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We generalize and improve earlier constructions of low-discrepancy sequences by 
Sobol’, Faure. and the author, thus obtaining sequences in the s-dimensional unit 
cube with the smallest discrepancy that is currently known, The construction is 
based on the theory of (/, s)-sequences. It is also shown that the dispersion of the 
sequences constructed here has the smallest possible order of magnitude among any 
sequences in the s-dimensional unit cube. 1 1988 Academc Press. Inc. 

1. TNTR~DUCTION 

The discrepancy and the dispersion are well-known measures for the 
irregularity of distribution of a sequence. They are not only of number- 
theoretic interest, but they are also important for applications to numerical 
analysis. Sequences with small discrepancy (or low-discrepancy sequences) 
play a central role in quasi-Monte Carlo methods for numerical integration 
(see [4, 5, 9 J), and sequences with small dispersion (or low-dispersion 

sequences) play a similar role in quasi-Monte Carlo methods for global 
optimization (see [lo, 12, 151). 

In this paper we present new constructions of low-discrepancy sequences 
which generalize and improve earlier constructions and yield sequences 
with the smallest discrepancy that is currently known. As a by-product of 
these constructions we also obtain new low-dispersion sequences. The basis 
for these new constructions is the systematic theory of (t, m, s)-nets and 
(t, x)-sequences developed in Niederreiter [ 141. We also employ a 
methodological innovation which allows us to replace earlier arguments 
based on the evaluation of complicated determinants by more transparent 
arguments based on formal Laurent series (see Section 3). 

We recall the definition of discrepancy. For N points x1, . . . . xv in the 
.r-dimensional half-open unit cube I’ = [O, 1 )“, .s > 1, and a subinterval J of 
P we put 

D(J; N) = A(J; N) - V(J) N, 
51 
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where A(J; N) is the number of II, 1 dn < N, with x,, EJ and V(J) is the 
volume of J. Then the &~~panc~~ d(N) of the points x, , . . . . xv is defined 

by 

d(N) = sup ID(J; WI, 

where the supremum is extended over all half-open subintervals 
J= fl;=, [0, ui) of Z’. Thus we have d(N) = ND:, where 0; is the usual 
star discrepancy of the points x,, . . . . x,,, (see [S, 93). For a sequence 
x,, x2, . . . of points in I” we define d(N) to be the discrepancy of the first N 
terms of the sequence. 

The principal aim in the construction of low-discrepancy point sets and 
sequences is to find, for any N 3 2, N points in I” with 

d(N)<B,(logN)‘ ‘+O((logN)“P2) (1) 

and sequences of points in P with 

d(N)<C,(Iog N)“+O((log N)‘ ‘) for all N 3 2, (2) 

where the constants B, and C, are as small as possible. Constructions with 
successively smaller values of these constants were obtained (in 
chronological order) by Halton [3], Sobol’ [19], Faure [2], and 
Niederreiter [14]. By a well-known principle (compare with Section 5), 
low-discrepancy point sets in P, s3 2, can be obtained from low-dis- 
crepancy sequences in I’- ‘. Therefore we shall concentrate on the problem 
of constructing low-discrepancy sequences. 

The following three definitions from [ 141 are basic. In these definitions 
the dimension s 3 1 and the integer b 3 2 are fixed. 

DEFINITION 1. An elementary interval in base b is an interval of the 
form 

E= fi [a$ 4, (a,+ 1) b -Jr) 
i= 1 

with integers dj > 0 and integers 0 d a, < b4 for 1 d i < s. 

DEFINITION 2. Let 0 < t d m be integers. A (t, m, s)-net in base b is a 
point set of 6”’ points in I” such that A(E; 6”) = 6’ for every elementary 
interval E in base b with V(E) = b’-“. 

DEFINITION 3. Let t > 0 be an integer. A sequence x,, x2, . . . of points in 
r is called a (t, s)-sequence in base b if for all integers k > 0 and nz > t the 
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point set consisting of the x, with kb” < n d (k + 1) 6” is a (t, m, s)-net in 
base b. 

