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SUMMARY

Cranial neural crest (CNC) cells are patterned and
coalesce to facial prominences that undergo conver-
gence and extension to generate the craniofacial
form. We applied a chemical genetics approach to
identify pathways that regulate craniofacial develop-
ment during embryogenesis. Treatment with the
nitric oxide synthase inhibitor 1-(2-[trifluoromethyl]
phenyl) imidazole (TRIM) abrogated first pharyngeal
arch structures and induced ectopic ceratobranchial
formation. TRIM promoted a progenitor CNC fate
and inhibited chondrogenic differentiation, which
were mediated through impaired nitric oxide (NO)
production without appreciable effect on global pro-
tein S-nitrosylation. Instead, TRIM perturbed hox
gene patterning and caused histone hypoacetyla-
tion. Rescue of TRIM phenotype was achieved with
overexpression of histone acetyltransferase kat6a,
inhibition of histone deacetylase, and comple-
mentary NO. These studies demonstrate that NO
signaling and histone acetylation are coordinated
mechanisms that regulate CNC patterning, differenti-
ation, and convergence during craniofacial morpho-
genesis.

INTRODUCTION

Cranial neural crest (CNC) cells are a group of pluripotent cells

that delaminate from the neural tube early in embryogenesis

and contribute extensively to the formation of vertebrate facial

architecture, including cartilage and bone. Dysregulation of

CNC development can lead to dramatic congenital defects

such as orofacial clefting. All developmental processes including

craniofacial morphogenesis are regulated by interplay between

genetic and epigenetic mechanisms. Posttranslational modifica-

tions of histones by acetylation, phosphorylation, methylation,

and sumoylation have been demonstrated to regulate craniofa-
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cial development. Genetic mutations affecting histone acetyla-

tion (MYST4), demethylation (KDM6A, PHF8), and sumoylation

(SUMO1) result in orofacial clefts (Alkuraya et al., 2006; Fischer

et al., 2006; Kraft et al., 2011; Qi et al., 2010). Further, epigenetic

mechanisms may explain variability in phenotypic penetrance of

genetic mutations that affect craniofacial development and

mediation of environmental factors.

Histone acetylation is catalyzed by histone acetyltransferases

(HATs), which transfer acetyl groups to lysines in the tails of core

histone (Marmorstein and Roth, 2001). This process generally re-

sults in a more relaxed chromatin conformation, exposing bind-

ing sites for other modifiers and promoting gene transcription. In

contrast, histone deacetylases (HDACs) remove the acetyl group

and is generally associated with transcriptional silencing. Hdac8

has been shown to specifically control patterning of the skull in

mice by repressing a number of homeobox transcription factors

in the CNC cells, highlighting the importance of epigenetic regu-

lation in CNC development (Haberland et al., 2009). In human,

chromosomal translocation disrupting MYST4 histone acetyl-

transferase results in a Noonan-syndrome-like phenotype that

includes a cleft palate (Kraft et al., 2011). Further, the zebrafish

ortholog of the human oncogenic histone acetyltransferase

KAT6A regulates hox gene expression in CNC cells and specifies

segmental identity in the pharyngeal arches (PA) 2–4 (Miller et al.,

2004). Loss of kat6a function results in homeotic transformations

of the second PA into a mirror-image duplicated jaw (Crump

et al., 2006).

Nitric oxide (NO) is another essential mediator of posttransla-

tional chromatin modification. Nitric oxide was initially recog-

nized as an important second messenger signaling molecule

generated from metabolism of L-arginine by the nitric oxide

synthase (NOS) family of enzymes that includes neuronal

(nNOS and NOS1), inducible (iNOS and NOS2), and endothelial

(eNOS and NOS3) forms (Moncada and Higgs, 1993). There

has been intense interest in NO signaling in a wide range of

physiologic and disease states, ranging from vascular dilatation

and inflammation to cancer progression. It is also increasingly

evident that NO-mediated posttranslational modification of pro-

tein is a fundamental mechanism regulating protein function,

where S-nitrosylation of histones and transcription factors exert

broad cellular effects. In fact, NO directly leads to chromatin
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remodeling by S-nitrosylation of histone acetyltransferases and

histone deacetylases, leading to a context-dependent response

(Nott et al., 2008).

Chemical genetic screening in the zebrafish embryo is a

powerful approach to interrogate development and disease

and helps to close the gap between molecular basis and phar-

maceutical targets (Gut et al., 2013; North et al., 2007). The

work described here reports the application of chemical genetics

toward the study of CNC cells and craniofacial morphogenesis

and uncovers NO signaling as an important regulatory compo-

nent in early embryonic development. In complementary chem-

ical screens of �3,000 small molecules, we identified 21

compounds that disrupt craniofacial development with specific

ethmoid plate and mandibular phenotypes. Notably, we discov-

ered that the NOS inhibitor 1-(2-[trifluoromethyl] phenyl) imid-

azole (TRIM)-impaired CNC maturation, where insufficient NO

signal altered CNC patterning, inhibited CNC migration and the

chondrocyte-lineage differentiation. Biochemical and functional

analysis demonstrate that TRIM plays a dual role in regulating

CNC development via inhibition of NO signaling and histone hy-

poacetylation. This study describes an important finding that NO

signaling and histone acetylation are coordinated to regulate

CNCpatterning,migration, and differentiation during craniofacial

morphogenesis.

RESULTS

Chemical Screen for Modulators of Craniofacial
Development
Two complementary chemical screens were carried out to iden-

tify small molecules that regulate embryonic craniofacial devel-

opment. One screen of 2,500 compounds evaluated neural crest

development, using expression of progenitor marker crestin in

24 hr postfertilization (hpf) embryos as the assay (White et al.,

2011). A second phenotypic screen of a subset of the com-

pounds (488) with known biological functions was performed

with Alcian blue staining of embryos at 96 hpf to identify small

molecules that affect craniofacial morphogenesis (Figure 1A).

Overall, treatments with 21 compounds (5% of the subset

Bioactives library) resulted in profound defects in craniofacial

development and were selected as candidates for further anal-

ysis (Figure 1B). A summary of the screen and the distinct clas-

ses of observed phenotypes are reported (Table S1 available

online). The 21 candidate compounds that perturbed craniofacial

development were analyzed with regard to the Octanol-Water

partition coefficient (log P). Interestingly, we found that all these

biological active compounds possess a positive log p value

ranged from +1 to +7 with hydrophobic property (Figure 1C).

As expected, compounds that abrogated crestin expression

lead to profound neural crest deficiency and resulted in severe

phenotypes of total or significant loss of CNC and its derivatives.

For example, leflunomide, an inhibitor of dihydroorotate dehy-

drogenase (DHODH), abrogated crestin expression in all CNC

progenitor cells and inhibited terminal differentiation in early

embryogenesis, resulting in total absence of craniofacial struc-

tures (Figure 1D). In contrast, screen of molecules with known

biologic function using Alcian blue staining allowed us to identify

compounds that lead to specific anomalies in craniofacial skel-

eton, because this was a morphologic screen. Specifically, the
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phenotypes observed for these 21 compounds can be classified

into three patterns: seven compounds abrogated development

of craniofacial structures in general (TRIM in Figures 1D and

S1), five compounds produced embryos with fused ethmoid

plate with small or absent lower jaw (GF109203X in Figures 1D

and S2), and treatment with nine compounds resulted in

abridged, separated ethmoid plate but intact lower jaw and skull

base (Pimozide in Figures 1D and S3).

