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Human acatalasemia may be a risk factor for the development of diabetes mellitus. However, the mechanism
by which diabetes is induced is still poorly understood. The impact of catalase deficiency on the onset of
diabetes has been studied in homozygous acatalasemic mutant mice or control wild-type mice by
intraperitoneal injection of diabetogenic alloxan. The incidence of diabetes was higher in acatalasemic mice
treated with a high dose (180 mg/kg body weight) of alloxan. A higher dose of alloxan accelerated severe
atrophy of pancreatic islets and induced pancreatic β cell apoptosis in acatalasemic mice in comparison to
wild-type mice. Catalase activity remained low in the acatalasemic pancreas without the significant
compensatory up-regulation of glutathione peroxidase or superoxide dismutase. Furthermore, daily
intraperitoneal injection of angiotensin II type 1 (AT1) receptor antagonist telmisartan (0.1 mg/kg body
weight) prevented the development of alloxan-induced hyperglycemia in acatalasemic mice. This study
suggests that catalase plays a crucial role in the defense against oxidative-stress-mediated pancreatic β cell
death in an alloxan-induced diabetes mouse model. Treatment with telmisartan may prevent the onset of
alloxan-induced diabetes even under acatalasemic conditions.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Diabetes mellitus is a worldwide disease and one of the major
causes of death, thus it is essential to clarify the pathogenesis and
effective preventive or therapeutic measures of the disease. Diabetes
is characterized by progressive β cell loss and, it is widely accepted
that reactive oxygen species (ROS) contribute to pancreatic cell or
tissue damage and dysfunction both in type 1 and 2 diabetes, even
though the underlying mechanisms differ [1].

The degree of oxidative stress and the severity of subsequent
tissue injury may depend on an imbalance between the excessive
production of ROS and antioxidant defense within the pancreatic islet.
These antioxidants include the enzymes superoxide dismutase (SOD),
catalase and glutathione peroxidase (GPX), which detoxify ROS.
Catalase (E.C.1.11.1.6) is a major enzyme that catalyzes the decom-
position of hydrogen peroxide (H2O2) and plays a role in cellular
antioxidant defense mechanisms [2]. The main reaction of catalase is
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the catalytic reaction (2H2O2 → O2+ 2H2O) and it is essential for the
removal of excessive H2O2 and for regulation of the H2O2 concentra-
tion in signaling pathways [3]. Catalase limits the accumulation of
H2O2 generated by various oxidases in tissue and serves as a substrate
for the Fenton reaction to produce the highly injurious hydroxyl
radicals.

Genetic defects of catalase were first documented by Takahara [4]
in Japanese patients who exhibited a deficiency of catalase enzyme
activity in their blood (acatalasemia). The short-time clinical
manifestations of human acatalasemia after exposure to H2O2 or
infection with peroxide-generating bacteria such as streptococci
appear predominantly in the mouse. Oral ulcerations, alveolar
gangrene and atrophy resulting in a loss of teeth have been reported.
A high frequency (12.7%) of diabetes mellitus and deleterious changes
in lipid and carbohydrate metabolism is observed in Hungarian
acatalasemia, thus suggesting that this inherited disorder may be a
risk factor for the development of diabetes or atherosclerosis, and
catalase deficiency may not be the benign disorder [5].

ROS are involved in many of the angiotensin II (Ang II) signaling
pathways. Ang II stimulates nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase activity via the AT1 receptor to produce
the superoxide anion, H2O2 and hydroxyl radicals [6]. The existence of
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a local renin–angiotensin system (RAS) is now recognized in
pancreas, the activities of which are subjected to regulation by
physiological and pathophysiological stimuli such as hypoxia, pan-
creatitis, islet transplantation, hyperglycemia and diabetes mellitus
[7]. Thus, the increased RAS in pancreas may aggravate pancreatic cell
damage induced by ROS, and the blockade of RAS may be useful for
preventing diabetes.

The present study hypothesized that a functional catalase
deficiency would render the pancreas more susceptible to oxidant
tissue injury, and the effect of dysregulation of the antioxidant system
on the onset of diabetes was investigated using an acatalasemic
mouse strain induced by the diabetogenic compound alloxan. The
acatalasemic mice differentially express their catalase activity in a
tissue specificmanner. The catalase activities in thesemice range from
1%–2% of the normal mice in red blood cells, to approximately 20% in
kidney, or to nearly normal levels in liver [8,9]. Alloxan is a mild
oxidant which shows the selective toxicity to pancreatic β cells. The
diabetologic action of alloxan is initiated by the generation of ROS
[10]. In addition, since ROS are associated with many Ang II signaling
pathways, we investigated whether the AT1 receptor antagonist,
telmisartan, could inhibit the alloxan-induced hyperglycemia in
acatalasemic mice.