The construction by Sobol’ [ 191 yields (t, $)-sequences in base 2 with 
values of t that depend on s. The construction by Faure [2] yields (0, s)- 
sequences in prime bases 3s and the construction by Niederreiter [ 141 
yields (0, s)-sequences in prime power bases 3s. According to [ 14, Sect. 43 
the discrepancy of a (t, s)-sequence in base h satisfies an effective bound 

d(N) 6 C(t, s, b)(log N)‘+ O((log N)“- ‘) for all N 3 2, (3) 

where C( t, s, 6) is given as 

for s=2, 

for s=3 and b=2, 

C(r, s, b) = 
2’ 

64(log 2)4 
for s=4 and b=2, 

in all other cases, 

where Lul denotes the greatest integer du. In particular, we obtain a 
bound of the form (2) for the discrepancy. For fixed s and b the parameter 
t should be as small as possible to get a small value of the constant 
C(t, s, b). The constructions in the present paper yield (t, $)-sequences in 
base b with relatively small values of z. 

As to lower bounds for d(N), we recall the classical result of Roth [ 171 
which says that d(N) = Q((log N)“‘) for any sequence of points in I”. This 
has only been improved in the case s = 1, where Schmidt [IS] has shown 
that d(N) = Q(log N) for any sequence of points in I’. 

In Section 2 we describe the general principles on which our construc- 
tions are based. The details of the constructions are carried out in Section 3 
for prime power bases, and they are extended to general bases in Section 4. 
Consequences of these constructions for the values of the constants B, and 
C, in (1) resp. (2) that can now be obtained are pointed out in Section 5. 
The implementation of the low-discrepancy sequences constructed here is 
briefly discussed in Section 6. The dispersion of (t, m, s)-nets and (t, s)- 
sequences is studied in Section 7. The Appendix contains some numerical 
tables. 
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2. PRINCIPLES OF THE CONSTRUCTION 

The following construction principle was used in [ 141 to obtain (t, s)- 
sequences in base 6. Let s 3 1 and h > 2 be given integers and write 
B= (0, 1, . . . . h- 1 ) for the set of digits in base h. Then choose the 
following: 

(i) a commutative ring R with identity and card(R)=& 

(ii) bijections $r: B-+ R for r =O, 1, . . . . with $,(O) =0 for all 
sufficiently large r; 

(iii) bijections l,:R+B for i=1,2 ,...,. r and j=1,2 ,..., with 
In, = 0 for 1 < i < s and all sufficiently large j; 

(iv) elements c$)ER for I <ids, j> 1, r30, where for fixed i and r 
we have cjf’ = 0 for all sufficiently large j. 

For n = 1, 2, . let 

n - 1 = f a,(n) h’, a,(~ 1 E B, 
r=O 

be the representation of n - 1 in base h. Put 

with 

% 
g(” = 1 

nJ 
.?I C t$‘IC/,(a,(n)) E B for I <ibs, j> 1, na 1. 

i-=0 > 

Note that the sum over r is a finite sum since $,(O) = 0 and a,(n) = 0 for all 
sufftciently large r. From the conditions (iii) and (iv) it follows that each 
.K!) is given by an expansion with finitely many terms. Now define the 
sequence 

x, = (xj, ’ ) . ..) P’) E r ), for n = 1, 2, . . . . (4) 

The bijections in (ii) and (iii) can be chosen arbitrarily, but the ring R in 
(i) and the elements cjj’ in (iv) have to be chosen judiciously for (4) to 
become a (t, x)-sequence in base h with a small value of t. We quote the 
following result from [ 14, Remark 6.241. 

LEMMA 1. Let h > 2 and t 3 0 be integers and let R be a commutative 
ring with identity and card(R) = h. Suppose that ,fi)r uny integers m > t and 
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d , , ..., d, > 0 with C:=, d, = m - t and any elements ,:.‘I E R, 1 <j < di, 
1 < i 6 s, the system 

m-l 

in the unknowns yO, . . . . ,v,- i over R has e.uactly h’ solutions. Then the 
sequence (4) is a (t, s)-sequence in base b. 

Now we consider the case where h is a prime power and R = Fh, the 
finite field with b elements. The quantity a(C) introduced in the following 
definition is related to the quantity p(C) in [ 14, Definition 6.81 by 
p(C) = o(C) + 1. The subsequent lemma follows from [ 14, Theorem 6.231. 