In the group of compounds that lead to general absence of

craniofacial structures, TRIMwas unique in generating ‘‘ectopic’’

cartilaginous structures. We first tested the effect of TRIM treat-

ment on CNC and its derived jaw skeletons during the full-time

developmental window, staring from 12 hpf, when CNC cells

initiate migration, to 96 hpf when the morphogenetic processes

occur to shape the craniofacial skeleton. Compared to intact jaw

skeletons in DMSO control, the upper and lower jaw structures

failed to form in TRIM-treated embryos; however, the skeletal

elements that do form were paired and ectopically clustered in

the dorsolateral region anterior to the otic vesicles, as evidenced

by Alcian-blue-stained cartilages and in sox10:gfp reporter line

(Figure 1E, upper and middle panel). Furthermore, TRIM treat-

ment at 12–48 hpf resulted in failure of themaxillary prominences

to develop fully, which normally contribute to trabecula and

lateral ethmoid plate in upper jaw (Figure 1E, lower panel). In

summary, TRIM appeared to inhibit the formation of discrete

skeletal structures, such as the palate and lower jaw cartilages.

Meanwhile, the more posterior PA structures are formed but are

lateralized to an ectopic dorsolateral domain, where chondro-

cytes do not normally migrate. Further, with TRIM treatments

at discrete stages and graded durations, we observed that

TRIM’s effect on CNC development is temporal and regional

specific, with most profound inhibition during periods of CNC

migration, patterning, and convergence morphogenesis before

48 hpf (Figure S4).

TRIM Treatment Abrogates Midline Convergence of
Posterior CNC Cells
To better understand how the ‘‘ectopic’’ cartilage structure was

formed and whether TRIM treatment led to aberrant cell migra-

tion (Figure 1E), cell lineage tracing was performed employing

sox10:Kaede (Dougherty et al., 2012). Using the 10-somite stage

as the reference for CNC fate map, specific regions were photo-

converted in the context of DMSO or TRIM treatment. When the

most anterior CNC cells that normally contribute to the anterior

first PA (pa 1a) were labeled (Figure 2A), the cells migrated ante-

riorly and formed the ethmoid plate at 4 days postfertilization

(dpf) (Figure 2B). When the same anterior CNC population was

followed in the TRIM-treated embryos, the cells were found scat-

tered in a lateral region around the eyes, failing to condense into

the ethmoid plate in the midline (Figures 2C and 2C0). Therefore,
TRIM treatment did not prevent the anterior CNC cells from

migrating to the anterior domain; however, once there, the

CNC cells did not organize into the paired trabeculae and did

not converge to the midline to form the ethmoid plate.

When the CNCpopulation that contributes to the posterior first

PA (pa 1p) was labeled in Figure 2D, lineage tracing confirmed

that these cells normally contributed to the Meckel’s cartilage

and palatoquadrate in mandibular skeleton (Figure 2E). How-

ever, after TRIM exposure, the posterior CNC group did target
488–501, April 24, 2014 ª2014 Elsevier Ltd All rights reserved 489



Figure 1. Summary and Representative Phenotypes from Chemical Library Screen

(A) Schematic diagram displaying the screening strategy for compounds that affect craniofacial development.

(B) The morphology screen identified 21 compounds that affect the development of craniofacial skeleton.

(C) Octanol-Water partition coefficient (log p value) of the 21 compounds plotted against respective molecular weights.

(D) Representative Alcian-blue-stained phenotype of craniofacial structures after chemical treatment. Following each chemical, whole-mount craniofacial

skeleton was shown in lateral (left), ventral (middle), and dissected palate in flat-mount (right) views. The zebrafish palate consists of ethmoid plate (ep) and

trabecula (tr). Scale bars, 100 mm.

(E) Craniofacial malformation after TRIM treatment compared to DMSO. Upper panel, flat-mount view of TRIM-induced ‘‘ectopic’’ cartilage. Middle panel, ventral

view of the jaw skeleton illustrated by Sox10:gfp reporter line. Lower panel, loss of maxillary prominences after TRIM treatment, which normally contribute to

trabecula at 48 hpf (arrow). The lower jaw cartilages are Meckel’s (m), palatoquadrate (pq), hyosymplectic (hs), ceratohyal (ch), basihyal (bh), and ceratobranchial

1–5 (cb 1–5). A, anterior; P, posterior.
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to the ventral domain but failed to converge to the midline.

Instead, the cells were lateralized and the lower jaw structures

such as Meckel’s cartilage and palatoquadrate failed to form

(Figures 2F and 2F0).
Similarly, the CNC cells in the second and third PA were fol-

lowed and found to contribute to the basihyal, ceratohyal, and

ceratobranchial structures (Figures 2G, 2H, 2J, and 2K). How-

ever, TRIM treatment abrogated midline convergence of CNC

cells to form any of the ventral jaw structures, as the cells re-
490 Chemistry & Biology 21, 488–501, April 24, 2014 ª2014 Elsevier
mained sequestered in the lateral positions corresponding to

these pharyngeal domains (Figures 2I, 2I0, 2L, and 2L0). In

fact, we found that the lateralized cells that would normally

form the ceratobranchials contributed to the ectopic posterior

structures that was previously delineated by Alcian blue stain

(Figures 2L and L0). Taken together, our results show that the

CNC populations were able to migrate to their respective PA

segments. However, once localized to the proper anterior-pos-

terior segment, the CNC cells failed to converge and condense
Ltd All rights reserved



Figure 2. Ectopic Cartilages Were Derived from Malformed Ceratobranchial as a Result of the Failure in Midline Convergence of CNC Cells
Photoconversion labeling of CNC cells in sox10:kaede followed from 10-somite stage (A, D, G, and J) to 4 dpf and after treatment with DMSO (B, E, H, and K,

ventral view) and TRIM (C, F, I, and L, ventral view). Anterior is to the top.

(A–C0 ) CNC cells anterior of the eye were fated to the first PA (A, pa1a) and contributed to ep (B, arrow). In TRIM-exposed embryos, the anterior CNC cells failed to

converge and condense to the midline (C). (C0) Enlarged view of the dotted area in (C) in dorsal focus.

(D–F0) The posterior population of the first PA (D, pa 1p) normally populates the lower jaw structures (m, pq) (E). After TRIM treatment, the cells were sequestered in

a lateralized domain posterior to the eyes (F). (F0 ) Enlarged view of the dotted area in (F) in dorsal.

(G–I0) CNC cells in PA 2 (G) normally populate the bh, ch (H). After TRIM treatment, the cells in PA2 failed to converge in the midline and were stuck in the lateral

position posterior to the eyes (I). (I0) Enlarged view of the dotted area in (I) in lateral.

(J–L0) CNC cells that give rise to the third and posterior PA (J, pa3) formed paired segmented ceratobranchials at 4 dpf (K, cb 1–5). When these cells were followed

in TRIM-treated embryos, they remained lateralizedwithout midline convergence, thus failed to form the ceratobranchials (L). (L0) Enlarged view of the dotted area

in (L) in lateral.

bh, basihyal; ch, ceratohyal; cb, ceratobranchial; ep, ethmoid plate; pq, palatoquadrate. Scale bars, (A)–(L), 50 mm; (C0), (F0), (I0), and (L0 ), 20 mm.
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in the midline, thus they were unable to organize into discrete

skeletal structures.

TRIM Treatment Alters Anteroposterior Patterning of
CNC Cells
Given the different responses of TRIM treatment in anterior

versus posterior CNC as to cartilaginous structures, we next

examined whether this difference was due to perturbed antero-

posterior patterning of the CNC. In sox10:mCherry 28 hpf
Chemistry & Biology 21,
embryos, CNC cells migrate and condense into segmentally

organized PA structures. Compared with the clearly distin-

guishable arches in DMSO control, TRIM exposure resulted in

tangled arches with blurring of segmental boundaries (Fig-

ure 3A). This observation was supported by the expression pro-

file of the endothelin type-A receptor ednra1 in the migrating

CNC cells and ectomesenchymal cells (Nair et al., 2007),

demonstrating TRIM-induced defect in discrete PA patterning

(Figure 3B).
488–501, April 24, 2014 ª2014 Elsevier Ltd All rights reserved 491



Figure 3. TRIM Treatment Altered CNC Anteroposterior Patterning

(A and B) TRIM-induced defect in patterning of discrete PA, as demonstrated in sox10:mCherry embryos with blurring of segmental boundaries and by endra1

expression.

(C) Expressions of dlx2a (red) and hoxa2b (purple) were significantly reduced in all PA after TRIM exposure.