2. Materials and methods

2.1. Animals and experimental protocol

Male wild-type mice (C3H/AnLCsaCsa) and male homozygous
acatalasemic mutant mice (C3H/AnLCsbCsb) were used at the age of
8 to 10 weeks old. All animals were housed in a group of five and fed
standard laboratory chow and water. Diabetes mellitus was induced
by the intraperitoneal injection with 120 or 180 mg/kg body weight
(BW) of alloxan (2,4,5,6-Tetraoxypyrimidine) (Sigma-Aldrich Co., St.
Louis, MO) dissolved in phosphate buffered saline (PBS) at the first
two consecutive days of experimental protocol. In the control group of
mice, the same volume of PBS was injected intraperitoneally. Each
group consisted of 15 to 20mice. The BWwasmeasured at day 0 and 7
of protocol. The blood glucose concentration was determined by a
portable glucose meter using Glutest Sensor (Sanwa Kagaku Ken-
kyusho Co., Nagoya, Japan) at day 0, 2 and 7, using tail tip blood.
Plasma insulin at day 7 was measured using a rat insulin radioimmu-
noassay kit (Linco Research Inc., St. Charles, MO). The pancreases
were dissected out at day 7 under pentobarbital anesthesia. The
development of diabetes was defined as over 200 mg/dl of blood
glucose concentration [11]. Telmisartan (BIBR 277) was dissolved in
PBS, adjusted to pH 8.0, and injected intraperitoneally daily from 1
day before administration of 180 mg/kg BW of alloxan to day 7, at a
dose of 0.1 mg/kg BW [12]. A vehicle-treated group received the
intraperitoneal injection of PBS alone. In this treatment experiment,
mice were divided into 8 subgroups (N=10 to 15/group). The BW
and blood glucose concentration was checked as described above.
Streptozotocin (STZ) is another prominent diabetogenic compounds.
In a pilot study, the intraperitoneal injection of different concentra-
tions of STZ (120 to 160 mg/kg of BW) did not sensitize acatalasemic
mice to diabetes (Supplementary Fig. 1). Therefore, we utilized
alloxan-induced diabetes model in this study. The experimental
protocol was approved by the Ethics Review Committees for Animal
Experimentation of Okayama University Graduate School.

2.2. Light microscopic studies

Formalin-fixed, paraffin-embedded 3-μm sections were assessed
using periodic acid-Schiff (PAS) stain. Each tissue section was
observed using an Olympus BX51 light microscope (Olympus,
Tokyo, Japan) with a high-resolution digital camera system (Penguin
600CL; Pixera Co., CA). The measurement of the pancreatic islets size
was performed using a Microanalyzer program (version 1.1; Nippon
Poladigital Co., Tokyo, Japan).

2.3. Apoptosis detection

DNA fragmentation associated with apoptosis was detected in situ
by the addition of nucleotides to free 3′ hydroxyl groups in DNA as
described previously [13,14]. Terminal deoxynucleotidyl transferase-
mediated dUTP nick end labeling (TUNEL) staining was performed
using a MEBSTAIN Apoptosis Kit Direct (Medical and Biological
Laboratories, Nagoya, Japan).

2.4. Catalase, GPX and SOD activity

After harvesting pancreatic tissue, the samples were immediately
snap frozen in liquid nitrogen and stored at -80 °C until assayed. The
catalase activity was determined by measuring the removal rate of
70 μM H2O2 based on a method described previously [15,16]. The
activity of GPX or SOD was measured as described previously [15,17].