DEFINITION 4. Let b be a prime power, let m and s be positive integers, 
and let C= {cj’! 1 <j<m, 1 <ids 3 be a system of vectors in the m-dimen- 
sional vector space Fr. Then a(C) is defined as the largest integer of such 
that any system \c, . ’ (‘I. 1 <j<d,, 1 <i<sj with O,<d,<m for 1 <ids and 
C,‘= , d, = d is linearly independent over Fh. 

LEMMA 2. Let h be a prime power, let R = Fhr and let t 3 0 he an integer. 
Suppose that for each integer m > t the system C(m) consisting of the vectors 

c;“(m)=(c$) ,..., c:,i,!,-,)EF;: ,for 1 djdm, 1 6i,<s, 

satisfies g(C(m)) >, m - t. Then the sequence (4) is a (t, s)-sequence in hase h. 

Therefore the problem of constructing (t, s)-sequences in base h reduces 
to the problem of finding elements clr Ii’ E R for which the condition in 
Lemma 1 or 2 is satisfied. 

3. PRIME POWER BASES 

For an arbitrary field F let G = F( (X ’ )) be the field of formal Laurent 
series 

in .Y ‘, where all b,E F and w is an arbitrary integer. Define the discrete 
exponential valuation v on G as follows: for L # 0 put v(L) = - w if w is the 
least index with h,. # 0, and for L = 0 put v(L) = - co. The field G contains 
the field of rational functions over F as a subfield. For x g E F[x] with 
g # 0 we have v( f/g) = deg( f) - deg( g), where deg(0) = - XI. 
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LEMMA 3. Let p,, . . . . pS E F[.u] he pairwise coprime and deg( pi) = ej > 1 
for 1 < i < s. Let h, , . . . . h,, be positive integers and for 1 <j < hi, 1 6 i 6 s, let 
fi,, g, E F[x] with deg(&) < ei and gcd(g,, pi) = 1. Suppose that 

i t.f,,s,=t+L 
,=I,-, P’ 

with feF[.v], LEG, and v(L)< -C;=, h,e,. Then f,i=Ofor all 1 <j<h,, 
1 <i<s. 

Proof: Multiplying (5 ) by p’;l . . .p$, we get on the left a polynomial and 
on the right g+ L, with gG F[x], L, EG, and v(L,)<O. But then 
L, E F[x], hence L, = 0 and 

p;, ...pfs i; 2 -!!=p:‘l...pf$ 

,=,,=, Pi 

Considering this polynomial identity mod pi, 1 < i < s, we get 

.fi, g,,, n P? = 0 mod PI. 
k=l 
kfr 

Since the polynomial by whichf,,, is multiplied on the left is coprime to p,, 
we obtain frh, =O modp,, and since deg(f,,) < ei, this implies f&=0. 
Continuing in this manner we get the desired conclusion. 1 

Let again p, , . . . . p, E F[.Y] be pairwise coprime and deg(p;) = ej 2 1 for 
1 < i<s. For 1 < i< s and ja 1 let gjiE F[x] with gcd(g,;, p,) = 1. For 
0 < k < e,, 1 < i < s, and j 3 1 consider the expansion 

O_= i a”‘( j, k, r) x r ‘, 
xkg (x) 

P,(.X)’ r= ,, 
(6) 

by which the elements u(j’( j, k, r) E F are determined. Here \I’ 6 0 may 
depend on i, j, k. Then define 

c(‘) = a”‘(q + 1, U, r) ,r for 1 <ids, j>l, r30, (7) 

where j - 1 = qe, + u with integers q = q”‘(j) and u = u”‘(j) satisfying 
Oduce,. 

LEMMA 4. Let the elements cj;’ E F be given by (7). Then.for each integer 
m > x;=, (e, ~ 1) and any integers d,, . . . . d, 3 0 with 

1 < i didm- i (ei- 1) 
,=I i= I 
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the vectors 

c;“(m) = (c;;‘, . . . . cl.‘; ,) E F” for 16j<d,, l<i<s, (8) 

are linearly independent over F. 