(D) hoxb2a expression (purple) in PA2was decreased after TRIM treatment (black dashed line), withmore dispersed and enhanced expression pattern in posterior

arches (red dashed line). Early CNC marker dlx2a was used as a landmark for PA identification (C and D).

(E and F) Both of the posterior PAmarkers hoxb1b and hoxb3awere upregulated after TRIM treatment. Notably, the hoxb1b/b3a+ cells ectopically expanded into

anterior PA regions, because normally their expression should be restricted in posterior PA 3–7.

(G) A summary of TRIM’s effect on hox gene patterning in anterior versus posterior arches.

(H–K) Expressions of jag1b, hey1, edn1 (24 hpf), and bapx1 (48 hpf) in the anterior CNC are preferentially ablated (black dotted lines), whereas their posterior

expressions are largely unaffected (red dotted lines). Embryos were oriented with anterior toward the left. A, anterior; P, posterior.

Scale bars, (A), (B), and (H)–(K), 50 mm; (C)–(F), 200 mm.
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To investigate the gene regulatory mechanisms underlying the

perturbed CNC patterning, we then examined the expression

of pharyngeal homeobox (hox) genes, which provide spatial

identity for CNC cells to elaborate PA along the anteroposterior

axis (Minoux and Rijli, 2010). In particular, Hox paralog group 2

genes participate in PA patterning, and the two members

hoxa2b and hoxb2a were found to function redundantly in

patterning the second and more posterior PA along the antero-

posterior axis (Pasqualetti et al., 2000). After TRIM treatment,

we observed general depletion of hoxa2b expression in all PA2

and PA3–7 compared to DMSO control (Figure 3C). In contrast,

although the expression of hoxb2a was inhibited anteriorly, its

posterior expression appeared to be dispersed and enhanced

(Figure 3D).
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Further, we observed that TRIM treatment significantly

increased the expression of posterior PA markers hoxb1b and

hoxb3a, by both increasing the level of expression as well as

ectopically expanding the expression domain (Figures 3E and

3F). After TRIM treatment, hoxb1b+ and hoxb3a+ cells were no

longer restricted in the posterior PA 3–7, but extended into

the more anterior PA 1–2, leading to abnormal CNC segment

identity along anteroposterior axis. Taken together, these results

demonstrate that TRIM treatment altered the anteroposterior

patterning of CNC by inactivating of the arch 2 hox cluster and

expanding the posterior pattern to a more anterior segment

(Figure 3G).

Because TRIM-treated embryos exhibited differential defects

between the anterior and posterior CNC populations, with
Ltd All rights reserved
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respect to hox code genes, we also explored markers of other

known pathways regulating CNC patterning (Figures 3H–3K).

Among these, jagged-notch and endothelin-1 signals play key

roles in dorsoventral patterning of cartilaginous skeleton,

through regulation of a complex set of gene expression such

as dlx3/5/6, nkx3.2 in facial skeletal precursors (Zuniga et al.,

2010). As the ligand for Notch receptor, jag1b is expressed in

the dorsal arches, where the activated Notch signal in CNC-

derived mesenchyme induces expression of downstream

effector gene hey1. Here, we found that both jag1b and hey1

expression were markedly reduced or lost in anterior arches of

TRIM-exposed embryos compared with that of DMSO controls

(Figures 3H and 3I, black dotted line). Strikingly, expression of

jag1b and hey1 was largely unaffected in the posterior arches

(Figures 3H and 3I, red dotted line). These data suggest that

insufficient jagged-notch signal is at least partially responsible

for the TRIM-induced patterning defect in loss of anterior jaw

structures. This observation was further supported by analysis

of the ectoderm and pharyngeal pouch development. Edn1 is

primarily secreted from the PA ectoderm (also from paraxial

mesoderm and pharyngeal pouch endoderm), and it participates

with homeobox genes in patterning of intermediate and ventral

arch domains (Medeiros and Crump, 2012). We observed that

edn1 expression is dramatically decreased in the anterior ecto-

dermand pharyngeal pouch in TRIM-treated embryos (Figure 3J,

black dotted line). Similarly, its downstream effector bapx1,

which is primarily required for mandibular arch skeleton and joint

development, is entirely missing in the anterior domain, whereas

persistent but fused bapx1 expression in the posterior cerato-

branchials was detected, partially recapitulating TRIM’s Alcian

blue phenotype (Figure 3K).

It is important to note that expression of hoxa2b and hoxb2a

were reduced by TRIM treatment, with ectopic expression of

hoxb1b and hoxb3a in the anterior domain, and these

changes were associated with reduction of jagged-notch and

endothelin-1 signal from anterior ectoderm and pharyngeal

endoderm. One interpretation of this finding is that ectopic hox

expression in the first two arches inhibits skeletal development,

as evidenced from expanded expression of hoxa1 and hoxa2b

from previous study (Alexandre et al., 1996). Further, because

the pharyngeal ectoderm and endoderm provide the major

sources of signals (e.g., notch; edn1) to guide cell survival, pro-

liferation, migration, and differentiation within adjacent CNC

cells, this lead us to examine if these CNC cell behaviors were

consequently affected in TRIM context, thereby resulting in

skeletal hypoplasia and jaw defects in TRIM phenotype.

TRIMDisrupts Chondrocyte-Lineage Differentiation and
Promotes CNC Progenitor Character
We carried out marker gene analysis to better define the effect of

TRIM on CNC cell development. Leflunomide, a reported chem-

ical to completely abrogate neural crest development and inhibit

melanoma growth, was also identified in this screen and there-

fore used as a positive control (Figure 1E). At 24 hpf, TRIM-

treated embryos show a robust expansion in the number of

crestin+ progenitors, as opposed to the inhibitory effect of leflu-

nomide (Figure 4A). In CNC development, crestin is normally

downregulated after the terminal differentiation of CNC progen-

itors. This finding therefore suggests that TRIM treatment pro-
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motes the maintenance or quiescence of CNC progenitors,

which in turn leads to onset latency of genes required for CNC

migration and downstream lineage differentiation.

Indeed, this explanation was evidenced by our observations in

gene expression of the premigratory marker dlx2a, as well as the

early chondrocyte-lineage differentiation marker sox9a (Figures

4B and 4C). CNC gene dlx2a is normally expressed in four-paired

PA along the dorsoventral axis. However, with TRIM treatment,

dlx2a expression was significantly reduced (Figure 4B, arrows),

indicating TRIM-induced migratory defect in CNC cells. More-

over, TRIM-treated embryos showed significant reduction of

sox9a expression in anterior arches, especially in the first two

anterior migratory streams corresponding to the first arch (Fig-

ure 4C, dotted area), demonstrating dramatically decreased

chondrogenic differentiation of CNC progenitors. Unexpectedly,

we found that TRIM treatment also resulted in ectopic ex-

pression of sox9a, where four-paired cell clusters emerged dor-

solaterally (Figure 4C, brackets), compared with the normal

ventral-lateral migration pattern of sox9a+ cells in DMSO control

(Figure 4C, green dotted line). We speculated that these sox9a+

cell clusters were resulted from aberrant migration of the CNC

cells that exit the posterior PA to form the ceratobranchials.

It is important to note that, unlike leflunomide, TRIM treatment

affected the developmental process that directs CNC progeni-

tors to chondrocyte lineage, because we did not observe

significant decrease ofmitf and foxd3, which was selectively ex-

pressed in CNC cells and required to differentiate melanocyte

and neuron/glial lineages (Pavan and Raible, 2012), respectively

(Figures 4D and 4E).

To further explore our findings, which suggested that TRIM

treatment at 24 hpf caused a reduction in chondrogenesis in

anterior CNC and aberrant CNC marker expression in posterior

segments, we examined CNC migration and skeletal marker

expression at later time points of craniofacial form. At 48 hpf,

dlx2a expression was reduced in anterior CNC in TRIM-treated

embryos compared with controls (Figure 4F, yellow dotted).