2.5. RNA extraction and quantitative real-time PCR analysis of catalase
in isolated pancreatic islets

Before harvesting pancreatic tissue, mice were perfused with
saline and the samples were fixed in PAX gene™ Tissue Containers
(Qiagen, Valencia, CA). Total RNA was extracted from pancreatic islets
dissected by the laser-capture microdissection (LCM) technique as
described previously [18,19], using LCM Staining Kit (Applied
Biosystems, Foster City, CA), PAX gene™ Tissue miRNA Kit (Qiagen)
and PALM MicroBeam System (Carl Zeiss Inc., Bernried, Germany).
Real-time PCR was carried out as described previously [12,15,19,36].
TaqMan PCR primers and labeled probes were purchased from
Applied Biosystems and the oligonucleotide primers used for PCR
were custom-ordered from Nihon Gene Research Lab's Inc. (Sendai,
Miyagi, Japan) [20]. The amount of PCR product was normalized with
β-actin to determine the relative expression ratios for each mRNA in
relation to β-actin mRNA.

2.6. Statistical analyses

The data, presented as the mean±SEM, were analyzed by the
Mann–Whitney U test using the Stat View statistical software package
(Hulkins, Tokyo, Japan). P valuesb0.05 were considered to be statis-
tically significant.

3. Results

3.1. Acatalasemia promotes alloxan-induced diabetes in mice

Alloxan is an oxidative stress agent that is relatively specific to, and
destroys the insulin-producing pancreatic β cells, so alloxan-induced
diabetes is considered to be a model of type 1 diabetes mellitus [21].
Hyperglycemia was not observed in the control mice in both groups
(N=15 to 20 animals in each group). The incidence of diabetes at 7
days after intraperitoneal injection with 120 mg/kg BW of alloxan
(ALX 120) was 0% in the wild-type mice group, 7.7% in the
acatalasemic mice group, 31.6% in the wild-type mice treated with
ALX 180, and 72.2% in the acatalasemic mice treated with ALX 180.
There were no significant changes in body weight throughout the
experiment in thewild-typemice, while a significant decrease in body
weight was observed in the acatalasemicmice at 7 days after injection
with ALX 180 (Table 1). Blood glucose significantly increased in both
groups at 7 days after the administration of ALX 180. Moreover, the
elevation of blood glucose in the acatalasemic mice was remarkable at
2 and 7 days after injection with ALX 180 in comparison to that in the
wild-type mice (Fig. 1). The concentrations of plasma insulin at day 7



Table 1
Body weight of mice with alloxan-induced diabetes.

Group Day 0 Day 7

Wild-type Control 28.5±0.4 29.5±0.4
ALX 120 (mg/kg bw) 29.5±0.6 30.0±0.5
ALX 180 (mg/kg bw) 30.1±0.4 30.0±0.4

Acatalasemic Control 27.0±0.4 28.2±0.6
ALX 120 (mg/kg bw) 27.2±0.3 27.1±0.3
ALX 180 (mg/kg bw) 26.5±0.4 25.3±0.3a,b,c

Values are means±SEM (g) of 15 to 20 animals in each group.
a Pb0.005 vs. day 0 in the same group.
b Pb0.001 vs. acatalasemic control day 7.
c Pb0.0001 vs. wild-type ALX 180 group at day 7.
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were 0.84±0.21 ng/ml in wild-type control mice, 0.26±0.07 ng/ml
in the wild-type ALX 180 group, 0.40±0.05 ng/ml in the acatalasemic
control, and 0.14±0.02 ng/ml in the acatalasemic ALX 180 group. No
statistically significant differences in concentrations of plasma insulin
were observed between wild-type and acatalasemic same groups. On
the other hand, plasma insulin significantly decreased in both ALX 180
groups in comparison to the appropriate control group (P=0.02 in
wild-type and P=0.005 in acatalasemic mice).

3.2. A higher dose of alloxan accelerates severe atrophy of pancreatic
islet and induces apoptosis in pancreatic islet cells in acatalasemic mice

The atrophy of pancreatic islets can frequently be observed from
the early phase of the disease in other animal models of type 1
diabetes [22]. A histological and morphometric analysis of pancreatic
islets of wild-type and acatalasemic mice was performed to evaluate
the effect of acatalasemia on the administration of alloxan. No
histological abnormalities of the pancreatic islets were observed at the
light microscopic level in wild-type and acatalasemic control mice
(Fig. 2A, C). Severe atrophy of pancreatic islets developed 7 days after
intraperitoneal ALX 180 injection in acatalasemic mice, (Fig. 2D) in
comparison to that observed in wild-type treated with ALX 180
(Fig. 2B). The mean sizes of pancreatic islets in the wild-type and
acatalasemic mice at 7 days after injection with alloxan are shown in
Fig. 1. Changes in the blood glucose concentration in wild-type and acatalasemic mice.
The blood glucose concentrations significantly increased in both groups at 7 days after
the intraperitoneal injection with 180 mg/kg body weight (BW) of alloxan (ALX 180).
The elevation of blood glucose in acatalasemic mice is remarkable at 2 and 7 days after
the injection with ALX 180 in comparison to that in wild-type mice. The data are
expressed as the mean±SEM; N=15 to 20 in each group. ⁎⁎Pb0.01 vs. control in the
same mouse group; ##Pb0.01 vs. wild-type ALX 180 mice at the same time point.
Fig. 2E. The average size of pancreatic islets was significantly
decreased only in acatalasemic mice treated with ALX 180.

