble D(H) is isomorphic to the monoidal category HCH of H -H -bicomodules in the monoidal
category C = H -modfin-H of H -bimodules. By [30] the center of this bicomodule category is
equivalent to the center of the underlying category, and so

D
(
H ⊗ H op)-modfin ∼= Z

(
H ⊗ H op-modfin

) ∼= Z(C) ∼= Z
(
HCH

) ∼= Z
(
D(H)-modfin

)
∼= D

(
D(H)

)
-modfin

as braided monoidal categories. �
Remark 5.12. For any fusion category C, we have a braided monoidal category equivalence
Z(Z(C)) ∼= Z(C � Csym) by [23, Section 7]. Thus at least in the semisimple case we need here
the result on the double of the double of a quasi-Hopf algebra above has a categorical version
using a suitable tensor product of categories. However, we did not verify that the equivalence
preserves the pivotal structures in this case, so we cannot draw the desired conclusion on the
Frobenius–Schur exponent of the center for general spherical fusion categories. We will arrive at
that result with an entirely different proof in Section 7.

We close this section with

Corollary 5.13. Let C be a spherical fusion category over C with pivotal structure j . Then for
any simple V ∈ C, I is a summand of V ⊗n, whenever n is a multiple of FSexp(V ) or FSexp(C).
Moreover, for any pivotal structure j ′ on C, j−1j ′ is a finite order monoidal automorphism of
the identity functor of C, and ord(j−1j ′) | FSexp(C).

Proof. Clearly we need only treat the case that n ∈ {FSexp(V ),FSexp(C)}. By [26], νr(V ) is
the ordinary trace of an C-linear automorphism E

(r) on C(I,V ⊗r ). Thus, if νr(V ) �= 0, then
V
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C(I,V ⊗r ) �= 0. By [8, Theorem 2.3], d(V ) �= 0 for any simple object V , and νn(V ) = d(V ).
Therefore, C(I,V ⊗n) �= 0. Let λ = j−1j ′. Then the component λV is a scalar, and λI = 1 (cf.
Remark 2.1). Since I is a summand of V ⊗n, we have λn

V = 1 and hence ord(λV ) | FSexp(C).
Since ord(λ) = lcm ord(λV ), where V runs through a complete set of non-isomorphic simple
objects of C, the divisibility ord(λ) | FSexp(C) follows. �

The fact that I is a direct summand of some tensor power of every simple V generalizes a
result from [17, Section 4]; in their terminology (introduced for modules over Hopf algebras),
any simple V has finite order.

6. Etingof’s exponent vs. Frobenius–Schur exponent

We have discussed already that the Frobenius–Schur exponent of a quasi-Hopf algebra can
differ from its exponent as defined by Etingof. In the example, the difference amounts to a fac-
tor 2. The main result of this section implies that this is the most general discrepancy between
the two notions that can occur. In particular, results about the Frobenius–Schur exponent have
implications for the exponent in the sense of Etingof.

Let C be a ribbon fusion category over C with the twist θ and braiding c. Let MV,W = cW,V ◦
cV,W for any V,W ∈ C. By [5], θ has finite order, and M has finite order with ord(M) | ord(θ).

Proposition 6.1. ord(θ) = ord(M) or 2 ord(M).

Proof. Let X1, . . . ,Xl be the complete set of isomorphism classes of simple objects of C, and
let θXi

= ωi idXi
for some root of unity ωi . Then

X∗
i = Xī

for some ī. The ribbon structure θ implies that ωi = ωī and C is spherical. Hence, di = dī . Let
n = ord(M). Then the equality

θV ⊗W = (θV ⊗ θW )MV,W

implies that

θn
V ⊗W = (

θn
V ⊗ θn

W

)
for all V,W ∈ C. In particular, we have

θn
Xi⊗Xj

= (
θn
Xi

⊗ θn
Xj

)
(6.1)

for all i, j ∈ {1, . . . , l}. Let Nk
ij = dim(C(Xk,Xi ⊗ Xj)). Taking trace on both sides of (6.1), we

have

∑
ωn

kdkN
k
ij = ωn

i ωn
j didj
k∈Γ
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where di is the pivotal dimension of Xi . Let

vi = ωn
i di, v =

⎡
⎣v1

...

vl

⎤
⎦, Ni = [

Nb
ia

]
a,b

.

Then we have

Niv = viv, Nī = Nt
i .

Taking the complex transposition of the first equation, we have

v̄tNī = v̄i v̄t

and hence

v̄i v̄tv = v̄tNīv = vī v̄
tv.

Since C is spherical and v is a non-zero complex vector, we obtain

ω̄n
i di = v̄i = vī = ωn

i dī = ωn
i di .

Since di �= 0, ω̄n
i = ωn

i . Therefore, ωn
i = ±1 and so ω2n

i = 1 for all i. Equivalently, θ2n = id. �
Corollary 6.2. For any semisimple quasi-Hopf algebra H over C we have FSexp(H) = exp(H)

or FSexp(H) = 2 exp(H).