However, robust dlx2a expression was detected in the posterior

CNC population anterior to the otic vesicle (Figure 4F, green

dotted). Normally at 72 hpf there is little CNC cell migration

and dlx2a expression in CNC is almost turned off, whereas under

TRIM treatment, even a high level of dlx2a expression persisted

aberrantly in the pharyngeal domain (Figure 4F, arrowhead).

Consistent with prolonged dlx2a expression in the posterior

CNC population with TRIM treatment, we observed almost the

same expression pattern of CNC progenitor and migratory

marker sox10. In 48 hpf control embryos, sox10+ cells had

migrated below the eyes into the pharynx to further contribute

to the jaw cartilage. However, in TRIM-exposed embryo, the

pharyngeal sox10 expression did not occur (Figure 4F, yellow

dotted). By 72 hpf, TRIM treatment resulted in high and sus-

tained sox10 expression in the posterior dorsolateral cell popu-

lation, similar to that of dlx2a pattern (Figure 4F, arrowheads).

Taken together, the ectopic and persistent dlx2a/sox10 expres-

sion suggests that the CNC cells that were sequestered in the

posterior domain retained in a progenitor state.

To examine chondrogenic differentiation of the aberrant

dlx2a+/sox10+ CNC cells, we analyzed the expression of early

and terminal chondrogenic markers sox9a and col2a, respec-

tively. We found that TRIM treatment reduced the number of
488–501, April 24, 2014 ª2014 Elsevier Ltd All rights reserved 493



Figure 4. TRIM Promotes a CNC Progenitor Cell Fate and Disrupts Chondrogenic Differentiation

(A–E) CNCmarker analysis at 24 hpf demonstrate that TRIM treatment expanded the number of crestin+CNC progenitors (A) and inhibited dlx2a+ migratory cells

(B, arrows) and the sox9a+ prechondrogenic cells (C, yellow dotted) in all PA. However, the mitf+ melanocytes (D) and foxd3+ neuronal/glial cells (E) were not

seriously affected by TRIM. Notably, sox9a expression was localized to an aberrant lateralized location (C, green brackets) compared to the ventral-lateral

distribution pattern in DMSO control. Conversely, leflunomide exerted a more general and profound depletion effect on all CNC cells and their derivatives (A–E,

bottom panel).

(F) At 48 and 72 hpf, TRIM treatment caused loss of dlx2a+ or sox10+ migratory cells in the anterior PA (yellow dotted), whereas aberrant dlx2a+ or sox10+ CNC

cells were sequestered in the posterior domain and retained in a progenitor state (green dotted, arrowheads).

(G) At 48 and 72 hpf, chondrogenic differentiation of sox9a+ CNC cells or terminal col2a+ chondrocytes in anterior PA was significantly inhibited by TRIM (yellow

dotted). Instead, ectopic posterior expression of sox9a and col2a was trapped in the lateralized ceratobranchial (green dotted, arrowheads).

Scale bar, 100 mm.
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anterior sox9a+ cells, which normally reside in PA and contribute

to jaw skeleton at 48 hpf (Figure 4G, yellow dotted). This finding is

consistent with the loss of anterior skeletal structures such as the

ethmoid plate and Meckel’s cartilage in TRIM phenotype. How-

ever, we also found there was aberrant sox9a expression in the

ectopic dorsolateral CNC at both 48 and 72 hpf (Figure 4G, green

dotted, arrowhead). Further, these sox9a+ cells can undergo

terminal chondrogenic differentiation, as evidenced by col2a

expression in the paired ceratobranchial structures that we pre-

viously characterized by Alcian blue and lineage tracing analysis

(Figure 4G, arrowheads). Collectively, these results demonstrate

that ectopic chondrogenesis in TRIM-exposed embryos was

prefigured by aberrant dlx2a/sox10 expression in posterior

CNC, and that loss of craniofacial skeleton in TRIM phenotype

was caused, at least partially, by severe inhibition of cell migra-

tion and chondrogenic differentiation in anterior CNC.

CNC Cell Survival or Proliferation Does Not Account for
TRIM Phenotype
Changes in gene expression and loss of craniofacial structures

following TRIM treatment could also be caused by generalized

decrease in CNC cell survival and/or cell proliferation (Kamel
494 Chemistry & Biology 21, 488–501, April 24, 2014 ª2014 Elsevier
et al., 2013). We assayed cell apoptosis despite that the

increased number of crestin+ cells provides strong evidence to

help exclude the possibility of TRIM-induced cell death due to

toxicity (Figure 4A). At 28 hpf, when TRIM-induced decreases

in dlx2a/sox9a expression in PA1–2 became evident, there was

no significant increase in cell death (Figures S5A–S5L). We

examined whether the TRIM-mediated phenotype is caused by

impairment in CNC cell proliferation and found no discernible dif-

ference inmitotic rate in CNC cells (Figures S5M–S5T). Together,

these results exclude generalized apoptosis and decreased pro-

liferation to account for the failure of the CNC cells to contribute

to the craniofacial skeleton.

Potentiating Histone Acetylation Counteracts
TRIM-Induced Craniofacial Defect
In order to further understand the molecular basis of TRIM-

induced reduction in CNC marker expression (e.g., hoxa2b,

Figure 3C; dlx2a, Figure 4B), we asked whether there are the epi-

genetics mechanisms that are involved in TRIM and normal

craniofacial developmental context. Epigenetic CNC gene is

mediated at least in part by histone acetyltransferase KAT6A

and histone binding proteins. Because decrease in hox2 gene
Ltd All rights reserved



Figure 5. Potentiating Histone Acetylation Counteracts TRIM-Induced Craniofacial Defect

(A) Impaired histone H4 acetylation was detected in TRIM-treated embryos compared to DMSO control. Quantification data are presented as mean ± SEM.

*p < 0.05.

(B) Treatment with TRIM inhibited the activity of histone acetyltransferase in a dose-dependent manner. Injection of kat6a mRNA partially counteracts TRIM-

induced hypoacetylation.

(C) Overexpression of kat6a mRNA antagonizes TRIM-induced genetic defect by partially rescuing expression of CNC marker hoxa2b and dlx2a in PA (24 hpf;

middle versus bottom panels). Scale bar, 100 mm.

(D) Chemical potentiation of histone acetylation by TSA partially restored TRIM-induced hoxa2b and dlx2a depletion in PA (24 hpf; middle versus bottom panels).

Scale bar, 100 mm.

(E) TRIM-induced skeletal abrogation was partially rescued by TSA cotreatment, as demonstrated by formation of the first and second PA cartilage structures,

including the Meckel’s cartilage (m), ceratohyal (ch), and hyosymplectic (hs) (96 hpf, middle versus bottom panels). Scale bar, 250 mm.

(F–H) Quantification of the rescuing phenotype observed in (C)–(E), respectively. The statistical data are presented as percentage of embryos with corresponding

phenotype.
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expression was both observed with TRIM treatment and in

KAT6A mutant, we first examined whether TRIM defect was

partially mediated by changes in histone acetylation in CNC.

By analyzing the nuclei lysates from TRIM-treated embryos

with DMSO control, we detected a significant decrease in the
Chemistry & Biology 21,
level of acetylated histone H4 by 50% (Figure 5A). We next

measured the direct effect of TRIM exposure on HAT activity,

which catalyzes the transfer of acetyl groups to core histone.

Compared to DMSO control, a dose-dependent inhibition effect

was detected in TRIM-treated embryos (Figure 5B, left). These
488–501, April 24, 2014 ª2014 Elsevier Ltd All rights reserved 495
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data together indicate that, in TRIM-treated embryos, attenuated

HAT action may at least partially account for the unbalanced sta-

tus of histone hypoacetylation, which consequently leads to

transcriptional inactivation of genes required in early CNC devel-

opment. To test this hypothesis, we took the gain-of-function

approach by genetic interference of HAT expression or chemical

interference of HDAC activity, to investigate if targeted acetyla-

tion could compromise TRIM-induced defect in CNC gene

expression and the resulting skeletal form (Figure 5B, middle).