Pancreatic β cell death is fundamental in the pathogenesis of type
1 diabetes [23]. Oxidative stress is one of themost important causes of
pancreatic cell death, and many studies have showed relationships
between β cell loss and apoptosis [24–26]. Oxidative stress enhanced
by acatalasemia may sensitize pancreatic islet cells to apoptosis.
TUNEL-positive pancreatic islet cells were hardly found in the wild-
type and acatalasemic control mice, while they were observed in the
wild-type and acatalasemic mice at 7 days after injection with ALX
180 (Fig. 2F and G). The number of TUNEL-positive cells in atrophic
pancreatic islets significantly increased only in acatalasemic mice
treated with ALX 180 in comparison to wild-type ALX 180 mice at the
same time point (Fig. 2H).

3.3. No significant compensation of GPX or SOD for catalase in
acatalasemic pancreas

The maintenance of tissue homeostasis requires an appropriate
balance between oxidants and antioxidants. Catalase and GPX are
physiologically involved in the detoxification of H2O2 and protect cells
or tissues from oxidant-mediated injury. The ability of other
antioxidant enzymes to compensate for catalase in acatalasemic
pancreatic tissue was investigated. Pancreatic catalase activity from
the acatalasemic mice exhibited a 1.4 fold (Pb0.01) decrease in
comparison to wild-type mice and remained low 7 days after ALX
injection (Fig. 3A). The activity of pancreatic catalase significantly
increased in both the wild-type and acatalasemic mice treated with
ALX 180. To examine the effect of acatalasemia on other pancreatic
antioxidant enzymes in alloxan-induced diabetes, the activities of GPX
and SOD were measured in wild-type and acatalasemic mice. There
was not any compensatory up-regulation of GPX in the acatalasemic
pancreas or a significant difference in GPX activities between the two
mice groups (Fig. 3B). The activity of SOD in acatalasemicmice treated
with ALX 180 tended to be higher than those in the wild-type ALX
180-treated group, but no statistically significant differences were
observed among the groups. There were no significant changes in the
activities of SOD between the two groups (Fig. 3C). The expression of
catalase mRNA in acatalasemic and wild-type control pancreatic islets
dissected by LCM was measured by real-time PCR. They were not
significantly different (Supplementary Fig. 2).

3.4. Telmisartan inhibits alloxan-induced hyperglycemia in acatalasemic
mice

We then investigated the effect of telmisartan on the onset of
diabetes mellitus in wild-type or acatalasemic alloxan-induced
diabetes model. Hyperglycemia was not observed in the control
mice in both groups whether they were treated with telmisartan or
not (N=10 to 15 animals in each group). The incidence of diabetes at
7 days after intraperitoneal injection with ALX 180 was 36.4% in the
wild-typemice and 65.2% in the acatalasemicmice. On the other hand,
in the 0.1 mg/kg BW telmisartan-treated groups, diabetes did not
develop in the wild-type mice and was observed only 20% in the
acatalasemic mice. Significant BW decreasing was seen only in the
acatalasemic ALX 180 mice without telmisartan administration.
Treatment with telmisartan resulted in a significant prevention of
the development of hyperglycemia in acatalasemic mice treated with
ALX 180 in comparison to wild-type ALX 180 treated-mice (Fig. 4).