We close this section with the following lemma which will be used in Section 8 to prove the
Cauchy Theorem for semisimple quasi-Hopf algebras.

Lemma 6.3. Let C be a ribbon fusion category over C with the braiding c, the pivotal structure j ,
and the twist θ . Let MV,W = cW,V cV,W for V,W ∈ C. If ord(θ) = 2 ord(M) and ord(M) is
odd, then there exists a spherical pivotal structure ĵ on C such that the order of the twist θ̂

associated with ĵ is equal to the order of M , and d̂(V ) = ±d(V ) where d̂(V ) and d(V ) denote
the dimensions of V computed with the pivotal structures ĵ and j , respectively. In addition, if C
is a MTC, then C with the twist θ̂ is also a MTC.

Proof. Without loss of generality, we may assume that C is strict pivotal. Let N = ord(M) and
θ̂ = θN+1. Since N is odd, gcd(N + 1,2N) = 2 and so ord(θ̂) = N . Moreover,

θN
V ⊗W = θN

V ⊗ θN
W

for any V,W ∈ C. Thus, θ̂ is a twist and C is a ribbon category with respect to θ̂ . Let ĵ = uθ̂ be
the spherical pivotal structure on C associated with θ̂ , where u is the Drinfeld isomorphism of
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the braiding c. Since C is strict pivotal, u = θ−1 and so ĵ = θN . Let Xi , i ∈ Γ , be a complete set
of non-isomorphic simple objects of C. Then, for i ∈ Γ , θN

Xi
= ± idXi

and

d̂i = d̂(Xi) = = ±d(Xi) = ±di.

In particular,
∑

i∈Γ d̂2
i = ∑

i∈Γ d2
i = dimC.

Suppose, in addition, C is a MTC with respect to the twist θ . Let Γ ± = {i ∈ Γ | θN
Xi

= ± idXi
}.

Let [sij ]i,j∈Γ be the S-matrix of this MTC. Now, we compute the S-matrix [ŝij ] of the ribbon
category C with respect to the twist θ̂ . Note that

θN
X∗

i ⊗Xj
= θN

X∗
i
⊗ θN

Xj
=

{
idX∗

i ⊗Xj
if i, j ∈ Γ + or i, j ∈ Γ −,

−idX∗
i ⊗Xj

otherwise.

Thus

ŝij = 1√
dimC

· =
{

sij if i, j ∈ Γ + or i, j ∈ Γ −,

−sij otherwise.

Therefore, [sij ] and [ŝij ] are conjugate matrices. Hence the matrix [ŝij ] is non-singular and C is
a MTC with respect to θ̂ . �
7. Frobenius–Schur indicator formula for modular tensor categories

In [3], Bantay has defined a scalar, called the (2nd) Frobenius–Schur indicator, by the formula

∑
i,j∈Γ

Nk
ij s0i s0j

(
ωi

ωj

)2

(7.1)

for each simple object Xk of a modular tensor category C (MTC), where [sab] denotes the S-
matrix of C and Nk

ij = dim(C(Xi ⊗ Xj ,Xk)). It is shown in the paper that the value of the
expression can only be 0, 1, or −1.

In this section, we will derive a formula (Theorem 7.5) for the nth indicator νn(V ) of a simple
object V in a modular tensor category C using the definition of higher indicators introduced
in [26]. Bantay’s formula (7.1) is recovered as the special case n = 2. This also shows that
Bantay’s notion of Frobenius–Schur indicator is the 2nd FS-indicator in our sense.

As an immediate consequence of the formula for νn(V ), we show that FSexp(C) is equal to
the order of the twist θ of C and that the Frobenius–Schur exponent of a spherical fusion category
is invariant under the center construction.
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We continue to use the notation introduced in Section 3. Let C be a strict modular tensor
category, i.e. a MTC whose underlying spherical category is strict. Suppose that Xi , i ∈ Γ , is a
complete set of non-isomorphic simple objects of C. We define ωi ∈ C, i ∈ Γ , by the equation

θXi
= ωi idXi

.

Since the twist θ of C is of finite order, ωi is a root of unity.
By [26], the (n, k)th Frobenius–Schur indicator νn,k(V ) of the object V ∈ C is the ordinary

trace of the linear operator (E
(n)
V )k :C(I,V ⊗n) → C(I,V ⊗n) defined by

(
E

(n)
V

)k : → = .

Let C
(m,n)
V ∈ C(V ⊗(m+n),V ⊗(m+n)) denote the map

.

In particular,

C
(1,n−1)
Xj

= ωj · c
Xj ,X

⊗(n−1)
j

. (7.2)

For any positive integers n, k, let {pα} be a basis for C(I,V ⊗n), and {qα} the dual basis for
C(V ⊗n, I ). Then we have

Tr
((

E
(n)
V

)k) =
∑
α

=
∑
α

.

Let e0(V
⊗n) = ∑

α pαqα . Then we have
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νn,k(V ) = . (7.3)

Note that e0(V
⊗n) is independent of the choices of the basis {pα} for C(I,V ⊗n). In general, the

map e0(W), for any object W of C, is the idempotent of C(W,W) given by

e0(W) = ιπ, (7.4)

where π :W → W triv and ι :W triv → W are the epimorphism and the monomorphism associated
with the summand W triv of W .