First, we augmentedHATactivity by coinjection of kat6amRNA

into TRIM-exposed embryos, which correspondingly enhanced

total histone acetylation (Figure 5B, right). As expected, overex-

pression of kat6a mRNA compromised TRIM-induced hoxa2b

depletion in PA flanking the rhombomeres, compared to em-

bryos injected with gfp mRNA control (Figures 5C and 5F, red

dotted). Similarly, kat6a overexpression also achieved partial

rescue of dlx2a expression in TRIM-treated embryos (Figures

5C and 5F). These data suggest that sufficient HAT activity is

required for recovered expression of key CNC genes.

Correspondingly, because HDAC-mediated histone deacety-

lation generally represses transcription, we tested whether co-

treatment of Trichostatin A (TSA), an inhibitor of classes I and II

HDAC, could antagonize the deacetylation process and conse-

quently rescue the TRIM-induced craniofacial defect. Consistent

with HAT overexpression result, TSA and TRIM cotreatment

partially restored the expression of hoxa2b and dlx2a in the

pharyngeal CNC cells (Figures 5D and 5G, red dotted). Intrigu-

ingly, we observed that TSA cotreatment with TRIM mitigated

the loss of chondrogenic development observed with TRIM

alone, as evidenced by partial rescue of the first and second

pharyngeal cartilage structures, including theMeckel’s cartilage,

ceratohyal, and hyosymplectic (Figures 5E and 5H). Taken

together, these data suggest that either chemical or genetic

means to augment histone acetylation canmitigate the inhibitory

effect of TRIM on CNC gene expression and craniofacial

morphogenesis, providing evidence to support a role for histone

acetylation to regulate in CNC and skeletal development.

Nitric Oxide Signal Promotes Histone Acetylation and Is
Critical for CNC and Craniofacial Development
Previous in vitro physiological and toxicological studies have

indicated that TRIM is a potent chemical inhibitor of both

nNOS and iNOS (Handy andMoore, 1997). To elucidate the rela-

tionship between TRIM and histone acetylation, we next exam-

ined whether TRIM-induced NOS inhibition coordinates with

impaired acetylation to play a role in the disrupted CNC form.

Compared to DMSO control, TRIM treatment resulted in signifi-

cant decrease of NO production in the pharyngeal region (Fig-

ure 6A). To further validate these data, we next introduced

the NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) for

rescue, and, indeed, SNAP cotreatment with TRIM robustly

restored endogenous NO production to the normal level as in

control embryos (Figure 6A). Quantification of NO labeling was

reflected by the percentage change compared to DMSO control

embryos (Figure 6B).

We next evaluated if changes in NO level is associated with

CNC gene expression. By 24 hpf, SNAP cotreatment signifi-

cantly rescued the TRIM-induced hoxa2b depletion in CNC

cells almost to the wild-type level, albeit with blurring of the
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anterior and posterior PA boundary (Figure 6C, red dotted).

Meanwhile, large numbers of dlx2a+ cells were also restored

and shaped back to normal pattern (Figure 6C, TRIM versus

TRIM+SNAP). These data demonstrated that potentiating NO

production successfully recovered the expression of patterning

andmigratory genes in CNC, which are indispensable for cranio-

facial development. Employing chromatin immunoprecipitation

(ChIP) assays, we found that TRIM-treated embryos exhibit

decreased H3K9K14 acetylation in the promoter of dlx2a gene,

which was subsequently recovered by SNAP cotreatment (Fig-

ure 6D), indicating NO level is associated with CNC gene expres-

sion and histone acetylation. However, we did not detect such

changes in the hoxa2b gene promoter, likely due to the predom-

inant hoxa2b expression in the rhombomeresmasking the down-

regulation in the CNC we were able to detect by RNA in situ.

Most strikingly, SNAP-mediated rescue restored all the cartilag-

inous structures of both upper (ep, tr) and lower jaw (m, pq, hs,

ch, cb) at 96 hpf (Figure 6E), whereas TRIM-treated embryo

only formed scattered chondrocyte clusters. In a flat-mount

view, embryos cotreated with SNAP and TRIM had fully devel-

oped PA1-derived palate as well as the mesodermally derived

parachordal (pch), to the same extent as DMSO control (Fig-

ure 6F). Further, all the lower jaw elements (m, pq, hs, ch) were

intact except that second-arch-derived ceratohyal (ch) was

malpositioned caudally rather than cephalically (Figure 6F). In

addition to SNAP, we tested S-nitrosothiol type of NO donor

such as S-nitrosoglutathione (GSNO) and observed similar

potent effect in rescue of TRIM-induced craniofacial defects,

but diazeniumdiolates (NONOates) type of NO donors (e.g.,

SPER/NO and DETA-NO), failed to rescue TRIM phenotype

(data not shown). Together, these results demonstrate that

TRIM phenotype resulted from impaired NO production in vivo,

suggesting sufficient NO signal is critical in maintenance of

CNC gene expression and craniofacial morphogenesis.

Having established the involvement of NO in TRIM-mediated

craniofacial malformation and phenotypic rescue, we then

examined the coordinated effect between NO and histone acet-

ylation. Compared to DMSO control, we found that NO donor

SNAP significantly increased the levels of acetylated histones

H3 and H4 by at least 2-fold, which was functionally equivalent

to TSA (Figure 6G). As a result, SNAP cotreatment with TRIM

achieved greatly elevated levels of histone acetylation compared

to TRIM treatment alone (Figure 6G, TRIM versus TRIM+SNAP),

thus providing one possible epigenetic explanation as to the

restored transcriptional activation such as hoxa2b and dlx2a in

SNAP-rescued embryos. Consistent with our data in manipula-

tion of HAT/HDAC activity for TRIM rescue (Figure 5), these re-

sults together suggest a model where NO signal and histone

acetylation are coordinated to regulate CNC development.

In addition to histone acetylation, NO also mediates dynamic

posttranslational modification of proteins through S-nitrosylation

(Schonhoff and Benhar, 2011). We next examined whether TRIM

and NO donor (SNAP and GSNO) treatment altered total protein

S-nitrosylation, to determine the extent of CNC development

attributable to alternative NO-mediated mechanisms. Using the

biotin-switch assay, we did not observe any difference in the de-

gree of total protein S-nitrosylation between DMSO and TRIM

treatment groups, or between TRIM- and SNAP/GSNO-rescued

groups (Figure S7). This result indicates that NO-mediated
Ltd All rights reserved



Figure 6. Nitric Oxide Signal Plays a Critical Role in CNC Development via Coordinating with Histone Acetylation

(A and B) TRIM treatment decreased endogenous NO production in pharynx compared to DMSO control (30 hpf; dotted area). Cotreatment with the SNAP- (NO

donor) rescued TRIM-induced NO insufficiency. SNAP treatment alone has an enhanced effect on NO production.

(C) Potentiating NO production by SNAP robustly recovered TRIM-induced hoxa2b depletion and dlx2a downregulation in PA at 24 hpf (TRIM versus

TRIM+SNAP).

(D) ChIP assay using acetylated H3K9/K14 was performed as the conditions in (C). Cotreatment with SNAP robustly recovered TRIM-induced decrease in histone

H3K9/14 acetylation of the CNC gene dlx2a.

(E) SNAP successfully rescued TRIM-induced craniofacial abrogation, as demonstrated by fully restored structures in both upper (ep, tr) and lower jaw (m, pq, hs,

ch, cb) at 96 hpf.

(F) SNAP-mediated rescue of TRIM phenotype had fully accomplished palate (ep, tr) as well as the mesodermally derived parachordal (pch). Lower jaw elements

were fully developed except that the apex of the ceratohyal (ch) points caudal rather than cephalic.

(G) Western blot of acetylated H3/H4 and quantification (normalized to total histone). TRIM-induced histone hypoacetylation (DMSO versus TRIM) was rescued

by SNAP cotreatment (TRIM versus TRIM+SNAP).