Prooj: Let d,, . . . . d, be as in the lemma and suppose that the vectors in 
(8) satisfy a linear dependence relation 

s 

c : f;“c;“(m)=O~F~ 
i=l,=l 

with all ,fli’ E F. Without loss of generality we can assume that all di >/ 1. 
Write di - 1 = qie, + ui with integers qi and ui satisfying 0 < u, <e,. In view 
of (7) the linear dependence relation can be put in the form 

,$, y$: ‘:g: fCi’(q, u) a”‘(q, 24, r) = 0 for O<r<m- 1. 

where e(i, 4)-e,- 1 for 1 <q<q,, e(i, qi+ l)=u;, and f’j’(q, u)= 
f(‘)- (4 1 )<, + u + , . Now consider 

= f ( i “5’ ey’f”‘(q, u) a”‘(q, U, r)) X-r-‘, 
(9) 

r = I,’ ,=I y=l u=o 

where 11’~ 0 is suitable. With 

c( 1.4 I 
.fi<,b) = c f’Y% u) -? for 1 dq<q,+ 1, 1 <ids, 

u = 0 

we have deg(J;,) <e,. Furthermore, for the formal Laurent series on the 
right-hand side of (9) the coeffkient of .c- ’ is 0 for 0 < r < m - 1. Thus 
(9) can be written in the form 

with f 6 F[.x], L E G, and 
s 

v(L)< -m< - 1 d,- i (e,-1) 
,=I ,=I 

d - 1 (di-u,- 1 +e,)= - c (q,+ l)e,. 
,=I i= I 
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Therefore Lemma 3 yields h.fi, = 0 for all 1 d q 6 q, + 1, 1 d i < s. It follows 
that all fci’(q, U) appearing in (9) are 0, and so all fi” = 0. 1 

In the application of Lemma 4 to the construction of low-discrepancy 
sequences we let F be a finite field Fh of prime power order h. For the ring 
R in Section 2 we also take R = Fh. 

THEOREM 1. Let h be an arbitrary prime power and let p,, . . . . p, E F,,[.Y] 
be pairwise coprime, uyhere s > 1 is arbitrary and deg(p,) = e, > 1 for 

l<i<s. For l<i<sandj>l letg,jEF,,[x] n’ithgcd(gj,,pi)=l and 

lim (je,-deg(gg))=lxl for 1 <ids. 
, - x 

If the elements c~:‘E F,, are defined by (7), then the sequence (4) is a (t, s)- 

sequence in base b nith 

t= i; (ei- 1). 
!=I 

Prooj: In (6) we have 

= k + deg(g,) - je,, 

thus a”)( j, k, r) = 0 for r <jr, - deg( g,;) - k - 1. Hence for fixed i and r we 
have aci’( j, k, r) = 0 for all sufficiently large j and all 0 d k < e,. Therefore 
the elements c);’ defined by (7) satisfy the condition (iv) in Section 2. 
Furthermore, for each integer 1~ > t = x;=, (e, - 1) the system C(m) 
consisting of the vectors 

satisfies CJ( C(m)) > m - t by Lemma 4. The desired result follows then from 
Lemma 2. 1 

To get the optimal consequence out of Theorem 1, the value of t in 
Theorem 1 has to be minimized for fixed s and b. In other words, the 
degrees of the polynomials pl, . . . . p,, have to be chosen as small as possible. 
This is achieved as follows. We list all manic irreducible polynomials over 
Fh in a sequence p, , pr, . . . in such a way that deg(pj) G deg(p,) whenever 
ib h. Then we let p , , . . . . p, be the first s terms in this sequence of 
polynomials. If we set ei = deg( p,), 1 d id s, for this choice of polynomials, 
then the number 

Th(s)= i (e,-1) 
,=I 

(10) 
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is well defined and represents the minimal value of t in Theorem 1 for fixed 
s and h. We summarize this as follows. 

COROLLARY 1. For every prime power b and every integer s 3 1 there 
exists a ( TJs), s)-sequence in base b. 

For a prime power b >, s we can take pl, . . . . ps to be linear polynomials, 
hence Th(s) = 0. Therefore Corollary 1 includes a result of the author [ 14, 
Corollary 6.201 as a special case. In the even more special case where b is a 
prime >s, Corollary 1 yields a result of Faure [Z]. 

The number T,(S) can be expressed easily in terms of the number N,(n) 
of manic irreducible polynomials over Fh of degree n. Note that by [S, 
Theorem 3.25) we have 

forallnal, 

where p is the Mobius function. Let M,(n) = x;: = i N,(h) be the number of 
manic irreducible polynomials over Fb of degree d n, with M,,(O) = 0. For 
given s > 1 let n = n(b, S) be the largest integer with M,(n) <s. Then we 
clearly have 

Th(s) = f (h - 1) N,(h) + n(s - M,(n)). 
h= I 

(12) 

Values of T,,(s) for b = 2, 3, 4, 5 and 1 6 s 6 30 are tabulated in the Appen- 
dix. A general upper bound for TJs) is obtained in Theorem 2 below. 