Lemma 7.1. For any W ∈ C, we have

e0(W) = 1

dim(C)

∑
i∈Γ

di .

Proof. The statement follows directly from (7.4) and [2, Corollary 3.1.11]. �
By Lemma 7.1 and (7.3), we have

νn,k(V ) = 1

dim(C)

∑
i∈Γ

di . (7.5)

Since νn(V ) = νn,1(V ), the following lemma follows immediately from (7.2).

Lemma 7.2. For any j ∈ Γ and integer n � 1, we have

νn(Xj ) = 1

dim(C)

∑
i∈Γ

diωj ,

where cn denotes the map c
X ,X

⊗(n−1) .

j j
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Let V ∈ C. We define F :C(V ⊗ Xj ,V ⊗ Xj) → C(V ⊗ Xj ,V ⊗ Xj) by

F : → = . (7.6)

Let mn = cX⊗n
j ,V ◦ cV,X⊗n

j
, and cn = c

Xj ,X
⊗(n−1)
j

for any integer n � 1. Then, (7.6) says that

F(f ) = ωj · m1 ◦ f

for f ∈ C(V ⊗ Xj ,V ⊗ Xj). In particular,

Fn−1(m1) = ωn−1
j · mn

1, (7.7)

where F 0 denotes the identity map.

Lemma 7.3. For any integer n � 0, we have

Fn(m1) = .

Proof. The equality is obviously true for n = 0 as c1 = idXj
. Assume the equation holds for

some integer n � 0. Then

Fn+1(m1) = = .
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Since

cn+2 = and mn+2 = ,

we have

Fn+1(m1) = ,

and this completes the proof. �
Lemma 7.4. For any integer n � 1,

= ωn−1
j · .

Proof. The equality follows immediately from Lemma 7.3 and (7.7). �
Theorem 7.5. For any j ∈ Γ and positive integer n, we have

νn(Xj ) = 1

dim(C)

∑
i,k∈Γ

N
j
ikdidk

(
ωi

ωk

)n

,

where N
j
ik = dimC(Xi ⊗ Xk,Xj ). In particular, if N = exp(C) or ord(m1), then

νN(Xj ) = ωN
j dj = ±dj .
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Proof. By Lemmas 7.2 and 7.4,

νn(Xj ) = 1

dim(C)

∑
i∈Γ

diω
n
j · = 1

dim(C)

∑
i∈Γ

diω
n
j · . (7.8)

Since ωiωjm1 = θX∗
i ⊗Xj

, we have

mn
1 = 1

(ωiωj )n

⊕
k∈Γ

(
θn
Xk

)⊕Nk

īj .

Therefore,

νn(Xj ) = 1

dim(C)

∑
i,k∈Γ

di

ωn
k

ωn
i

Nk

īj
dk = 1

dim(C)

∑
i,k∈Γ

didkN
j
ik

ωn
i

ωn
k

.

In particular, if N = exp(C), then mN
1 = id. By Proposition 6.1, ωN

j = ±1. It follows from (7.8)
that

νN(Xj ) = 1

dim(C)

∑
i∈Γ

didīdjω
N
j = ωN

j dj . �

Remark 7.6. Theorem 7.5 implies that the Frobenius–Schur indicators of the objects in a MTC
are real. The formula for the nth indicators can be rewritten in term of the modular data of C by
the Verlinde formula (cf. [2]), namely

N
j
ik =

∑
r∈Γ

sir skr sj̄r

s0r

,

where the S-matrix of C is given by

sij = 1√
dim(C)

.

In particular, s0i = di/
√

dim(C) for all i ∈ Γ . Hence

νn(Xj ) =
∑

i,k∈Γ

N
j
iks0i s0k

ωn
i

ωn
k

.

For n = 2, this recovers Bantay’s formula for the (degree 2) Frobenius–Schur indicator in con-
formal field theory (cf. [3]).

Theorem 7.7. Let C be a MTC with the twist θ . Then FSexp(C) = ord(θ).



S.-H. Ng, P. Schauenburg / Advances in Mathematics 211 (2007) 34–71 61
Proof. Let n be a positive integer. If θn = id, then

νn(Xj ) = 1

dim(C)

∑
i,k

N
j
ikdidk = 1

dim(C)

∑
i

didīdj = dj

for all j ∈ Γ . Conversely, if νn(Xj ) = dj for all j ∈ Γ , then

dim(C) =
∑
j

d2
j = 1

dim(C)

∑
i,k,j∈Γ

didkN
j
ikdj

ωn
i

ωn
k

= 1

dim(C)

∑
i,k∈Γ

d2
i d2

k

ωn
i

ωn
k

= 1

dim(C)

∣∣∣∣∑
i∈Γ

d2
i ωn

i

∣∣∣∣
2

.