Data in (B), (D), and (G) are expressed as mean ± SEM. *p < 0.05, **p < 0.01. Scale bar, 100 mm (A and C).
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nitrosylation is not the primary mechanism compared to alter-

ations of histone acetylation in generating the TRIM phenotype.

To further evaluate the significance of NO signal on CNC and

craniofacial development, we took the genetic loss-of-function

approach by performing morpholino oligonucleotide (MO)-medi-

ated gene knockdown of both nos1 (nNOS) and nos2 (iNOS) to

attenuate NO production and histone acetylation (Figures 7B,

7C, and S6). At 48 hpf, we observed a dramatic development

defect in both cranial and spinal skeleton in nos1+nos2 mor-

phant (Figure 7A, upper panel). Further, nos1+nos2 knockdown

led to loss of facial soft tissues and shortened upper jaw at

96 hpf (Figure 7A, arrow in lower panel). Compared to control,

all the jaw elements in nos1+nos2-deficient embryos appear to

be hypoplastic, especially with a truncated ethmoid plate that
Chemistry & Biology 21,
failed to fully develop (Figure 7D, mismatch [MM] versus MO).

Consistently, expression of migratory gene dlx2a and pattern

gene hoxa2b in PA wasmarkedly decreased, which was partially

recapitulated in TRIM phenotype (Figure 7E, MM versus MO).

Moreover, the nos1+nos2 knockdown defects in craniofacial

phenotype and expression of CNC genes were partially rescued

by cotreatment with NO donor SNAP (Figures 7D and 7E). Taken

together, these results suggest a critical role of NO signal in

maintenance of CNC gene activity for craniofacial development.

DISCUSSION

Application of chemical screen in a developmental context pro-

vides complementary approach to gain molecular insight into
488–501, April 24, 2014 ª2014 Elsevier Ltd All rights reserved 497



Figure 7. Genetic Validation of Nitric Oxide

Signal in CNC Development

(A–E) Loss-of-function study of nos1/nos2 reveals

the critical role of NO signal in CNC development.

Compared to mismatch (MM) control, morpholino

(MO) knockdown of nos1/nos2 resulted in dra-

matic developmental defect in cranial and spinal

skeleton (A), NO deficiency (B), histone hypo-

acetylation (C), hypoplastic jaw structure (D), and

decreased or even loss of gene expression in PA

(E). The nos1/2 morphant partially recapitulates

the TRIM phenotype and can be rescued by SNAP

cotreatment (D and E).

(F) Schematic diagram summarizes the coordi-

nated regulation of NO signal and histone

acetylation in CNC development. In response to

TRIM-induced NO deficiency, HAT activity is

insufficient, resulting in histone hypoacetylation.

Red color stands for TRIM’s inhibitory effect on

histone acetylation. Genetic enhancement of HAT

(kat6a overexpression), chemical interference of

HDAC (TSA), or complementary NO (SNAP)

(labeled in green) can reverse this defect and

promote acetylation, which presumably favors the

transcriptional activation of key genes (hoxa2b,

dlx2a) required in craniofacial development and

ultimately achieves partial or almost complete

rescue of TRIM phenotype.

ch, ceratohyal; cb, ceratobranchial; ep, ethmoid

plate; hs, hyosymplectic; m, Mechel’s; pq, pala-

toquadrate. Scale bar, (A) upper, 500 mm; lower,

100 mm; (B) and (E), 100 mm.
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developmental mechanisms. We employed assays of crestin

expression in CNC progenitors andmorphologic analysis, where

the latter screen focused on a subset of compounds with anno-

tated bioactivity. TRIM became the ideal candidate because it

caused a graded craniofacial disruption, resulting in loss of ante-

rior PA derivatives (ethmoid plate, trabecula, and mandible) and

formation of ectopic posterior structures (Figure 1E). Identifica-

tion of the targeted biological pathway is a core challenge in

chemical genetics. In this study, we thoroughly characterized

the TRIM-induced craniofacial defect, combined with chemical
498 Chemistry & Biology 21, 488–501, April 24, 2014 ª2014 Elsevier Ltd All rights reserved
and genetic manipulations uncovering

histone acetylation and nitric oxide syn-

thase as the relevant pathways.

Mechanistically, loss of craniofacial

skeleton and gain of ectopic cartilage

following TRIM treatment could be

reasoned by several developmental

events, such as aberrant migration of

CNC cells to proper segments along the

anteroposterior axis, failure in identity

specification within arch segments,

changes in cell proliferation and survival,

and/or defects in chondrogenic differenti-

ation. In our stepwise approach to

identify the biologic target, two basic

questions need to be answered first:

where is the ectopic cartilage come

from and why the anterior skeleton fails
to form. From lineage tracing, we determined that malformed

ceratobranchial (PA 3–7 derived) contributed to the ectopic carti-

lage, whereas failed midline convergence of PA 1–2 populations

accounted for themissing jaw elements. More importantly, these

different responses in anterior versus posterior to TRIM treat-

ment indicated a patterning defect in anteroposterior axis, which

was subsequently illustrated by gene expression analysis of two

groups of patterning pathway: hox codes and notch/endothelin

genes. Our study suggested that ectopic hox expression in the

first two arches inhibits pharyngeal arch development, as further
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evidenced by missing key signals including jagged-notch and

edn1-bapx1 in the anterior pharyngeal ectoderm, endoderm,

and CNC-derived mesenchyme (Figures 3H–3K). TRIM-induced

deficiency of signals could be disastrous to the adjacent CNC

cells, where normally the process of cell migration, multilineage

differentiation in elaborating the craniofacial form was pro-

foundly influenced by wealth of signals in these cranial microen-

vironment (Ragland and Raible, 2004).

Interestingly, CNC marker analysis indeed demonstrated that

chondrogenic differentiation of CNC cells is much vulnerable to

TRIM treatment. The expansion of crestin+ progenitors excludes

the generalized cell death or TRIM toxicity; meanwhile, it sug-

gests another possible mechanism as to quiescence or onset

latency of gene expressions (e.g., hoxa2b, dlx2a, sox9a) that

are required to direct CNC progenitor to cranial chondrocytic

lineage. This explanation was supported by our observation of

aberrant dlx2a, sox10, and sox9a expressions in later develop-

mental stages (48 and 72 hpf, Figures 4F and 4G). Further,

gene inactivation could be a subsequent effect of TRIM-induced

impaired histone acetylation. Our gain-of-function approach by

potentiating histone acetylation achieved partial rescue of CNC

genes (kat6a, TSA in Figure 5) and established the critical role

of histone acetylation in regulating craniofacial development.

The strongest rescue of TRIM phenotype was achieved by

manipulation of the NO production using SNAP or GSNO.

Complementary NO potently rescued TRIM-induced gene and

phenotypic defect, which was shown to be coordinated with

gain-of-function effect in histone acetylation (Figure 6G). How-

ever, we noticed that TRIM+SNAP rescue compares favorably

with TRIM+TSA rescue, indicating that NO might function

upstream of histone acetylation and/or through nonacetylation

pathways (e.g., through S-nitrosylation, or NO may directly

target on the expression of chondrogenic genes). These data

collectively suggest an important role for NO signal in CNC

development. The importance of NO signal was further evi-

denced by loss-of-function study, where combined knock-

down of nos1+nos2 lead to severe craniofacial anomaly in

zebrafish. Taken together, these studies proposed an important

mechanism that NO signal and histone acetylation are coordi-

nated mechanisms regulating CNC patterning and craniofacial

morphogenesis.