LEMMA 5. For any prime power b we have 

,for all n 3 1. 

Proof: This is trivial for n = 1, 2, 3. For n > 3 we use induction and 
(11): 

1 
M,(n+ l)=M,(n)+N,(n+ I)>:+- b 

n+l 
PI+ 1 _ L’n~)‘2J ,f,) 

d=l 

b n+l 1 b n+l 
>n+l+n(hn-b’“+3”2)+-. 

n+l 
I 
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THEOREM 2. Let b be any prime pou>er and s > 1. For s d b we have 
T,(s) = 0 and for s > b we have 

T,,(s) < s(log, s + log,, log, s + 1). 

where log, denotes the logarithm to the base b. 

Proof The trivial first part was already noted earlier. For s > b we have 

Tb(s) < n(b, s) J (13) 

by (12). Put 

k = Llog, s + log, log, s J + 2. 

If either b = 2, y 3 4, or b 3 3, ,V > 1, then 

(b - 1) y 3 log, ?’ + 2. 

With v = log, s we obtain 

blog,s3log,s+log,log,s+2>k 

if either b = 2, s 3 16, or b 2 3, s > h. In these cases it follows that 

k > log, s + log, log,, s + 1 3 log, s + log, k, 

hence by Lemma 5, 

A4 (k)>c>s h ‘k ’ 

By the definition of n(b, s) we get 

n(b, s) <k - 1 < log,, s + log,, log,, s + 1, 

and the bound for T,(s) follows from ( 13). In the remaining case b = 2, 
3 &s 6 15, the bound for TJs) is checked directly by using Table 11 in the 
Appendix. i 

4. GENERAL BASES 

Let the base b = y, qh be a product of arbitrary prime powers 
q,, . . . . qh. For 1 < v <h let F,, be the finite field of order ql,, and let the ring 
R = nk=, F,, be the direct product of these finite fields. Then R is a 
commutative ring with identity and card(R) = b. Note that all operations in 
R are performed coordinatewise. 
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Following the construction principle in Section 2, we choose elements 
~I;)E R for 1 d i6 s, j> 1, r > 0, which satisfy condition (iv) in Section 2. 
These elements are of the form 

where rjj:~F,, for 1 <i<s, j3 1, r>O, 1 dvdh. For fixed i,r, and v we 
must have c$ = 0 for all sufftciently large j. The following is a 
generalization of Lemma 2. 

THEOREM 3. Let h = q, qh be a product of arbitrary prime powers 
ql, . . . . qh, [et R = nf=, Fqv, and let t 2 0 be an integer. Suppose that for each 
integer m > t and each v with 1 <v < h the s.ystem C,.(m) consisting of the 
uectors 

satisfies a(C,.(m)) > m - t. Then the sequence (4) is a (t, s)-sequence in 
base b. 

Proof. We proceed by Lemma 1. For integers m > t and d, , . . . . d,v 2 0 
with C;= I d, = m - t and elements 

a;.;’ = (a);‘, . . . . a;.;‘) E R for 1 <j<d,, 16ids, 

consider the system 

(15) 

in the unknowns y,, . . . . y,,- I over R. Because of the direct product 
structure of R, this is equivalent to considering for I < v 6 h the system of 
m - t equations 

in the m unknowns yoL., . . . . JJ, _ I,o over F,, . From a(C,(m)) b m - t we get 
that the system matrix of (16) has rank m - t for each v. Thus the system 
(16) has exactl!, qi, solutions for each v. Consequently, the system ( 15) has 
exactly q; ‘41, = b’ solutions. i 

THEOREM 4. Let b = q, . . . qh be a product of arbitrar-v prime powers 
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q, , . . . . q,,. Then for every integer s 3 1 there esists a (t, s)-sequence in base b 
with 

t = max T,?(s), 
I <t,<h 

where T,,(s) is defined bJ> (10). 

ProoJ For each v with 1 6 ~1 d h we choose elements C$E F+ for 
1 <i<s, j> 1, and r 3 0 as in Theorem 1, with the polynomials 
Plpr . ..1 p,,, E FJx] being chosen in such a way that 

;$, (de&Pit.) - 1) = T,,(S). 