4. Discussion

The present study examined the effects of functional catalase
deficiency on the development of diabetes mellitus utilizing an
acatalasemic mouse strain. The results showed that acatalasemic
mice developedmore severe atrophy of pancreatic islets and apoptosis



Fig. 2. Themean size of pancreatic islet and apoptosis in pancreatic islet cells in wild-type and acatalasemicmice at 7 days after injection with alloxan. Histological andmorphometric
analyses of pancreatic islets. Lightmicrographs ofwild-type (A) or acatalasemic (C) control pancreatic islets andwild-type (B) and acatalasemic (D) pancreatic islet tissue 7 days after
injection with ALX 180. PAS stain. Note that the atrophy of the pancreatic islet is significant only in the acatalasemic mice treated with ALX 180 (D, E). Panels F and G are fluorescent
micrographs of TUNEL-positive pancreatic islet cells (arrowheads) in wild-type (F) and acatalasemic (G) mice at 7 days after the injection with ALX 180. A significant increase in the
number of TUNEL-positive cells in pancreatic islet in acatalasemic mice treated with ALX 180 (H). Scale bars represent 50 μm in panels A to D, F and G. In panels E and H, each column
consists of the means±SEM. N=7 to 10 (E), 5 to 9 (G) in each group. ⁎⁎Pb0.01 vs. control in the same mouse group; ##Pb0.01 vs. wild-type ALX 180 mice at the same time point.
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of islet cells and promoted diabetes in comparison to the wild-type
mice in an alloxan-induced experimental diabetes model. Plasma
insulin decreased in both the acatalasemic andwild-typemice treated
with a higher dose of alloxan, but the decrease wasmore significant in
the acatalasemic mice. Pancreatic catalase activity remained low
without significant compensatory up-regulation of GPX and SOD. Daily
intraperitoneal injection of AT1 receptor antagonist telmisartan
prevented the development of alloxan-induced hyperglycemia in
acatalasemic mice. Therefore, the results suggest that catalase may
play a crucial role in protecting pancreatic islet cells from atrophy and
apoptosis, and that ROS, particularly hydroxyl radicals associatedwith
the reduction of catalase activity,might be involved in the acceleration
of the onset of diabetes in acatalasemic disease conditions. In addition,
Fig. 3. Pancreatic content of antioxidant enzymes in alloxan-induced diabetes model of w
superoxide dismutase (SOD) (C) activities in pancreatic tissue. Each enzyme activity is expres
control in the same mouse group. #Pb0.05; ##Pb0.01 vs. wild-type mice at the same time
telmisartanmay have beneficial effects on prevention of the onset and
progression of alloxan-induced diabetes in acatalasemia.

An acatalasemic mouse strain (Csb) was established by Feinstein et
al. [8] from the progeny of X-ray-irradiatedmice. The residual catalase
activities of acatalasemic mice range from 1%–2% of wild-type mice in
red blood cells, to approximately 20% in kidney, or to nearly normal
levels in liver [8,9]. Acatalasemic mice develop and grow normally.
The mice are as fertile as wild-type mice, and no apparent
abnormalities are seen in the morphology of the major organs,
including the liver, heart, lung, kidney, and pancreas. However, after
exposure to certain toxic agents, particularly oxidative stressors such
as nitrogen monoxide, carbon tetrachloride and so on, caused severe
tissue or cell damage in comparison to that observed in wild-type
ild-type and acatalasemic mice. Catalase (A), glutathione peroxidase (GPX) (B), and
sed as nmol/s/mg protein. Mean±SEM,N=6 to 7 in each group.⁎Pb0.05; ⁎⁎Pb0.01 vs.
point.



Fig. 4. Changes in blood glucose concentration in wild-type and acatalasemic mice
treated with telmisartan. Telmisartan (0.1 mg/kg/BW) treatment significantly
prevented the development of hyperglycemia in acatalasemic mice treated with ALX
180 in comparison to that in wild-type ALX 180 mice. The data are means±SEM;
N=10 to 15 in each group. ⁎⁎Pb0.01 vs. control in the same mouse group;
##Pb0.01 vs. wild-type ALX 180 mice at the same time point; †Pb0.05, ‡Pb0.01 vs.
telmisartan-treated acatalasemic mice at the same time point. TS, telmisartan.
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mice [27]. These mice are more susceptible to diethylnitrosamine,
leading to enhanced hepatocarcinogenesis in comparison to normal
mice [28]. Furthermore, the catalase deficiency enhances renal
tubulointerstitial injury and fibrosis in a model of unilateral ureteral
obstruction (UUO) [14], sensitizes remnant kidneys to albuminuria
and tubulointerstitial fibrosis in a 5/6 nephrectomized model [15],
and develops more severe tissue injury and peritoneal fibrosis in a
chlorhexidine gluconate-induced experimental peritoneal fibrosis
model [29]. These studies suggest that the increased oxidative stress
caused by catalase deficiency may play important roles in the defense
against injuries in different organs. The current study showed for the
first time that acatalasemic mice promoted diabetes mellitus faster
and more frequently than wild-type mice. Similar results with
catalase gene mutations and type 2 diabetes were reported in
humans, and this risk might be due to peroxide damage of normally
catalase-poor pancreatic β cells [30]. Goth et al. reported a proband of
type D Hungarian acatalasemia develop type 2 diabetes at a relatively
early age [31] and there is a higher incidence of diabetes (type 1 and
2) in a catalase deficient family than a normocatalasemic family [5].
The acatalasemic diabetes mice model may reveal the exact mechan-
isms by which hydroxyl radical affects pancreatic dysfunction and it
may lead to the development of new treatments for human diabetes.