Epigenetic Regulation of Craniofacial Formation and
Malformation
The developing CNC cells must be patterned, undergo specific

migratory paths, and coalesce to facial prominences that un-

dergo convergence and extension to generate the craniofacial

form. The important role of epigenetic regulation in these pro-

cesses is underscored by several lines of evidence. First, several

enzymes that catalyze in histone modification regulate craniofa-

cial development, such as histone deacetylase 4 (hdac4) and

acetyltransferases kat6a (Crump et al., 2006; DeLaurier et al.,

2012). Next, human mutations disrupting histone acetylation

(MYST4) demethylation (KDM6A, PHF8) and sumoylation

(SUMO1) result in orofacial clefts (Alkuraya et al., 2006; Fischer

et al., 2006; Kraft et al., 2011; Qi et al., 2010). Further, orofacial

clefts such as the common cleft lip and palate are usually non-

syndromic and exhibit non-Mendelian patterns of inheritance,

where epigenetic effect on the penetrance of a genetic predispo-
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sition presents a possible explanation (Spritz, 2001). Last, popu-

lation studies demonstrate environmental contribution to the

occurrence of orofacial clefts, where epigenetic modifications

may serve as the mediating factor. Therefore, application of

chemical genetics to uncover the role of NO signaling and

histone acetylation in CNC development highlights a central

developmental process that may have broader implications in

organogenesis at large.

It is noteworthy that disruption of general epigenetic mecha-

nisms can result in specific phenotypes, rather than global

failures in organogenesis or embryonic lethality. Mutations in

histone demethylases (PHF8 and KDM6A) and sumoylation

(SUMO1) result in cleft palate. Mutations in zebrafish kat6a re-

sulted in homeotic transformation of PA2 identity (Crump et al.,

2006). Knockdown of histone deacetylase 4 (hdac4) produced

discrete defects in the fusion line between the median ethmoid

plate and the trabeculae, analogous to a cleft between the fron-

tonasal and maxillary processes of amniotes (DeLaurier et al.,

2012). Therefore, examples in clinical presentation and in animal

model phenotypes corroborate that disruption of general epige-

netic mechanisms may result in specific orofacial anomalies.

Nitric Oxide as a Second Messenger Regulating CNC
Development
NO influences gene expression in a very general and profound

manner, thus NO is implicated in many physiologic and patho-

logic processes, ranging from vascular homeostasis and hema-

topoiesis, to atherosclerosis and carcinogenesis (Foster et al.,

2009; North et al., 2009). Here, we show that treatment of devel-

oping embryoswith TRIM, a competitive inhibitor of NOS, altered

hox gene patterning and promoted CNC progenitor fate but did

not affect the general migratory trajectory of CNC cells from early

somite stages to their pharyngeal segment. However, the uncou-

pling of normal CNC cell differentiation and migration resulted in

loss of ethmoid plate and lower jaw structures and led to ectopic

formation of posterior elements that normally contribute to the

ceratobranchials. During hematopoiesis, it was recently demon-

strated that nos1 is required in a cell-autonomousmanner for he-

matopoietic stem cell (HSC) development, and that NO donors

regulated HSC number independent of blood flow (North et al.,

2009). Therefore, in CNC development, as in hematopoiesis,

NO levels appear to fine-tune cell fate.

In regard to orofacial cleft pathogenesis, identification of NO to

regulate CNC behavior links placental circulation, fetal stress,

and maternal and environmental effects to CNC development,

not only in providing a pathophysiological basis, but also in iden-

tifying potential pharmacologic strategies to prevent orofacial

clefts.

Further, we show that, together with NOS inhibition and

NO deficiency, TRIM exerts its effect on hox gene patterning

and craniofacial morphogenesis through histone acetylation.

Therefore, it raises the question as to whether NO-mediated

S-nitrosylation of histones is also affected by TRIM, implicating

S-nitrosylation as another mechanism regulating CNC develop-

ment. Using the biotin switch assay, we did not detect a defect in

S-nitrosylation of total protein with TRIM treatment. Future work

aims to parse out whether S-nitrosylation of specific histone

modifying enzymes or transcription factors regulating CNC

development may be affected.
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SIGNIFICANCE

Thework described here reports the application of chemical

genetics toward the study of CNC cells and craniofacial

morphogenesis and uncovers NO signaling as an important

regulatory component in early embryonic development.

Elucidating the mechanistic action of TRIM demonstrates

that NO signaling and histone acetylation are coordinated

mechanisms that regulate CNC patterning, differentiation,

and convergence during craniofacial morphogenesis. This

study also demonstrates the utility of zebrafish model to

discover compounds that can be developed for pharmaco-

logic manipulation of craniofacial development.

EXPERIMENTAL PROCEDURES

Zebrafish Husbandry and Genetic Strains

Zebrafish were raised and maintained under established protocols as per

Subcommittee on Research Animal Care, Massachusetts General Hospital.

Sox10:egfp, sox10:mCherry, and sox10: Kaede lines were generated using a

7.2 kb sox10 promoter.

Whole-Mount RNA In Situ Hybridization and Cartilage Staining

Whole-mount RNA in situ hybridization was performed as described (Kamel

et al., 2013). Imaging of zebrafish cartilage was achieved by Alcian blue stain-

ing, captured using Nikon SMZ1000 and Nikon Eclipse 80i microscopes.

Small Molecule Screen

Over 2,980 compounds were screened from the ICCB Known Bioactives

Library (Enzo), including additional compounds identified from a chemical

screen (BIOMOL 480, Sigma LOPAC1280, and the Children’s Hospital Boston

Chemical Screening facility) based on crestin expression (White et al., 2011). In

phenotypic screen, embryos were exposed to chemicals from 5-somite to

48 hpf, with average concentration of 10–100 mM. After treatment, embryos

were rinsed and incubated in E3 to 4 dpf for Alcian blue stain.

Nitric oxide donors SNAP (100 mM), GSNO (100 mM), SPER/NO (25 mM),

and DETA-NO (180 mM) were used in the chemical rescue experiments

and S-nitrosylation assay. TRIM treatment at 30 mM generates consistent

phenotype.

Lineage Tracing Analysis

CNC cells in regions of interest were photoconverted at 10-somite stage in

sox10:kaede embryo using a Nikon Eclipse Ti AIR confocal microscope with

a 404 nm laser. Green and red fluorescence signals were captured simulta-

neously by using the 488 and 562 nm laser wavelengths, respectively (Dough-

erty et al., 2012).

mRNA, Morpholinos, and Microinjection

Kat6a mRNA was synthesized using mMESSAGE mMACHINE T7 Ultra Kit

(Ambion) and purified using the MEGAclear Kit (Ambion). nos1 (50-ACGCT

GGGCTCTGATTCCTGCATTG) and nos2 (50-AGTGGTTTGTGCTTGTCTTCC

CATC) morpholinos were synthesized by GeneTools. About 2 nl mRNA or

morpholino solution was injected into 1-cell stage embryo.

In Vivo Nitric Oxide Labeling and S-Nitrosylation by Biotin-Switch

Assay

NO labeling was performed as described (Lepiller et al., 2007). Fluorescent

images of DAF-FM-DA-labeled embryos were taken using Nikon smz1000

stereomicroscopes with appropriate filter (EX 470/40). Fluorescence inten-

sities of pharynx labeling were measured using ImageJ (NIH) software.

The biotin-switch assay was used to detect S-nitrosylated proteins from

the embryos extract, via specifically labeling nitrosylated cysteines with a

biotin moiety as previous described (Schonhoff and Benhar, 2011). The

covalently labeled biotin in targeted proteins was further detected by

western blot.
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Histone Protein Extraction, Western Blotting, and HAT Activity

Assay

Total Histone protein extraction was performed according to Abcam protocol

online. Western blotting was performed using antibodies specific for histone

H3 (cat. 9715), histone H4 (cat. 2592), acetyl-histone H3 (Lys9/Lys14) (cat.

9677), acetyl-histone H4 (Lys5) (cat. 9672) (Cell Signaling). The effect of

TRIM-exposure on HAT activity was detected in vitro using the Histone

Acetyltransferase Activity Assay Kit (Abcam, ab65352).