Hence, we have

∑
i∈Γ

d2
i = dim(C) =

∣∣∣∣∑
i∈Γ

d2
i ωn

i

∣∣∣∣.
The equalities imply that ωn

i are all identical for i ∈ Γ . Since ωn
0 = 1, ωn

i = 1 for all i and so
θn = id. �
Corollary 7.8. Let C be a spherical fusion category over C. Then FSexp(C) = FSexp(Z(C)).

Proof. By [23], Z(C) is a modular tensor category and hence FSexp(Z(C)) = ord(θ) by Theo-
rem 7.7, where θ is the twist of Z(C) associated with the pivotal structure of C. By Theorem 5.5,
we also have FSexp(C) = ord(θ) and so the result follows. �
8. Cauchy theorem for quasi-Hopf algebras

In [6], Etingof and Gelaki asked the following two questions for a complex semisimple Hopf
algebra H :

(i) If p is a prime divisor of dim(H), does p divides exp(H)?
(ii) If exp(H) is a power of a prime p, is dim(H) a power of p?

The questions have been recently answered by Kashina, Sommerhäuser and Zhu [17]. They
proved that exp(H) and dim(H) have the same prime factors.

In this section, we generalize their result and prove an analog of Cauchy’s Theorem (Theo-
rem 8.4) for a complex semisimple quasi-Hopf algebra H : exp(H) and dim(H) have the same
prime factors. If H admits a simple self-dual module, then dim(H) is even. Moreover, if dim(H)

is odd, FSexp(H) and exp(H) are the same.
Throughout the section, we consider a spherical fusion category C over C. Let m be the order

of the twist θ of Z(C) associated with the pivotal structure of C; by Theorem 5.5 this is the same
as the Frobenius–Schur exponent of C. We let ζm ∈ C be a primitive mth root of unity.

Recall that the (n, r)th Frobenius–Schur indicator of any object in V ∈ C is a cyclotomic
integer in Qn. Let m be the order of the twist θ of Z(C) associated with the pivotal structure of C
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and let ζm ∈ C be a primitive mth root of unity. Let F be the smallest extension over Q containing
di for all i ∈ Γ ; we will call F the dimension field of C. Note that Gal(F(ζm)/F) is isomorphic
to a subgroup of U(Zm). Let r be an integer such that σ : ζm → ζ r

m defines an automorphism of
F(ζm)/F; in particular, r is relatively prime to m. By Theorem 4.1, νn(V ) ∈ F(ζm) for V ∈ C and
a positive integer n. Moreover,

σ
(
νn(V )

) = σ

(
1

dimC ptr
(
θn
K(V )

)) = 1

dimC ptr
(
θnr
K(V )

) = νnr(V ).

By (4.5), we have

δi,0 = σ

(
1

dimC
∑

(X,eX)∈Γ̂

NX
i d(X)ω(X,eX)

)

= 1

dimC
∑

(X,eX)∈Γ̂

NX
i d(X)ωr

(X,eX) = νr(Xi). (8.1)

These equalities imply some congruences when r is a prime.

Proposition 8.1. Let C be a spherical fusion category over C and m = FSexp(C). For any prime p

such that ζm → ζ
p
m defines an automorphism of F(ζm)/F, so in particular p � m, we have

NV
0 ≡ NV ⊗p

0 mod p

for all V ∈ C where NX
i denotes the integer dimC(Xi,X).

Proof. Note that V = ⊕
i∈Γ NV

i Xi , where NV
i = dimC(Xi,V ). By (8.1),

νp(V ) =
∑
i∈Γ

NV
i νp(Xi) = NV

0 .

By the definition of Frobenius–Schur indicators, Tr(E(p)
V ) = νp(V ) is an integer. Since E

(p)
V is

an C-linear automorphism on C(I,V ⊗p) of order 1 or p, by a linear algebra argument in [17],

Tr
(
E

(p)
V

) ≡ dim HomH

(
I,V ⊗p

)
mod p.

Hence, the result follows. �
As an immediate consequence of Proposition 8.1, we prove the following corollary which is

a generalization of a result in [16].

Corollary 8.2. Let C be a spherical fusion category over C, F the dimension field of C and m the
Frobenius–Schur exponent of C. Suppose that there exists a simple object V �∼= I of C such that
V ∗ ∼= V .

(i) If F ∩ Qm = Q, then m is even and (dimC)5/2 is an algebraic integer.
(ii) If F = Q, then dimC is divisible by 2.
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Proof. (i) Suppose that 2 � m. Then ζm → ζ 2
m defines an automorphism of F(ζm)/F as the con-

dition F ∩ Q(ζm) = Q implies that Gal(F(ζm)/F) = U(Zm). It follows from Proposition 8.1 that

0 = NV
0 ≡ NV ⊗2

0 mod 2.

This contradicts that NV ⊗2

0 = dimC(V ,V ∗) = 1. Therefore, 2 | m. By [5], dimZ(C)5/2/m is an
algebraic integer. Since dimZ(C) = dim(C)2, we obtain that (dimC)5/2 must be an algebraic
integer.