Pancreatic islet cells contain low levels of the antioxidant enzymes
SOD, GPX or catalase relative to other organs [32], so the antioxidative
defense mechanisms are weak and can be overwhelmed by redox
imbalance resulting fromoverproduction of ROS [33]. Their function as
glucose sensors and insulin producers requires an intracellular
environment rich in oxygen and glucose in order to generate the
signal for insulin secretion and to supply adequately the target tissues
with insulin. This special internal milieu makes the pancreatic β cell
particularly susceptible to oxidative stress [33] and this may be
involved in the pathogenesis of diabetes. Xu et al. produced transgenic
mice that have an increase in β cell catalase activity and showed that
the increase in catalase activity protected islets against hydrogen
peroxide and STZ [34]. Tabatabaie et al. used electron paramagnetic
resonance spectroscopy in conjunction with spin-trapping methodol-
ogy to demonstrate that the in vivo administration of proinflammatory
cytokines, tumor necrosis factor-α, interleukin-1β (IL-1β) and
interferon-γ into the rat pancreas leads to the formation of free
radicals in the β cells [35]. In addition lower antioxidant enzyme
activities in islets from diabetes-prone BB/S rats is a factor in the
development of type 1 diabetes and in susceptibility to DNAdamage in
vitro [36]. These studies have defined the apparent relationships
between the failure of antioxidant systems and the pathogenesis of
diabetes, and they are consistentwith thefindings of the current study.

The expression of catalase mRNA in pancreatic islets was not
significantly different between acatalasemic and wild-type mice. The
tissues of acatalasemic mice express normal catalase mRNA levels in
comparison to those of wild-type mice, suggesting that the mutation
does not act at the level of gene transcription or mRNA stability, but
rather during mRNA translation and/or protein turnover. The
mutation is mapped to the mouse catalase structural gene on
chromosome 2 and is expressed by modification of the enzyme active
site but not of the antigenic site. This mutation may render the
catalase molecule unstable in acatalasemic mice [9] and may lead to a
significant difference in catalase activities. Blood catalase could
contribute to the defense of organs with low catalase such as the
pancreas or brain. Acatalasemic blood catalase activity accounts for
about 1–2% of the normal catalase activity [16], and therefore a low
blood catalase activity could be associated with the onset of diabetes
in this animal model.