Chromatin Immunoprecipitation Assay

Chromatin immunoprecipitation (ChIP) assay was performed using whole em-

bryos and indicated antibodies. Embryos were treated from 12 to 24 hpf for

sample preparation. Real-time PCR analysis was performed using primers

for the promoter region of dlx2a (50-TTCATGATTGACCACGCATT-30; 50- TGTG

TGGCGATGGTAAACTG-30) and hoxa2b (50-ATTTGTCTACGCGCAATGTG-30;
50-TCCCATTAATCCCGAGTCTG-30).
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G., and Horsthemke, B. (2006). Histone acetylation dependent allelic expres-

sion imbalance of BAPX1 in patients with the oculo-auriculo-vertebral spec-

trum. Hum. Mol. Genet. 15, 581–587.
Ltd All rights reserved

http://dx.doi.org/10.1016/j.chembiol.2014.02.013
http://dx.doi.org/10.1016/j.chembiol.2014.02.013


Chemistry & Biology

NO Regulates Cranial Neural Crest Morphogenesis
Foster, M.W., Hess, D.T., and Stamler, J.S. (2009). Protein S-nitrosylation in

health and disease: a current perspective. Trends Mol. Med. 15, 391–404.

Gut, P., Baeza-Raja, B., Andersson, O., Hasenkamp, L., Hsiao, J., Hesselson,

D., Akassoglou, K., Verdin, E., Hirschey, M.D., and Stainier, D.Y. (2013).

Whole-organism screening for gluconeogenesis identifies activators of fasting

metabolism. Nat. Chem. Biol. 9, 97–104.

Haberland, M., Mokalled, M.H., Montgomery, R.L., and Olson, E.N. (2009).

Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes

Dev. 23, 1625–1630.

Handy, R.L., and Moore, P.K. (1997). Mechanism of the inhibition of neuronal

nitric oxide synthase by 1-(2-trifluoromethylphenyl) imidazole (TRIM). Life Sci.

60, PL389–PL394.

Kamel, G., Hoyos, T., Rochard, L., Dougherty, M., Kong, Y., Tse, W.,

Shubinets, V., Grimaldi, M., and Liao, E.C. (2013). Requirement for frzb and

fzd7a in cranial neural crest convergence and extension mechanisms during

zebrafish palate and jaw morphogenesis. Dev. Biol. 381, 423–433.

Kraft, M., Cirstea, I.C., Voss, A.K., Thomas, T., Goehring, I., Sheikh, B.N.,

Gordon, L., Scott, H., Smyth, G.K., Ahmadian, M.R., et al. (2011). Disruption

of the histone acetyltransferase MYST4 leads to a Noonan syndrome-like

phenotype and hyperactivated MAPK signaling in humans and mice. J. Clin.

Invest. 121, 3479–3491.

Lepiller, S., Laurens, V., Bouchot, A., Herbomel, P., Solary, E., and Chluba, J.

(2007). Imaging of nitric oxide in a living vertebrate using a diamino-fluorescein

probe. Free Radic. Biol. Med. 43, 619–627.

Marmorstein, R., and Roth, S.Y. (2001). Histone acetyltransferases: function,

structure, and catalysis. Curr. Opin. Genet. Dev. 11, 155–161.

Medeiros, D.M., and Crump, J.G. (2012). New perspectives on pharyngeal

dorsoventral patterning in development and evolution of the vertebrate jaw.

Dev. Biol. 371, 121–135.

Miller, C.T., Maves, L., and Kimmel, C.B. (2004). moz regulates Hox expression

and pharyngeal segmental identity in zebrafish. Development 131, 2443–2461.

Minoux,M., andRijli, F.M. (2010).Molecularmechanisms of cranial neural crest

cell migration and patterning in craniofacial development. Development 137,

2605–2621.

Moncada, S., and Higgs, A. (1993). The L-arginine-nitric oxide pathway.

N. Engl. J. Med. 329, 2002–2012.

Nair, S., Li, W., Cornell, R., and Schilling, T.F. (2007). Requirements for

Endothelin type-A receptors and Endothelin-1 signaling in the facial ectoderm
Chemistry & Biology 21,
for the patterning of skeletogenic neural crest cells in zebrafish. Development

134, 335–345.

North, T.E., Goessling, W., Walkley, C.R., Lengerke, C., Kopani, K.R., Lord,

A.M., Weber, G.J., Bowman, T.V., Jang, I.H., Grosser, T., et al. (2007).

Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis.

Nature 447, 1007–1011.

North, T.E., Goessling, W., Peeters, M., Li, P., Ceol, C., Lord, A.M., Weber,

G.J., Harris, J., Cutting, C.C., Huang, P., et al. (2009). Hematopoietic stem

cell development is dependent on blood flow. Cell 137, 736–748.

Nott, A., Watson, P.M., Robinson, J.D., Crepaldi, L., and Riccio, A. (2008).

S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in

neurons. Nature 455, 411–415.

Pasqualetti, M., Ori, M., Nardi, I., and Rijli, F.M. (2000). Ectopic Hoxa2 induc-

tion after neural crest migration results in homeosis of jaw elements in

Xenopus. Development 127, 5367–5378.

Pavan,W.J., and Raible, D.W. (2012). Specification of neural crest into sensory

neuron and melanocyte lineages. Dev. Biol. 366, 55–63.

Qi, H.H., Sarkissian, M., Hu, G.Q., Wang, Z., Bhattacharjee, A., Gordon, D.B.,

Gonzales, M., Lan, F., Ongusaha, P.P., Huarte, M., et al. (2010). Histone

H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial

development. Nature 466, 503–507.

Ragland, J.W., and Raible, D.W. (2004). Signals derived from the underlying

mesoderm are dispensable for zebrafish neural crest induction. Dev. Biol.

276, 16–30.

Schonhoff, C.M., and Benhar, M. (2011). Analysis of protein S-nitrosylation.

Curr. Protoc. Protein Sci. Chapter 14, Unit 14. http://dx.doi.org/10.1002/

0471140864.ps1406s63.

Spritz, R.A. (2001). The genetics and epigenetics of orofacial clefts. Curr. Opin.

Pediatr. 13, 556–560.

White, R.M., Cech, J., Ratanasirintrawoot, S., Lin, C.Y., Rahl, P.B., Burke, C.J.,

Langdon, E., Tomlinson, M.L., Mosher, J., Kaufman, C., et al. (2011). DHODH

modulates transcriptional elongation in the neural crest andmelanoma. Nature

471, 518–522.

Zuniga, E., Stellabotte, F., and Crump, J.G. (2010). Jagged-Notch signaling

ensures dorsal skeletal identity in the vertebrate face. Development 137,

1843–1852.
488–501, April 24, 2014 ª2014 Elsevier Ltd All rights reserved 501

http://dx.doi.org/10.1002/0471140864.ps1406s63
http://dx.doi.org/10.1002/0471140864.ps1406s63

	Neural Crest Development and Craniofacial Morphogenesis Is Coordinated by Nitric Oxide and Histone Acetylation
	Introduction
	Results
	Chemical Screen for Modulators of Craniofacial Development
	TRIM Treatment Abrogates Midline Convergence of Posterior CNC Cells
	TRIM Treatment Alters Anteroposterior Patterning of CNC Cells
	TRIM Disrupts Chondrocyte-Lineage Differentiation and Promotes CNC Progenitor Character
	CNC Cell Survival or Proliferation Does Not Account for TRIM Phenotype
	Potentiating Histone Acetylation Counteracts TRIM-Induced Craniofacial Defect
	Nitric Oxide Signal Promotes Histone Acetylation and Is Critical for CNC and Craniofacial Development

	Discussion
	Epigenetic Regulation of Craniofacial Formation and Malformation
	Nitric Oxide as a Second Messenger Regulating CNC Development

	Significance
	Experimental Procedures
	Zebrafish Husbandry and Genetic Strains
	Whole-Mount RNA In Situ Hybridization and Cartilage Staining
	Small Molecule Screen
	Lineage Tracing Analysis
	mRNA, Morpholinos, and Microinjection
	In Vivo Nitric Oxide Labeling and S-Nitrosylation by Biotin-Switch Assay
	Histone Protein Extraction, Western Blotting, and HAT Activity Assay
	Chromatin Immunoprecipitation Assay

	Supplemental Information
	Acknowledgments
	References