Then we define the elements cj;’ E R = n: = l FqL for 1 < i d s, j 3 1, and r 3 0 
by (14). Now we proceed by similar arguments as in the proof of 
Theorem 1 and use Theorem 3. 1 

5. CONSEQUENCES FOR LOW-DISCREPANCY SEQUENCES 

We now return to a question raised in Section 1, namely to find a 
sequence of points in I” whose discrepancy satisfies 

d(N) < c,Y(log IV)‘+ @(log N)” ‘) for all N 2 2, 

where the constant C,, is as small as possible. For s = 1 we can take 

c, = 1919 
3454 log 12 + a 

foranyc>O 

by a result of Faure [ 11. For s > 2 and any prime power b the sequences 
constructed in Theorem 1 are (t, s)-sequences in base b and so they satisfy 
the discrepancy bound (3) with the constant C(t, s, b) given there. By 
Corollary 1 we can always achieve t = T,+(s) with T,(s) given in (10). 
Therefore we can take 

C, = mjn C( TJs), s, b 1, 

where the minimum is extended over all prime powers 6. For s = 2 this 
yields 

C*=C(O,2,2)= 
1 

8(log 2)*’ 
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For s> 3 let b,(s) be the least even prime power >s, let b,(s) be the least 
odd prime power as, and put 

where the minimum is extended over all prime powers h <s. Then 

C, = min( Cl, mjn C(0, s, b)) 

since T,(s) = 0 for b 2 s. Therefore we can take 

for s>3. (17) 

This expresses C, as a minimum of finitely many numbers. These values of 
C, improve those obtained previously by the author [14]. 

We tabulate these values of C, for 1 dsb 20. We note again that for 
s > 2 each value of C, is obtained by considering a (TJs), $)-sequence in a 
suitable base b. The appropriate value of b is listed in Table I. All the 
values of C, in Table I have been rounded to three significant digits. 

We note that for s3 2 the value of C, is not always obtained by con- 
sidering a base b 3 s as in the earlier constructions by Faure [2] and 
Niederreiter [ 141. For instance, in the case s = 4 one uses a (1,4)-sequence 
in base 3 and in the case s = 14 a ( 1, 14)-sequence in base 13. For s 3 3 the 
minimum in (17) is not always attained by the term corresponding to an 
odd prime power b. For instance, in the case s= 32 the minimum is 
attained for b = b,(s) = 32. 

For the base b = 2, Sobol’ [ 191 has constructed (t, s)-sequences in base 2 

TABLE I 

s C> h CT h 

1 (2.24) x IO ’ 
2 (2.60) x 10-l 2 
3 (1.26)x IO-’ 3 
4 (8.58)x lo-’ 3 
5 (2.47)x 10 z 5 
6 (1.86) x 10-z 7 
7 (4.11)x10-’ 7 
8 (2.99) x 10 -3 9 
9 (6.05) x 10-4 9 

10 (4.28)x 10m4 11 

11 (8,12)x10-’ 11 
12 (5.60)x 10m5 13 
13 (1.01)x 10-S 13 
14 (2.19)x lo-’ I3 
15 (4.42)x 10 6 17 
16 (7.80)x lo-’ 17 
17 (1.30) x 10-7 17 
18 (8.47)x 10m8 19 
19 (1.36)x 10-x 19 
20 (3.28) x lo-’ 23 
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for any dimension s. Let U(s) denote the least value of t that can be 
achieved by the construction of Sobol’ for given s. By Corollary 1 our con- 
struction yields a (T,(s), s)-sequence in base 2 for any s. A comparison with 
the formula for U(s) given in [ 19, Theorem 3.41 shows that T?(s) = U(s) 
for 1 d s d 7 and T,(s) < U(s) for all s 3 8. Also, the general upper bound 
for T,(s) obtained from Theorem 2 is better than the general upper bound 
for U(s) given in Sobol’ [20, Chap. 6, Theorem 61. Therefore, for all 
dimensions s 3 8 our construction yields dyadic sequences having a smaller 
discrepancy than the sequences of Sobol’. 