(ii) If F = Q, then dimC is indeed an integer and the assumption in (i) holds obviously. It
follows from (i) that dim(C)5/2 is an algebraic integer in Q and hence an integer. Therefore,
dim(C) is even. �

Consider a positive integer n and a primitive lth root of unity ζl for l = lcm(m,n). Further let
r be a positive integer such that σ : ζl → ζ r

l defines an automorphism of F(ζl)/F; in particular
r is relatively prime to l. Then σ(νn(V )) = νn,r (V ) and σ(νn(V )) = νnr(V ). Thus, we have the
following proposition which generalizes the corresponding result in [17].

Proposition 8.3. Let n be any positive integer, l = lcm(m,n) and r an integer relatively prime
to l. If the assignment σ : ζl → ζ r

l defines an automorphism of F(ζl)/F, where ζl is a primitive
lth root of unity, then

νn,r (V ) = νnr (V ) (8.2)

for all V ∈ C.

Proof. The claim follows from the fact that σ |F(ζn)(x) = σ |F(ζm)(x) for all x ∈ F(ζn) ∩
F(ζm). �

Now, we turn to the proof of the main theorem in this section.

Theorem 8.4. Let C be a spherical fusion category over C such that the Frobenius–Perron di-
mension of any simple object is an integer. Then FSexp(C), exp(C) and dim(C) have the same set
of prime factors. Equivalently, if H is a semisimple quasi-Hopf algebra over C, then FSexp(H),
exp(H) and dim(H) have the same set of prime factors.

Proof. The equivalence of the two statements follows directly from the independence of dim(C)

and FSexp(C) on the choice of a pivotal structure on C (cf. Remarks 2.1 and 5.2), and the char-
acterization of H -modfin for some semisimple quasi-Hopf algebra over C as a fusion category
over C with integer Frobenius–Perron dimension for each simple object by [8, Section 8].

Without loss of generality, we may assume C is strict pivotal. Since both the Frobenius–
Schur exponent and the dimension of C are independent of the choice of a spherical structure,
we can assume that C is endowed with the canonical spherical structure with d(V ) equal to the
Frobenius–Perron dimension of V ∈ C. The center Z(C) is a modular tensor category with the
twist θ associated with the canonical spherical structure of C. By [5], the order of θ divides
dim(Z(C))5/2 = ±dim(C)5. Thus, the prime factors of ord(θ) are also prime factors of dim(C).
Let {Xi}i∈Γ be a complete set of non-isomorphic simple objects of C. Recall from [5] that V =
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∑
i∈Γ d(Xi)Xi defines a rank one ideal in the Grothendieck ring of C such that Xi ⊗V ∼= d(Xi)V

and

d(V ) =
∑
i∈Γ

d(Xi)
2 = dim(C).

Suppose p is not a prime factor of ord(θ). Since d(Xi) is an integer for all i ∈ Γ , F = Q. By
Proposition 8.1, we have

NV
0 ≡ NV ⊗p

0 mod p.

Since

V ⊗p ∼= d
(
V ⊗(p−1)

)
V = d(V )p−1V = dim(C)p−1V,

we find

dimC
(
I,V ⊗p

) = dim(C)p−1.

Therefore,

1 ≡ dim(C)p−1 mod p

and hence p � dim(C). Thus, by Theorem 5.5, FSexp(C) and dim(C) have the same set of prime
factors.

By Corollary 6.2,

FSexp(C) = exp(C) or FSexp(C) = 2 exp(C).

To complete the proof, it suffices to show that exp(C) is even whenever FSexp(C) is even. Sup-
pose FSexp(C) is even and exp(C) is odd. Then we have FSexp(C) = 2 exp(C). Recall that
FSexp(C) is the order of θ . By Lemma 6.3, there exists another spherical pivotal structure ĵ

on Z(C) such that ord(θ̂ ) = exp(C) for the associated twist θ̂ , while d̂(V ) = ±d(V ) for any
simple object V of Z(C), where d̂ is the dimension function associated with ĵ . Let Ĉ denote
the spherical fusion category Z(C) endowed with the spherical structure ĵ . By Lemma 6.3, Ĉ is
modular since Z(C) is a MTC. By Theorem 7.7, Corollary 7.8, and Remark 5.2, we have

FSexp(C) = FSexp
(
Z(C)

) = FSexp(Ĉ) = ord(θ̂ ) = exp(C),

a contradiction! �
Corollary 8.5. Let H be an odd-dimensional semisimple quasi-Hopf algebra over C. Then the
exponent of H and Frobenius–Schur exponent of H are identical.