There are many differences between the mechanism of islet cell
death in type 1 and 2 diabetes mellitus [1]. β cell death in the insulitis
in type 1 diabetes is causedby contactwith activatedmacrophages and
T cells, and/or exposure to soluble mediators secreted by these cells,
including cytokines, nitric oxide (NO), and oxygen free radicals [37].
Apoptosis is thought to be themain cause of β cell death at the onset of
type 1 diabetes and it is a highly regulated process activated or
modified by a lot of signals and expression of apoptosis-related genes
[37]. INS-1 cells, a rat pancreatic β cell line, treated with alloxan show
decreasing viability, intracellular ATP levels, and glucose-stimulated
insulin release and the appearance of a DNA ladder, thus suggesting
that alloxan induces apoptosis in these cells [24]. Alloxan selectively
inhibits glucose-induced insulin secretion through specific inhibition
of glucokinase and also causes a state of insulin-dependent diabetes
through its ability to induce ROS formation in a cyclic reaction with its
reduction product, dialuric acid [38]. Elsner et al. showed that catalase
protected insulin-producing cells against the cytotoxic action of
alloxan and dialuric acid due to the breakdown of H2O2 and the
prevention of hydroxyl radical formation [39]. This indicates that the
hydroxyl radical is the ultimate toxic ROS and optimal protection
against the cytotoxicity of alloxan is provided by a combination of SOD
and catalase, which completely prevents redox cycling between
alloxan and dialuric acid, and therefore the generation of all ROS in
this pathway [38]. The current results also reflected and supported this
fact. Catalase and GPX are two major enzymes involved in the
degradation of H2O2. GPX provides a high affinity but low capacity
degradative system, whereas catalase represents a relatively low
affinity and high capacity system. Therefore, themain regulator at high
concentrations of H2O2 is enzyme catalase [40–42]. GPX or SODmight
compensate for the catalase deficiency in acatalasemic pancreas,
though, no significant compensatory up-regulation of GPX and SOD
was found in alloxan-induced diabetes in acatalasemic pancreas. The
pancreatic catalase activities in this study increased in alloxan-treated
diabetes. A hyperglycemic state might lead to an increased concen-
tration of H2O2 and cause the induction of catalase activity as a defense
mechanism against free radicals, but it might not be sufficient to
prevent the onset of diabetes. On the other hand, Tanaka et al. showed
that overexpression of GPX in islets isolated from the model rats of
type 2 diabetes provided enhanced protection against oxidative stress
[43]. GPX protects cells from both excessive levels of H2O2 and
intracellular lipid peroxides, while catalase catabolizes only H2O2. The
contradiction of these results may, in part, be explained by the
difference in the involvement of lipid peroxides catabolism between
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type 1 diabetes under excessive oxidative stress in the acatalasemia
and type 2 diabetes.

We found that treatment with 0.1 mg/kg BW of telmisartan
significantly inhibited the alloxan-induced hyperglycemia in acatala-
semic mice. A number of clinical studies have suggested that
treatment with AT1 receptor antagonist prevented the new-onset or
the development of type 2 diabetes mellitus. Recently, local RAS in
pancreas has been recognized [7] and, has been regarded as playing
important roles in the pathogenesis of diabetes in animal models
[44–47]. These studies suggest that islet RAS activation may be
involved in oxidative-stress-mediated islet apoptosis and fibrosis and
that AT1 receptor antagonist may attenuate NADPH oxidase-induced
oxidative stress in pancreas. As for type 1 diabetesmellitus, Chipitsyna
et al. demonstrated that Ang II elicited an inflammatory response in
the islets and β cells by the stimulation of monocyte chemoattractant
protein-1 (MCP-1) production and that hyperglycemia and progres-
sion to diabetes correlated with the up-regulation of angiotensin-
converting enzyme, the enzyme responsible for production of Ang II
[48]. The mechanism of beneficial effect of telmisartan on the onset of
diabetes in acatalasemic mice should be elucidated. Telmisartan
ameliorated renal fibrosis by inhibition of oxidative stress, but did not
change the concentrations of renal antioxidant enzymes in acatala-
semic UUO model [12]. This finding suggests that telmisartan inhibits
the generation of ROS rather than effecting ROS detoxification.

Finally, this study demonstrated that a higher dose of alloxan
accelerated the severe atrophy of the pancreatic islets and induced
apoptosis in catalase deficient conditions using acatalasemic mice,
and promoted a high incidence of diabetes. In addition, telmisartan
prevented alloxan-induced hyperglycemia under acatalasemic condi-
tions. However, the mechanisms of induction of pancreatic islet cell
death in this model were not apparent, and maybe not only apoptosis
but also necrosis could be involved in the islet cell death, since alloxan
can act as a diabetogenic agent and usually cause β cell death by
necrosis [38]. Further studies of apoptosis-related cytokines or
molecules and elucidation of the mechanisms of the efficacy of AT1
receptor antagonists in this model, including whether the inhibition
of NADPH oxidase could be involved, would provide crucial
information about the relationship between the oxidative stress and
the onset of diabetes in the presence of a catalase deficiency.
Regardless of the type of diabetes, its development and complications
are life-threatening and this disease remains one of the most
important social and health problems. Future studies on the
development of novel therapeutic strategies to inhibit the develop-
ment of diabetes mellitus, including the specific detoxification of
hydroxyl radicals should be carried out in acatalasemic mice.
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