The results in Sections 3 and 4 are relevant to a problem raised by the 
author [14, Sect. 81. Following 114, Definition 8.71, we define for given 
h 3 2 and s 3 I the number th(.s) as the least value of t for which there exists 
a (t, $)-sequence in base h. The problem is to determine r,(s). If h is a prime 
power, then by results of [ 141 we have r,(s) = 0 for all s 6 h and th(s) 3 1 
for all s > h. By Corollary 1 we get t,(s) 6 T,,(s) for all prime powers h and 
all s. Since T,,(h + 1) = 1, this shows in particular that t,,(h + 1) = 1 for all 
prime powers h. For arbitrary b > 2 it follows from Theorem 4 that in the 
notation of this theorem, 

th(s) G max T,,(s) foralls31. (18) I<l,<h 

If q denotes the least prime power appearing in the canonical factorization 
of h into a product of prime powers, then t*(s) = 0 for all sdq, as was 
already noted in [ 141. For s > q it follows from (18) and Theorem 2 that 

th( s) < s( log, s + log, log, s + 1). 

The following principle goes back to Roth [ 171 (see also [ 14, 
Lemma 8.91). If for s > 2 we have a sequence 

x;, = (.t$’ I, . . . . .I$ 1 ‘) E 1‘ ’ for n= 1, 2, __. 

whose discrepancy d’(N) satisfies 

A’(N)<C,+ ,(logN)“+‘+O((logN)“-2) for all N 2 2, 

then for any N 3 2 the discrepancy A(N) of the N points 

( n-l 
x,,= - (1) 

N 
> -x, 3 . . . . yl’-l’ (-p fi 

1 
for l<ndN 

satisfies the same bound. Therefore, for any N > 2 and s > 2 we can find N 
points in I” whose discrepancy satisfies (1) with B, = C, r. Admissible 
values of C, , are obtained from (17) and Table I. 
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6. IMPLEMENTATION OF THE SEQUENCES 

The construction in Theorem 1 uses the elements cj;) defined by (7) 
which are in turn obtained from the elements a”‘(j, k, r) defined by (6). 
Therefore, for the concrete implementation of our sequences one needs 
methods for calculating the elements a”‘(j, k, r). 

In general, the calculation of the a”‘(j, k, Y) is facilitated by the obser- 
vation that if i,j, and k are fixed and a”‘(j, k, r) is considered as a function 
of Y, then these elements satisfy a linear recurrence relation with charac- 
teristic polynomial p,(x)‘. The calculation of the ~‘~‘(j, k, r) can be further 
simplified by a convenient choice of the polynomials g,,(x). 

For instance, a suitable choice would be g,(x) = 1 for fixed i and all j >/ 1. 
In this case the identity (6) attains the form 

(19) 

Now also fix ,j and let first k = 0. Put u, = a’“(j, 0, r) for r > 0 and let 

Pi(.Y)‘=Sm-b,,~,s’“-. ‘- ... -b,, 

where we have assumed w.1.o.g. that p,(.u) is manic. Then a comparison of 
coefficients in the identity 

1 = (,,’ - b, , y  ’ - . . . -b,)(u,X ‘+u,s-*+ . ..) 

shows that t’“=u,= ... =o, ?=O, D,,, ,=l, and 

11 r+tTl =b n,-lu,+,-1 + ... +b,u, for r = 0, 1, . . . . 

In other words, the sequence uO, u,, . . is the impulse response sequence 
corresponding to the characteristic polynomial pi(x)’ (compare with [8, 
Chap. 81). For arbitrary k with 0~ k <e, =deg(p,) it follows from (19) 
that 

a”‘(j, k, r)=u,+/, for r=O, 1, . . . . 

Another convenient choice for the polynomials gJx) is obtained as 
follows. For fixed i let 

p,(x) = fi t-x - Bib) 
h= I 
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be the factorization of p,(x) in its splitting field. For j> 1 choose 

g,i(s)= 2 p,o ‘. 
I7 = I ( 1 -y - P,,, 

Then for 0 d k < ei we have 

xkg .-( x) ’ rlEvKk i 1 MKx- -- / 
Pi(?c)’ h=, (.~-LL)~= 

A comparison with (6) shows that 

a”‘(j, k, r) = 

where this expression is interpreted to be 0 if Y + k <j - 1. In the case of 
greatest interest, namely when p,(x) is irreducible over the finite field F,, 
then the explicit formula above can be put in the form 

a”‘(j,k,r)= r+k 
i > 

r+k -/+I 

j-l Tr,(?, 1 for r = 0, 1, . . . . 

where y, is a fixed root of p,(x) and Tri denotes the trace over Fh of the 
splitting field of p,(s). 