Proof. By the preceding theorem, FSexp(H) is odd and so the claim follows from Corol-
lary 6.2. �
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9. Bounds on the exponent

A direct application of Etingof’s bound on the order of the twist of a modular tensor cat-
egory [5] shows that the Frobenius–Schur exponent (and hence the exponent) of a spherical
fusion category divides the fifth power of its dimension. In this section we will strengthen this
bound in important special cases. For a semisimple quasi-Hopf algebra H , we can show that the
Frobenius–Schur exponent of H divides dim(H)4. The techniques in this case are close to those
of Etingof and Gelaki in [7]. Special care has to be taken to deal with the nontrivial associa-
tivity isomorphisms (which can be avoided in [5] by using categorically defined determinants,
at the cost of a higher bound). Our bound is higher than the bound of dim(H)3 obtained for
Hopf algebras by Etingof and Gelaki, which can perhaps be tracked to the fact that we cannot
use the dual Hopf algebra H ∗. For the special but important class of group-theoretical quasi-
Hopf algebras introduced by Ostrik [29], on the other hand, we derive a bound of dim(H)2.
This bound, which is even better than the best previously known bound for general semisimple
ordinary Hopf algebras, was recently obtained by Natale [24]. Using the general theory of the
Frobenius–Schur exponent, we can reduce the problem to the case where the quasi-Hopf algebra
is just a dual group algebra with a quasi-bialgebra structure induced by a three-cocycle. In this
case, we can compute the Frobenius–Schur exponent directly by considering the indicators of
individual representations, or really (after a further reduction using the invariance properties) of
just one example.

Theorem 9.1. Let H be a semisimple complex quasi-Hopf algebra. Then the Frobenius–Schur
exponent of H divides dim(H)4.

Proof. For X ∈ H -modfin and V ∈ D(H)-modfin = Z(H -modfin) we write

êV (X) = τXV eV (X) :V ⊗ X → V ⊗ X,

where τ is the ordinary vector space flip. From the hexagon equation

eV (X ⊗ Y) = Φ−1
XYV

(
X ⊗ eV (Y )

)
ΦXV Y

(
eV (X) ⊗ Y

)
Φ−1

V XY

we deduce

det êV (X ⊗ Y) = det
(
Φ−1

XYV

)
det

(
êV (Y )

)dimX det(ΦXV Y )det
(
êV (X)

)dim(Y ) det
(
Φ−1

V XY

)
.

Specializing Y = H and using X ⊗ H ∼= H dimX , we find

det
(
êV (H)

)dimX = det
(
êV (X ⊗ H)

)
= det

(
Φ−1

XHV

)
det

(
êV (H)

)dimX det(ΦXV H )det
(
êV (X)

)dimH det
(
Φ−1

V XH

)
and thus

det
(
êV (X)

)dimH = det(ΦXHV )det(ΦV XH )det
(
Φ−1

XV H

)
.

For V,W ∈ D(H)-modfin we then find
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det
(
eV (W)eW (V )

)dimH

= det
(
êV (W)

)dimH det
(
êW (V )

)dimH

= det(ΦWHV )det(ΦV WH )det
(
Φ−1

WV H

)
det(ΦV HW)det(ΦWV H )det

(
Φ−1

V WH

)
= det(ΦWHV )det(ΦV HW).

The other hexagon equation

eV ⊗W(X) = ΦXV W

(
eV (X) ⊗ W

)
Φ−1

V XW

(
V ⊗ eW (X)

)
ΦV WX

gives

det
(
êV ⊗W(X)

) = det
(
êV (X)

)dimW det
(
êW (X)

)dimV det(ΦV WX)det
(
Φ−1

V XW

)
det(ΦXV W ).

For W = D(H), using V ⊗ D(H) ∼= D(H)dimV as D(H)-modules, and abbreviating D :=
D(H), we find

det
(
êD(X)

)dimV = det
(
êV (X)

)dimD det
(
êD(X)

)dimV det(ΦV DX)det
(
Φ−1

V XD

)
det(ΦXV D)

and hence

det
(
êV (X)

)−dimD = det(ΦV DX)det
(
Φ−1

V XD

)
det(ΦXV D)

= det(ΦV HX)dimH det
(
Φ−1

V XH

)dimH det(ΦXV H )dimH

because the associativity isomorphisms depend only on the H -module structures of the objects
involved, and D(H) ∼= H dimH as H -module. Comparing with the previous calculation, which
gives

det
(
êV (X)

)dimD = (
det

(
êV (X)

)dimH )dimH

= det(ΦXHV )dimH det(ΦV XH )dimH det
(
Φ−1

XV H

)dimH

we find

det(ΦV HX)dimH det(ΦXHV )dimH = 1,

and in particular

det
(
eV (D)eD(V )

)dimH = det(ΦDHV )det(ΦV HD) = det(ΦHHV )dimH det(ΦV HH )dimH = 1.

We continue as in [5] and [7]: Since θV ⊗D(H) and θV ⊗ θD(H) agree up to a factor eD(V )eV (D),
we have

det(θD(H))
dimV dimH = det(θV ⊗D(H))

dimH = det(θV ⊗ θD(H))
dimH

= det(θV )dimD(H)dimH det(θD(H))
dimV dimH
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and thus det(θV )dimD(H)dimH = 1. If V is simple, and thus θV is a scalar, we conclude

θdimV dimH 3

V = 1.

Since dimV divides dimH , we are done. �
Now we turn to the announced bound on the (Frobenius–Schur) exponent of a group-

theoretical quasi-Hopf algebra.
Let G be a finite group and ω :G3 → C× a three-cocycle. Let H ⊂ G a subgroup, and ψ a 2-

cochain of H with dψ = ω|H . The group-theoretical category C(G,H,ω,ψ) defined by Ostrik
[29] is the category of Cψ [H ]-bimodules in the category C(G,ω), which in turn is the category of
G-graded vector spaces, made into a monoidal category with the usual tensor product but nontriv-
ial associativity constraint Φ given by ω. More precisely ΦUV W : (U ⊗V )⊗W → U ⊗ (V ⊗W)

is given by Φ(u ⊗ v ⊗ w) = ω(|u|, |v|, |w|)u ⊗ v ⊗ w if u,v,w are homogeneous (and |x| de-
notes the degree of a homogeneous element x). It makes sense to consider Cψ [H ]-bimodules
in C(G,ω) since the twisted group algebra Cψ [H ] is an associative algebra in the monoidal
category C(G,ω) (thanks to the condition dψ = ω|H ). By [30], the center of C(G,H,ω,ψ) is
isomorphic, as a braided monoidal category, to the center of C(G,ω). The quasi-Hopf algebras
over C, whose representation categories are monoidally equivalent to group-theoretical cate-
gories, are called group-theoretical quasi-Hopf algebras. The center of the category C(G,ω) is
isomorphic to the category of modules over the twisted Drinfeld double Dω(G) of Dijkgraaf,
Pasquier, and Roche [4]. Thus we see that for any group-theoretical quasi-Hopf algebra K , there
exist a group G and a 3-cocycle ω on G such that the module categories over D(K) and Dω(G)

are equivalent braided monoidal categories, that is, D(K) and Dω(G) are gauge equivalent quasi-
triangular quasi-Hopf algebras. This argument can be found in [25], where Natale also shows
that group-theoretical quasi-Hopf algebras can in fact be characterized as those whose double is
gauge equivalent to a twisted double of a finite group.

The Frobenius–Schur indicators of the objects of C(G,ω) were already computed in
[27]. In the terminology of Frobenius–Schur indicators, [27, Proposition 7.1] says that the
Frobenius–Schur exponent of a simple object Vx associated with the element x ∈ G is equal
to ord(x)ord(res〈x〉[ω]). Hence FSexp(C(G,ω)) is the least common multiple of the numbers
ord(x)ord(res〈x〉[ω]) for all x ∈ G (see also below). But by Corollary 7.8 we know that the
Frobenius–Schur exponent is invariant under the center construction. Hence, we have proved the
following result:

Theorem 9.2. The Frobenius–Schur exponent of the group-theoretical category C(G,H,ω,ψ)

is the least common multiple of the numbers |C| · ord(resC[ω]) where C runs through the
(maximal) cyclic subgroups of G. In particular, FSexp(C(G,H,ω,ψ)) divides exp(G)2 and
exp(G)ord([ω]). Hence, for each group-theoretical quasi-Hopf algebra K , we have exp(K) |
FSexp(K) | dim(K)2.

The result on the Frobenius–Schur exponent of C(G,ω) cited above relies on the fact that
C(G,ω) can be described as the category of modules over a certain quasi-Hopf algebra H(G,ω).
The proof of [27, Proposition 7.1] specializes general formulas for indicators over quasi-Hopf
algebras to this case. It may be interesting to see a proof that computes the indicators from scratch
using their first definition in [26] and the description of C(G,ω) above. We will do this in the
rest of the section.
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A complete set of representatives for the isomorphism classes of simple objects in C(G,ω)

is given by Vg = C as a vector space, made into a homogeneous graded vector space of de-
gree g, for each g ∈ G. We will treat the canonical isomorphisms Vg ⊗ Vh

∼= Vgh as identities.
As a consequence, every morphism between iterated tensor products of simples is given as mul-
tiplication with a scalar, and we will sometimes identify the morphism and the scalar below. It
remains to make a suitable choice of dual objects. We will take (Vg)

∨ := (Vg−1 , evg,dbg) with
dbg = 1 : C → Vg ⊗ Vg−1 , which forces us to choose

evg = ω
(
g,g−1, g

)−1 = ω
(
g−1, g, g−1),

since we have to ensure that

Vg
dbg ⊗Vg−−−−−→ (Vg ⊗ Vg−1) ⊗ Vg

Φ−→ Vg ⊗ (Vg−1 ⊗ Vg)
Vg⊗evg−−−−→ Vg

is the identity, and ΦVg,V
g−1 ,Vg = ω(g,g−1, g).

We proceed to determine the pivotal structure of C. The component jg :Vg → (Vg)
∨∨ = Vg is

determined by the requirement that the composition

C
dbg−−→ Vg ⊗ Vg−1

jg⊗V
g−1−−−−−→ Vg ⊗ Vg−1

ev
g−1−−−→ C

be the identity. Thus jg = ω(g−1, g, g−1), since evg−1 = ω(g,g−1, g).
Finally, let us investigate the explicit form of the isomorphism

D :C(I,V ⊗ W) → C
(
I,W ⊗ V ∨∨)

introduced in [26, Definition 3.3]. We have

D(f ) = (
C

dbV ∨−−−→ V ∨ ⊗ V ∨∨ V ∨⊗f ⊗V ∨∨−−−−−−−−→ (
V ∨ ⊗ (V ⊗ W)

) ⊗ V ∨∨ Θ⊗V ∨∨−−−−−→ W ⊗ V ∨∨)
,

where Θ = (V ∨ ⊗ (V ⊗ W)
Φ−1−−→ (V ∨ ⊗ V ) ⊗ W

evV ⊗W−−−−−→ W). Note that if W = V ∨, then

(
V ∨ V ∨⊗dbV−−−−−→ V ∨ ⊗ (

V ⊗ V ∨) Θ−→ V ∨) = idV ∨ .