For both of these choices for the polynomials g,,(,u) it is seen 
immediately that the condition lim,, ,( je, - deg(g,)) = EXI in Theorem 1 is 
satisfied. Concrete irreducible polynomials p,(x) can be obtained from 
the extensive tables of irreducible polynomials over finite fields in 
[8, Chap. lo]. 

7. LOW-DISPERSION SEQUENCES 

The dispersion of point sets and sequences was introduced in 
Niederreiter [lo] (see also [IS]) in connection with quasi-Monte Carlo 
methods for global optimization. Let d be the metric on I”, s 3 1, given by 

d(y, z) = max / V, - =,I 
IC,<C 
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for y = (JY~, . . . . y,) E IA and z = (z, , . . . . z ,) E F. The dispersion d, of the points 
x 1, . . . . x, in I” is defined by 

d, = sup min d(x, x,). 
xE~~l<n<N 

For a sequence xl, x2, . . . of points in r we define d, to be the dispersion of 
the first N terms of the sequence. For any N points in I” we have 
d, > 4 N- ‘I.’ by [ 12, Theorem 11, and there exist sequences of points in r 
with d, = O(N-‘I”) by a construction in [ll]. Further constructions of 
point sets and sequences of points in I’ with d, = O(N-“‘) can be found in 
Niederreiter [12, 131, and for s= 2 in Lambert [6], Larcher [7], and 
Peart [ 161. We show now that the dispersion of (t, m, s)-nets and 
(t, $)-sequences also satisfies d, = O(N l’.‘), thus generalizing a result of 
Sobol’ [21]. 

THEOREM 5. The dispersion of a (t, m, s)-net in base h satisfies 

d, < ), Llm- fj/sj < b’” 1 + f,/SN- l/A for N=h”. 

Proof: Write k=L(m-t)/s], so that m-t=ks+r with Odr<s-1. 
Consider the partition of r into elementary intervals in base h of the form 

,cl Ca,bpkp’, (a,+ 1) hpk-‘) x fi [aibpk, (a,+ 1) bpk) 
,=r+ I 

with integers 0 d ai < bk+ ’ for 1 <i<r and O<aj<bk for r+ 16iGs. If 
x E I” is arbitrary, then x belongs to a unique interval E of that partition. 
Since 

it follows from Definition 2 that E contains at least one point x, of the 
given (t, m, s)-net in base b. Then d(x, x,) < b-k, thus 

THEOREM 6. The dispersion of a (t, s)-sequence in base b satisfies 

d, < ,I,‘” + f,/SN-~ l/S forallN>,l 
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Proof: For N < h” + ’ we have 

For N>b”+’ let m be the largest integer with b” d N, so that in particular 
m > t. By Definition 3, the first b” terms of the given (t, s)-sequence in base 
h form a (t, m, s)-net in base b. Using Theorem 5 and N < b”+ ’ we 
therefore get 

The (t, s)-sequences in base b constructed in Sections 3 and 4 are 
therefore also low-dispersion sequences. The dispersion of these sequences 
is, however, not as small as that of the best low-dispersion sequence known 
at present, namely the sequence constructed in Niederreiter [ 12, 
Theorem 21 which satisfies 

E N”“d, = 1 
-=0.721 . . . 

N + I% log 4 

APPENDIX 

TABLE II 

Values of T2(S) for 1 6s < 30 

s 1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 

Tz(“) 0 0 1 3 5 8 11 14 18 22 26 30 34 38 43 

s 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

T,(s) 48 53 58 63 68 73 78 83 89 95 101 107 113 119 125 

TABLE III 

Values of T,(s) for 1 Q s < 30 

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Tj(S) 0 0 0 1 2 3 5 7 9 11 13 15 17 19 22 

s 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

TA(s) 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 
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TABLE IV 

Values of T4(s) for 1 6s < 30 

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

T4(s) 0 0 0 0 1 2 3 4 5 6 8 10 12 14 16 

s 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Tcd.~) 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 

TABLE V 

Values of T,(s) for 1 <s < 30 

5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

T,(s) 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 

.r 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

T,(s) 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 
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