Now if V = Vg and W = Vg−1 , then all the morphisms involved can be identified with scalars.
We have dbVg = 1, and so Θ = 1, and since also dbV

g−1 = 1, we finally have D(f ) = f . In
particular, we see that the isomorphism

EVg,V
g−1 :C(C,Vg ⊗ Vg−1) → C(C,Vg−1 ⊗ Vg)

is given, under the identification of both sides with C(C,C) ∼= C, by the scalar j−1
g =

ω(g,g−1, g).
Let us now calculate the higher indicators of Vg in the special case G = Z/NZ and g = 1.

To describe, as in [22], the cocycles on G, we define n̂ ∈ {0, . . . ,N − 1} for n ∈ Z by n̂ ≡ n

modulo N . Then the class of the cocycle ω1 defined by

ω1(�,m,n) = exp

(
2πi

2
�̂(m̂ + n̂ − m̂ + n)

)

N
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generates the group H 3(Z/NZ,C×) ∼= CN . In particular, every cocycle on Z/NZ has the form
ωt = ωt

1 for some 0 � t < N , with

ωt(�,m,n) = exp

(
2πit

N2
�̂(m̂ + n̂ − m̂ + n)

)
.

We will determine the indicators of V1 ∈ C(Z/NZ,ωt ). We start by noting that

ωt(1, n,1) = exp

(
2πit

N2
(n̂ + 1 − n̂ + 1)

)
=

{
exp(2πit/N) = ζ t if n = N − 1,

1 otherwise,

where we have put ζ = exp(2πi/N). In particular, EV1,VN−1
is multiplication with ζ t . We can

also compute the scalar Φn :V ⊗(n−1)

1
⊗ V1 → V ⊗n

1
. We have the recursion formula

Φn = (V1 ⊗ Φn−1)ΦV1,V
⊗(n−2)

1
,V1

= Φn−1ωt(1, n − 2,1),

and hence Φ�N = ζ t(�−1). Finally, by definition of E
(n)
V1

, which is again a scalar or zero, we know

that νn(V1) = 0 if N � n, while ν�N(V1) = ζ tφN� = ζ t�.
As a consequence of these calculations, we find:

Lemma 9.3. Let G be a finite group, and ω :G3 → C× a three-cocycle representing [ω] ∈
H 3(G,C×).

(i) If G is a cyclic group of order N , then FSexp(C(G,ω)) = N · ord([ω]). In particular we
have N | FSexp(C(G,ω)) | N2, and for each n | N there is ω with FSexp(C(G,ω)) = Nn.

(ii) FSexp(C(G,H,ω,ψ)) is the least common multiple of the numbers ord(C)ord(resC[ω])
where C runs through the (maximal) cyclic subgroups of G.

Proof. The calculations preceding the statement of the lemma have shown that FSexp(V1) =
N ord(ζ t ) = N ord([ω]) if G = Z/NZ and ω = ωt . But since the left-hand side also only
depends on the cohomology class of ω, the formula holds for all cocycles. Thus, more
generally, FSexp(Vg) = N ord([ω]) whenever g generates the cyclic group G, because the
group isomorphism f :G → Z/NZ mapping g to 1 induces a monoidal category equivalence
C(G,ω) → C(Z/NZ,ω′) mapping Vg to V1, where ω′ corresponds to ω under the isomor-
phism H 3(Z/NZ,C×) → H 3(G,C×) induced by f . For general g ∈ G, we may compute the
Frobenius–Schur indicators and exponent of Vg ∈ C(G,ω) by restricting ourselves to the full
monoidal subcategory C(〈g〉,ω|〈g〉3) containing Vg . Thus

FSexp(Vg) | ord(g)ord
([ω〈g〉3 ]) | N ord

([ω]).
Summing up, the Frobenius–Schur exponents of all the simples Vg divide N ord([ω]), and equal-
ity occurs for any g generating G. In particular FSexp(C(G,ω)) = N ord([ω]), and of course
there is a cohomology class of order n for any divisor of N since H 3(G,C×) ∼= CN .

For a general finite group G and any simple Vg ∈ C(G,ω), we can compute its Frobenius–
Schur exponent inside the category C(〈g〉,ω|〈g〉3), and in particular inside one of the categories
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C(C,ω|C3) for C a cyclic subgroup of G, which we may choose to be a maximal cyclic sub-
group. The Frobenius–Schur exponent is thus the least common multiple of the Frobenius–Schur
exponents of these categories, which we have already computed. �
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